Skip to main content

Conserving Biodiversity of a Potent Anticancer Plant, Catharanthus roseus Through In Vitro Biotechnological Intercessions: Substantial Progress and Imminent Prospects

  • Chapter
  • First Online:
Anticancer Plants: Natural Products and Biotechnological Implements

Abstract

In vitro interventions are exceedingly advantageous for large-scale propagation and conservation of plant biodiversity, involving endangered plant species as well as elite genotypes that produce commercial products. The importance of Catharanthus roseus in the treatment of several kinds of cancers such as skin cancer, breast cancer, lymph cancer, leukemia, and Hodgkin’s disease warrants persistent attention for the biotechnological improvement of this plant. Therefore, the present chapter provides an overview of the state of knowledge on the current use of biotechnological tools applied on propagation, genetic enhancement and conservation of C. roseus besides its implications to improve the plant in the future. Explants from this clonally propagated species can be easily harvested under field conditions using in vitro approaches. In vitro micropropagation methods affirm the accelerated duplication of disease-free material. Medium-term conservation can be attained by slow growth of plant material leading to the increased time interval between subsequent cultures. Synthetic seeds are also considered for short- to mid-term conservation and germplasm exchange. For long-term conservation, cryopreservation (in liquid nitrogen at −196 °C) permits storing of C. roseus germplasms for extended periods exclusive of any clonal variation. Besides micropropagation and conservation, the enhancement of secondary metabolites through hairy root culture and cell suspension culture and the use of molecular markers to detect somaclonal variation in C. roseus are also highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajaib M, Khan ZUD, Khan N, Wahab M (2010) Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu & Kashmir, Pakistan. Pak J Bot 42:1407–1415

    Google Scholar 

  • Alam P, Khan ZA, Abdin MZ, Khan JA, Ahmad P, Elkholy SF, Sharaf-Eldin MA (2017) Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus. 3Biotech 7:26

    Google Scholar 

  • Al-Oubaidi HK, Mohammed-Ameen AS (2014) Effect of benzyladenine on multiplication of Catharanthus roseus L. in vitro. World J Pharm Pharm Sci 3:2101–2107

    Google Scholar 

  • Aslam J, Mujib A, Nasim SA, Sharma MP (2009) Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus L. (G) Don. Sci Hortic 119:325–329

    Article  CAS  Google Scholar 

  • Aslam J, Khan SH, Siddiqui ZH, Fatima Z, Maqsood M, Bhat MA, Nasim SA, Ilah A, Ahmad IZ, Khan SA, Mujib A, Sharma MP (2010) Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Pharm Glob 4:1–16

    Google Scholar 

  • Babulova A, Machova J, Nosalova V (2003) Protective action of vinpocetine against experimentally induced gastric damage in rats. Arzneim Forsch 43:981–985

    Google Scholar 

  • Bakrudeen AAA, Subha Shanthi G, Gouthaman T, Kavitha MS, Rao MV (2011) In vitro micropropagation of Catharanthus roseus – an anticancer medicinal plant. Acta Bot Hung 53:197–209

    Article  Google Scholar 

  • Bakrudeen AAA, Subha Shanthi G, Gouthaman T, Kavitha MS, Rao MV, Tahal RM (2013) In vitro propagation, rooting and acclimatization of Catharanthus roseus (White variety)- a green economy conservation. Trans Malaysian Soc Plant Physiol 21:198–202

    Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left and right termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Begum F, Rao SSSN, Rao K, Devi YP, Giri A, Giri CC (2009) Increased vincristine production from Agrobacterium tumefaciens C58 induced shooty teratomas of Catharanthus roseus G. Don. Nat Prod Lett 23:973–981

    Article  CAS  Google Scholar 

  • Blakeslee A, Avery A (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28:393–411

    Article  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay RR (1994) A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 67:367–372

    Article  Google Scholar 

  • Chattopadhyay SP, Das PK (1990) Evaluation of Vinca rosea for the treatment of warts. Indian J Dermatol Venereol Leprol 56:107–108

    Google Scholar 

  • Chattopadhyay RR, Sarkar SK, Ganguli S (1991) Hypoglycemic and antihyperglycemic effect of leaves of Vinca rosea Linn. Indian J Physiol Pharmacol 35:145–151

