Skip to main content
Log in

Molecular, Biochemical, and Organismal Analyses of Tomato Plants Simultaneously Attacked by Herbivores from Two Feeding Guilds

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Previous work identified aphids and caterpillars as having distinct effects on plant responses to herbivory. We sought to decipher these interactions across different levels of biological organization, i.e., molecular, biochemical, and organismal, with tomato plants either damaged by one 3rd-instar beet armyworm caterpillar (Spodoptera exigua), damaged by 40 adult potato aphids (Macrosiphum euphorbiae), simultaneous damaged by both herbivores, or left undamaged (controls). After placing insects on plants, plants were transferred to a growth chamber for 5 d to induce a systemic response. Subsequently, individual leaflets from non-damaged parts of plants were excised and used for gene expression analysis (microarrays and quantitative real-time PCR), C/N analysis, total protein analysis, proteinase inhibitor (PI) analysis, and for performance assays. At the molecular level, caterpillars up-regulated 56 and down-regulated 29 genes systemically, while aphids up-regulated 93 and down-regulated 146 genes, compared to controls. Although aphids induced more genes than caterpillars, the magnitude of caterpillar-induced gene accumulation, particularly for those associated with plant defenses, was often greater. In dual-damaged plants, aphids suppressed 27% of the genes regulated by caterpillars, while caterpillars suppressed 66% of the genes regulated by aphids. At the biochemical level, caterpillars induced three-fold higher PI activity compared to controls, while aphids had no effects on PIs either alone or when paired with caterpillars. Aphid feeding alone reduced the foliar C/N ratio, but not when caterpillars also fed on the plants. Aphid and caterpillar feeding alone had no effect on the amount of protein in systemic leaves; however, both herbivores feeding on the plant reduced the amount of protein compared to aphid-damaged plants. At the organismal level, S. exigua neonate performance was negatively affected by prior caterpillar feeding, regardless of whether aphids were present or absent. This study highlights areas of concordance and disjunction between molecular, biochemical, and organismal measures of induced plant resistance when plants are attacked by multiple herbivores. In general, our data produced consistent results when considering each herbivore separately but not when considering them together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Article  CAS  Google Scholar 

  • Bodenhausen, N., and Reymond, P. 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Molecular Plant-Microbe Interactions 20:1406–1420.

    Article  PubMed  CAS  Google Scholar 

  • Broadway, R. M., Duffey, S. S., Pearce, G., and Ryan, C. 1986. Plant proteinase inhibitors: a defense against herbivorous insects? Entomol. Exp. Appl. 41:33–38.

    Article  CAS  Google Scholar 

  • Cooper, W. R., and Goggin, F. L. 2005. Effects of jasmonate-induced defences in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115:107–115.

    Article  CAS  Google Scholar 

  • De Vos, M., and Jander, G. 2009. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell and Environment 32:1548–1560.

    Article  PubMed  CAS  Google Scholar 

  • De Vos, M., Van Oosten, V. R., Van Poecke, R. M. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J-P., Van Loon, L. C., Dicke, M., Pieterse, C. M. J. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions 18:923–937.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., Van Loon, J. J. A., and Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nature Chem. Biol. 5:317–324

    Article  CAS  Google Scholar 

  • Diezel, C., Von Dahl, C. C., Gaquerel, E., and Baldwin, I. T. 2009. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 150:1576–1586.

    Article  PubMed  CAS  Google Scholar 

  • Divol, F., Vilaine, F., Thibivilliers, S., Amselem, J., Palauqui, J-C., Kusiak, C., and Dinant, S. 2005. Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol. Biol. 57:517–540.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, A. F. G. 1977. Aphid ecology: life cycles, polymorphism, and population regulation. Annu. Rev. Ecology, Evolution, and Syst. 8:329–352.

    Article  Google Scholar 

  • Doares, S. H., Narvaez-vasquez, J., Conconi, A., and Ryan, C. A. 1995. Salicylic-acid inhibits synthesis of proteinase-inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108:1741–1746.

    PubMed  CAS  Google Scholar 

  • Farmer, E. E., and Ryan, C. A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134.

    Article  PubMed  CAS  Google Scholar 

  • FELTON, G. W., Korth, K. L., BI, J. L., Wesley, S. V., Huhman, D. V., Mathews, M. C., Murphy, J. B., Lamb, C., and Dixon, R. A. 1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology 9:317–320.

    Article  PubMed  CAS  Google Scholar 

  • Fidantsef, A. L., Stout, M. J., Thaler, J. S., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:97–114.

