Skip to main content
Log in

Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes from Catharanthus roseus have been successfully over-expressed in the rol gene integrated cell suspensions of V. minor. Thirty seconds SAAT (sonication-assisted Agrobacterium transformation) treatment of plant cell suspension with LBA1119 having construct (<hpt-<Tdc2-<Str-gus>) generated three stable TDC + STR over-expressing cell lines—PVG1, PVG2, and PVG3. The transgenes were confirmed by β-glucuronidase GUS histochemical assay and PCR amplification of rol genes/GUS gene. All the three cell suspension lines were found to be slow growing. In comparison to the control cell suspensions (GI = 241.0 ± 5.8), PVG3 cell line registered a growth index (GI) of 208.0 ± 10.0 followed by PVG1 (GI = 140.0 ± 14.2) and PVG2 (GI = 85.0 ± 9.6). The PVG3 cell line was also up-scaled in the 5-l stirred tank bioreactor with GI of 745.6 ± 35.3 under optimized parameters. Only PVG3 line registered a twofold increase in total alkaloid content (2.1 ± 0.1 % dry wt.) and showed vincamine presence (0.003 ± 0.001 % dry wt.) which was further enhanced at the bioreactor level (2.7 ± 0.3 and 0.005 ± 0.001 % dry wt., respectively). Real-time (RT) qPCR analysis of PVG3 showed more than sevenfold to eightfold increase in TDC and STR expression [relative quantity value (RQ) = 7.6 ± 0.8 (TDC); RQ = 8.5 ± 0.9 (STR)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Belal TS, Barary MH, Ibrahim MEAL, Sabry SM (2009) Kinetic spectrophotometric analysis of naftidrofuryl oxalate and vincamine in pharmaceutical preparations using alkaline potassium permanganate. J Food Drug Anal 17:415–423

    CAS  Google Scholar 

  • Bourgaud F, Gravat A, Milesi S, Gontier E (2001) Production of secondary metabolites: a historical perspective. Plant Sci 16:839–851

    Article  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  PubMed  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, Van der Fits L, Pasquali G, Van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54:763–784

    Article  CAS  PubMed  Google Scholar 

  • Hughes RH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Met Eng 4:41–48

    Article  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004a) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727

    Article  CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004b) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Met Eng 6:268–276

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Google Scholar 

  • Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17:1–7

    Article  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Molchan O, Romashko S, Yurin V (2012) L-tryptophan decarboxylase activity and tryptamine accumulation in callus cultures of Vinca minor. L PCTOC 108:535–539

    Article  CAS  Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotech 79:137–145

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 101:287–296

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell culture: chemical factories of secondary metabolites. Biotech Adv 20:101–105

    Article  CAS  Google Scholar 

  • Sabry SM, Belal TS, Barary MH, Ibrahim MEAL (2010) A validated HPLC method for the simultaneous determination of vincamine and its potential degradant (metabolite), vincaminic acid: applications to pharmaceutical formulations and pharmacokinetic studies. J Food Drug Anal 18:447–457

    CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max [L.] Merrill) embryogenic suspension culture tissue. Plant Cell Rept 17:482–488

    Article  CAS  Google Scholar 

  • Trick HN, Finer JJ (1999) Induction of somatic embryogenesis and genetic transformation of Ohio buckeye (Aesculus glabra willd.). In Vitro Cell Devl Biol - Plant 35:57–60

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawada SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Verma P, Mathur AK, Shankar K (2012) Enhanced vincamine production in selected tryptophan-overproducing shoots of Vinca minor. PCTOC 111:239–245

    Article  CAS  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Lal RK (2014a) Regulation of vincamine biosynthesis and associated growth promoting effects through elicitation, cyclooxygenase inhibition and precursor feeding of bioreactor grown Vinca minor hairy roots. App Biochem Biotech 173:663–672

    Article  CAS  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Ghosh S, Shanker K, Kalra A (2014b) Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. PCTOC 118:257–268

    Article  CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Verpoorte R, van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The alkaloids, vol 49. Academic, San Diego, USA, pp 221–299

    Google Scholar 

  • Verpoorte R, Van der Heijden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemical. Biotech Let 21:467–479

    Article  CAS  Google Scholar 

  • Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitmer S, Van der Heijden R, Verpoorte R (2002a) Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line S1 of Catharanthus roseus. PCTOC 69:85–93

    Article  CAS  Google Scholar 

  • Whitmer S, Van der Heijden R, Verpoorte R (2002b) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase overexpressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work presented here has been supported by DST-FAST TRACK SERC/LS-261/2012. PV is highly thankful to Johan Memelink (Leiden University) for providing the Agrobacterium tumefaciens strain LBA1119 with construct (<hpt-<Tdc2-<Str-gus>). Help rendered by Jyotsana Priya during HPLC analysis has been highly acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Verma.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Sharma, A., Khan, S.A. et al. Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor . Protoplasma 252, 373–381 (2015). https://doi.org/10.1007/s00709-014-0685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0685-1

Keywords

Navigation