    PubMed  CAS  Google Scholar 

  • Chattopadhyay RR, Banerjee RN, Sarkar SK, Ganguly S, Basu TK (1992) Antiinflammatory and acute toxicity studies with the leaves of Vinca rosea L. in experimental animals. Indian J Physiol Pharmacol 36:291–292

    PubMed  CAS  Google Scholar 

  • Chen TH, Kartha KK, Constabel F, Gusta LV (1984) Freezing characteristics of cultured Catharanthus roseus (L). G. Don cells treated with dimethylsulfoxide and sorbitol in relation to cryopreservation. Plant Physiol 75:720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra IC, Jamwal KS, Chopra CL, Nair CPN, Pillay PP (1959) Preliminary pharmacological investigations of total alkaloids of Lochnera rosea (Rattonjot). Indian J Med Res 47:39–46

    PubMed  CAS  Google Scholar 

  • Collu G, Unverab N, Peltenburg-Loomana AMG, Heijdena RVD, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  CAS  PubMed  Google Scholar 

  • Cononer RA, Litz RE (1978) In vitro propagation of Catharanthus roseus. Hortic Sci 13:241–242

    Google Scholar 

  • Dhandapani M, Kim DH, Hong SB (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cell Dev Biol Plant 44:18–25

    Article  CAS  Google Scholar 

  • El-Sayed A, Cordell GA (1981) Catharanthamine, a new antitumor bisindole alkaloid from Catharanthus roseus. J Nat Prod 11:289–293

    Article  Google Scholar 

  • Farnsworth NR (1961) The pharmacognosy of the periwinkles: Vinca and Catharanthus. Lloydia 24:105–138

    CAS  Google Scholar 

  • Fatima S, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell Tissue Organ Cult 98:1–9

    Article  CAS  Google Scholar 

  • Furmanowa M, Oledzka H, Jozefowicz J, Pietrosiuk A (1994) Catharanthus roseus (L.) G. Don – plant regeneration and alkaloids content. Acta Soc Bot Pol 63:179–184

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S, Ali MN (2015b) Influence of encapsulating agent and matrix levels on synseed production of Bacopa monnieri (L.) Pennell. Med Plants 7:182–187

    Google Scholar 

  • Gantait S, Kundu S, Ali N, Sahu NC (2015a) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:1–12

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S, Das PK (2016a) Acacia: an exclusive survey on in vitro propagation. J Saudi Soc Agric Sci (Online). https://doi.org/10.1016/j.jssas.2016.03.004

  • Gantait S, Kundu S, Wani SH, Das PK (2016b) Cryopreservation of forest tree seeds: a mini-review. J Forest Environ Sci 32:311–322

    Article  Google Scholar 

  • Gantait S, Kundu S, Yeasmin L, Ali MN (2017) Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. ex Kurz. J Appl Res Med Aromat Plants 4:75–81

    Google Scholar 

  • Griffiths M, Huxley AJ (1992) The New Royal Horticultural Society dictionary of gardening, vol 4. MacMillan/Stockton Press, London

    Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Guirimand G, Burlat V, Oudin A, Lanoue A, Pierre BS, Courdavault V (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28:1215–1234

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Vats SK, Brij L (1998) How cheap can a medicinal plant species be. Curr Sci 74:555–556

    Google Scholar 

  • Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70:257–265

    Article  PubMed  Google Scholar 

  • Harbage JF (2001) Micropropagation of Echinacea angustifolia, E. pallida, and E. purpurea from stem and seed explants. Hort Sci 36:360–364

    CAS  Google Scholar 

  • Harnischfeger G (2000) Proposed guidelines for commercial collection of medicinal plant material. J Herb Spice Med Plant 7:43–50

    Article  Google Scholar 

  • Hasezawa S, Nagata T, Syono K (1981) Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts. Mol Gen Genet 182:206–210

    Article  Google Scholar 

  • He L, Yang L, Tan R, Zhao S, Hu Z (2011) Enhancement of vindoline production in suspension culture of the Catharanthus roseus cell line C20 hi by light and methyl jasmonate elicitation. Anal Sci 27:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Hilliou F, Christou P, Leech MJ (1999) Development of an efficient transformation system for Catharanthus roseus cell cultures using particle bombardment. Plant Sci 140:179–188

    Article  CAS  Google Scholar 

  • Hong SB, Hughes EH, Shanks JV, San KY, Gibson S (2003) Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog 19:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Hosseini HR, Chehrazi M, Sorestani MM, Nabati D, Ahmadi KS (2013) Autotetraploidy induction and seed quality comparison between diploid and tetraploid Madagascar periwinkle (Catharanthus roseus cv. Rosea) seedlings. Int J Agron Plant Prod 4:212–216