    Article  CAS  Google Scholar 

  • Flynn, D. F. B., Sudderth, E. A., and Bazzaz, F. A. 2006. Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environ. Exp. Bot. 56:10–18.

    Article  CAS  Google Scholar 

  • Halitschke, R., Schittko, U., Pohnert, G., Boland, W., and Baldwin, I. T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol. 125:711–717.

    Article  PubMed  CAS  Google Scholar 

  • Heidel, A. J., and Baldwin, I. T. 2004. Microarray analysis of salicylic acid- and jasmonic acid- signaling in response of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell & Environ. 27:1362–1373.

    Article  CAS  Google Scholar 

  • Hufbauer, R. A., and Root, R. B. 2002. Interactive effects of different types of herbivore damage: Trirhabda beetle larvae and Philaenus spittlebugs on goldenrod (Solidago altissima). Am. Midland Natur. 147:204–213.

    Article  Google Scholar 

  • Jones, C. G., Hare, J. D., and Compton, S. J. 1989. Measuring plant protein with the Bradford assay. 1. Evaluation and standard method. J. Chem. Ecol. 15:979–992.

    Article  CAS  Google Scholar 

  • Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Kempema, L. A., Ciu, X., Holzer, F. M., and Walling, L. L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs: Similarities and distinctions in response to aphids. Plant Physiol. 143:849–865.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Zhao, Y. F., Mccaig, B. C., Wingerd, B. A., Wang, J., Whalon, M. E., Pichersky, E., and HOWE, G. A. 2004. The tomato homolog of coronatine-insensitive 1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143.

    Article  PubMed  CAS  Google Scholar 

  • Martinez De Ilarduya, O., Xie, Q., and Kaloshian, I. 2003. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol. Plant-Microbe Inter. 16:699–708.

    Article  CAS  Google Scholar 

  • Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–161.

    Article  Google Scholar 

  • McCloud, E. S., and Baldwin, I. T. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435.

    Article  CAS  Google Scholar 

  • Miles, P. W. 1999. Aphid saliva. Biology Rev. 74:41–85.

    Article  Google Scholar 

  • Moran, P. J., and Thompson, G. A. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol. 125:1074–1085.

    Article  PubMed  CAS  Google Scholar 

  • Moura, D. S., and Ryan, C. A. 2001. Wound-inducible proteinase inhibitors in pepper. Differential regulation upon wounding, systemin, and methyl jasmonate. Plant Physiol. 126:289–298.

    Article  PubMed  CAS  Google Scholar 

  • Mur, L. A., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. 2006. The outcomes of concentration specific interactions between salicylate and jasmonate signaling include synergy, antagonism and oxidative stress leading to cell death. Plant Physiol. 140:249–262.

    Article  PubMed  CAS  Google Scholar 

  • Mutti, N. S., Louis, J., Pappan, L. K., Pappan, K., Begum, K., Chen, M. S., Park, Y., Dittmer N., Marshall, J., Reese, J. C., and Reeck, G.R. 2008. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Natl. Acad. Sci. USA 105:9965–9969

    Article  PubMed  Google Scholar 

  • Ohnmeiss, T. E., McCloud, E. S., Lynds, G. Y., and Baldwin, I. T. 1997. Within-plant relationships among wounding, jasmonic acid, and nicotine: implication for defense in Nicotiana sylvestris. New Phytol. 137:441–452.

    Article  CAS  Google Scholar 

  • Orians, C. M., Pomerleau, J., and Ricco, R. 2000. Vascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato. J. Chem. Ecol. 26:471–485.

    Article  CAS  Google Scholar 

  • Paul, N. D., Taylor, J. E., and Hatcher, P. E. 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci. 5:220–225.

    Article  PubMed  CAS  Google Scholar 

  • Pohnert, G., Jung, V., Haukioja, E., Lempa, K., and Boland, W. 1999. New fatty acid amides from regurgitant of Lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55:11275–11280.

    Article  CAS  Google Scholar 

  • Preston, C. A., Lewandowski, C., Enyedi, A. J., and Baldwin, I. T. 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209:87–95.

    Article  PubMed  CAS  Google Scholar 

  • Prudic, K.L., Oliver, J. C., and Bowers, M. D. 2005. Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143:578–587.

    Article  PubMed  Google Scholar 

  • Rodriguez-saona, C., Chalmers, J., Raj, S., and Thaler. J. S. 2005. Induced plant responses to multiple damagers: differential effects on the performance of an herbivore and its parasitoid. Oecologia 143:566–577.