    Google Scholar 

  • Hughes EH, Hong SB, Shanks JV, San KY, Gibson SI (2002) Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 18:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004a) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727

    Article  CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004b) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Eng 6:268–276

    Article  CAS  Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kaya N, Aki C (2013) Effect of plant growth regulators on in vitro biomass changing in Catharanthus roseus (L) G Don. Ann Biol Res 4:164–168

    CAS  Google Scholar 

  • Kohlmunzer S, Tomczyk B (1967) Investigation of leaf alkaloids of Vinca minor L. Part I. Dissert Pharm 19:213–221

    Google Scholar 

  • Kulkarni RN, Ravindra NS (1988) Resistance to Pythium aphanidermatum in diploids and induced autotetraploids of Catharanthus roseus. Planta Med 54:356–359

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prakash K, Sinha RK, Kumar N (2013) In vitro plant propagation of Catharanthus roseus and assessment of genetic fidelity of micropropagated plants by RAPD marker assay. Appl Biochem Biotechnol 169:894–900

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqsood M, Mujib A, Siddiqui ZH (2012) Synthetic seed development and conversion to plantlet in Catharanthus roseus (L.) G. Don. Biotechnology 11:37–43

    Article  CAS  Google Scholar 

  • Mehta J, Upadhyay D, Paras P, Ansari R, Rathore S, Tiwari S (2013) Multiple shoots regeneration of (anticancer plant) Catharanthus roseus – an important medicinal plant. Am J PharmTech Res 3:785–793

    CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORC Anisation of jasmonate responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  CAS  PubMed  Google Scholar 

  • Misawa M (1976) Production of natural substances by plant cell cultures described in Japanese patents. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture its bio-technological application. Proceedings of the 1st international congress on medicinal plant research, section B, University of Munich, Germany, Springer-Verlag, Berlin, Heidelberg, pp 17–26

    Google Scholar 

  • Morgan JA, Shanks JV (1999) Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry 51:61–68

    Article  CAS  PubMed  Google Scholar 

  • Mujib A, Ali M, Isah T (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)–a comparative study. Saudi J Biol Sci 21:442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Verpoorte R (2009) Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics. Biotechnol Lett 31:1967–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namdeo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–162

    Article  CAS  PubMed  Google Scholar 

  • Nilanthi D, Chen XL, Zhao FC, Yang YS, Wu H (2009) Induction of tetraploids from petiole explants through colchicine treatment in Echinacea purpurea L. J Biomed Biotechnol 2009:343485. https://doi.org/10.1155/2009/343485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Haseza S, Syono K, Nagata T (1985) Further evidence for the transformation of Vinca rosea protoplasts by Agrobacterium tumefaciens spheroplasts. Plant Cell Rep 4:133–136

    Article  CAS  PubMed  Google Scholar 

  • Palazón J, Cusidó RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718

    Article  Google Scholar 

  • Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7:e43038. https://doi.org/10.1371/journal.pone.0043038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandiangan D, Tilaar W, Nainggolan N (2013) Morphological changes of cell in relation to increased catharanthine content of Catharanthus roseus cell aggregate cultures after tryptophan treatment. Int J Basic Appl Sci 13:45–51

    Google Scholar 

  • Pati PK, Kaur J, Singh P (2011) A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don. Plant Cell Tissue Organ Cult 105:299–307

    Article  CAS  Google Scholar 

  • Patil PJ, Ghosh JS (2010) Antimicrobial activity of Catharanthus roseus – a detailed study. Br J Pharmacol Toxicol 1:40–44

    Google Scholar 

  • Rahmatzadeh S, Khara J, Kazemitabar SK (2014) The study of in vitro regeneration and growth parameters in Catharanthus roseus L. under application of tryptophan. J Sci Kharazmi Univ 14:249–260

    Google Scholar 

  • Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol Plant 6:1531–1549

    Article  CAS  PubMed  Google Scholar 

  • Rajora RK, Sharma NK, Sharma V (2013) Effect of plant growth regulators on micropropagation of Catharanthus Roseus. Int J Adv Biotechnol 4:986–993

    CAS  Google Scholar 

  • Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  PubMed  Google Scholar 

  • Salma U, Kundu S, Mandal N (2017) Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J Crop Sci Biotechnol 20:9–19