    Article  PubMed  Google Scholar 

  • Rodriguez-saona, C., Crafts-brandner, S. J., and Cañas L. A. 2003. Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. J. Chem. Ecol. 29:2539–2550.

    Article  PubMed  CAS  Google Scholar 

  • Sall, J., and Lehman, A. 1996. JMP Start Statistics. SAS Institute, Belmont, CA.

    Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., and Manners, J. M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97:11655–11660.

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri, K., Takabayashi, J., Yano, S., and Takafuji, A. 2001. Infochemically mediated tritrophic interaction webs on cabbage plants. Population Ecol. 43:23–29.

    Article  Google Scholar 

  • Stout, M. J., Thaler, J. S., and Thomma, B. 2006. Plant-mediated interactions between arthropod herbivores and plant pathogens. Annu. Rev. Entomol. 51:663–689.

    Article  PubMed  CAS  Google Scholar 

  • Stout, M. J., Workman, K. V., and Duffey, S. S. 1996. Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomol. Exp. Appl. 79:255–271.

    Article  Google Scholar 

  • Stout, M. J., Workman, K. V., Bostock, R. M., and Duffey, S. S. 1998. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81.

    Article  Google Scholar 

  • Strauss, S. Y. 1991. Direct, indirect and cumulative effects of three native herbivores on a shared host plant. Ecology 72:543–558.

    Article  Google Scholar 

  • Thaler, J. S., Fidantsef, A. L., and Bostock, R. M. 2002. Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28:1131–1159.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, J. S., Stout, M. J., Karban, R., and Duffey, S. S. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26:312–324.

    Article  Google Scholar 

  • Thompson, G. A., and Goggin, F. L. 2006. Transcriptional and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 57:755–766.

    Article  PubMed  CAS  Google Scholar 

  • Voelckel, C, and Baldwin, I. T. 2004. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. The Plant J. 38:650–663.

    Article  CAS  Google Scholar 

  • Voelckel, C., Weisser, W. W., and Baldwin, I. T. 2004. An analysis of plant-aphid interactions by different microarray hybridization strategies. Molecular Ecol. 13:3187–3195.

    Article  CAS  Google Scholar 

  • Vos, M., Berrocal, S., Karamaouna, F., Hemerik, L., and Vet, L. E. M. 2001. Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecology Letters 4:38–45.

    Article  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    PubMed  CAS  Google Scholar 

  • Walling, L. L. 2008. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiol. 146:859–866.

    Article  PubMed  CAS  Google Scholar 

  • Zarate, S. I., Kempema, L. A., and Walling, L. L. 2007. Silver leaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 143:866–875.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P-J., Zheng, S-J., Van Loon, J. J. A., Boland, W., David, A., Mumm, R., and Dicke, M. 2009. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc. Natl. Acad. Sci. USA 106:21202–21207.

    Article  PubMed  Google Scholar 

  • Zhu-salzman, K., Salzman, R. A., Ahn, J-E., and Koiwa, H. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 134:420–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Deborah Tam, Joseph Sherman, Joshua Lighton, and Spencer Williams for laboratory assistance, and Robert Holdcraft for help with figures and tables. We appreciate comments from Anurag Agrawal, Stuart Campbell, Jin-ho Kang, Dan Kliebenstein, Scott McArt, Martin de Vos, Caroline von Dahl, and anonymous reviewers. Funding was provided by the National Science Foundation Plant Genome Research Initiative (No. 0820367 to ROM and SMH), the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (No. 2004-01540 to ROM and SMH, and 2006-35302-17431 to JST), the USDA Cooperative State Research, Education and Extension Service Special Grant (No. 2006-34155-17118 to CRS), and the Western Illinois University research council for partial funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar R. Rodriguez-Saona.

Additional information

Cesar R. Rodriguez-Saona and Richard O. Musser contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Material Table S1

shows mean expression for all treatments and probabilities for one-way ANOVA and t-test comparison for each treatment. This list includes only those genes where herbivory significantly up- or down-regulated gene expression (P ≤ 0.05) and changed gene expression by at least 2-fold compared to controls. Treatments are A=non-wounded control (NW); B=aphid feeding (aphid), C=caterpillar feeding (caterpillar), and D=caterpillar and aphid feeding (caterpillar and aphid). (XLS 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Saona, C.R., Musser, R.O., Vogel, H. et al. Molecular, Biochemical, and Organismal Analyses of Tomato Plants Simultaneously Attacked by Herbivores from Two Feeding Guilds. J Chem Ecol 36, 1043–1057 (2010). https://doi.org/10.1007/s10886-010-9854-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9854-7

Key Words

Navigation