    Article  Google Scholar 

  • Samuelsson G (1999) Drugs of natural origin. A textbook of pharmacognosy, 4th edn. Swedish Pharmaceutical Press, Stockholm, pp 484–487

    Google Scholar 

  • Sandhya M, Deepti L, Bhakti D, Ravindra M, Pranay S, Gauri A, Bansod I, Asmit H (2016) Effect of growth regulator combination on in-vitro regeneration of Catharanthus roseus. Int J Life Sci 6:1–4

    Google Scholar 

  • Sanford JC, Klein TM, Wold ED, Allen N (1987) Delivery of substances into cells and tissue using a particle bombardment process. J Plant Sci Technol 5:27–37

    CAS  Google Scholar 

  • Shukla AK, Shasany AK, Verma RK, Gupta MM, Mathur AK, Khanuja SP (2010) Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Protoplasma 242:35–47

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZH, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Organ Cult 104:247–256

    Article  Google Scholar 

  • Singh VP, Jagdev RSD (1996) Ajmalicine (raubacine); a medicinally important alkaloid from Catharanthus roseus (Vinca rosea). In: Handa SS, Kaul MK (eds) In supplement to cultivation and utilization of medicinal plants. RRL, Jammu, pp 199–206

    Google Scholar 

  • Singh RP, Sharad S, Kapur S (2004) Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J Indian Acad Clin Med 5:218–225

    Google Scholar 

  • Singh R, Kharb P, Rani K (2011) Rapid micropropagation and callus induction of Catharanthus roseus in vitro using different explants. World J Agr Sci 7:699–704

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Srivastava T, Das S, Sopory SK, Srivastava PS (2009) A reliable protocol for transformation of Catharanthus roseus through Agrobacterium tumefaciens. Physiol Mol Biol Plant 15:93–98

    Article  CAS  Google Scholar 

  • Swanberg A, Dai W (2008) Plant regeneration of periwinkle (Catharanthus roseus) via organogenesis. HortScience 43:832–836

    Google Scholar 

  • Swanston-Flatt SK, Day C, Flatt PR, Gould BJ, Bailey CJ (1989) Glycaemia effects of traditional European plant treatments for diabetes studies in normal and streptozotocin diabetic mice. Diabetes Res 10:69–73

    PubMed  CAS  Google Scholar 

  • Taha HS, El-Bahr MK, Seif-El-Nasr MM (2008) In vitro studies on Egyptian Catharanthus Roseus (L.) G. Don.: I Calli production, direct shootlets regeneration and alkaloids determination. J Appl Sci Res 4:1017–1022

    CAS  Google Scholar 

  • van der Fits L, Memelink J (1997) Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol Biol 33:943–946

    Article  PubMed  Google Scholar 

  • van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Vasil IK, Vasil V (1980) Clonal propagation. In: International review of cytology. Suppl. II. Academic, New York, pp 145–173

    Google Scholar 

  • Verma P, Mathur AK (2011) Agrobacterium tumefaciens mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Mathur AK, Shanker K (2012) Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus. Plant Biosyst 146:27–40

    Article  Google Scholar 

  • Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381

    Article  CAS  PubMed  Google Scholar 

  • Wang HM, To KY (2004) Agrobacterium-mediated transformation in the high value medicinal plant Echinacea purpurea. Plant Sci 166:1087–1096

    Article  CAS  Google Scholar 

  • WCMC (1992) Global biodiversity status of earth’s living resources. Chapman & Hall, London

    Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  CAS  PubMed  Google Scholar 

  • Whitmer S, Canel C, van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult 74:73–80

    Article  CAS  Google Scholar 

  • Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX (2011) Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J Biomed Biotechnol 2011:793198. https://doi.org/10.1155/2011/793198

    Article  Google Scholar 

  • Yang Z, Patra B, Li R, Pattanaik S, Yuan L (2013) Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus. Planta 238:1039–1049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the e-library assistance from Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India. We further are thankful to the anonymous reviewers and the editors of this chapter for their critical comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Gantait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salma, U., Kundu, S., Gantait, S. (2018). Conserving Biodiversity of a Potent Anticancer Plant, Catharanthus roseus Through In Vitro Biotechnological Intercessions: Substantial Progress and Imminent Prospects. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Natural Products and Biotechnological Implements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8064-7_5

Download citation

Publish with us

Policies and ethics