Skip to main content

Role of Microorganisms in Alleviating Abiotic Stresses

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 7))

Abstract

Constantly changing agroclimatic scenario has raised serious threats to agricultural production and productivity nowadays. Current attempts toward attenuation of abiotic stressor(s) have met limited success. Among the several strategies proposed, microbial mitigation of abiotic stresses has gained rapid attention, particularly in light of its sustainable and green approach that utilizes the natural phenomenon of plant-microbe association and subsequent beneficial interactions. The role of phyllosphere, rhizosphere, and endophytic microorganisms in mitigating a variety of abiotic stressors is well known. However, limited information is available till date regarding the cumulative influence of abiotic stressor(s) on plant-microbe association and on the stress-mitigation potential of microorganisms as well. Microbial inoculation is frequently recommended under stress-prone environment; however, it appears quite crucial to understand the behavior of inoculants under stressed habitats, which could substantially reduce the failure encountered by microbial inocula. This chapter typically highlights the plant-microbial interactions under abiotic stresses, microbial adaptations, and the role of stress-resilient microbes in alleviating the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25:1–21. doi:10.1080/07352680500365232

    Article  CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C et al (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microb 66:3393–3398

    Article  CAS  Google Scholar 

  • Allen EK, Allen ON, Newman AS et al (1953) Pseudonodulation of leguminous plants induced by 2-bromo-3,5-dichlorobenzoic acid. Am J Bot 40:429–435

    Article  CAS  Google Scholar 

  • Amellal N, Burtin G, Bartoli F et al (1998) Colonization of wheat rhizosphere by EPS producing Pantoea agglomerans and its effect on soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov S et al (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. https://doi.org/10.1007/s11104-007-9233-5

    Article  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T et al (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620

    Article  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE et al (2013) Identification of genes involved in the response of arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. https://doi.org/10.1104/pp.113.222372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT et al (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59(1):313–339

    Article  CAS  PubMed  Google Scholar 

  • Bal HB, Nayak L, Das S et al (2013) Isolation of ACC deaminase PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105

    Article  CAS  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in anti-oxidants. New Phytol 180:501–510. https://doi.org/10.1111/j.1469-8137.2008.02583.x

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot. doi:10.1093/jxb/erp140

    PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bitla UM, Sorty AM, Meena KK et al (2017) Rhizosphere signaling cascades: fundamentals and determinants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, vol I. Springer Nature, Singapore, pp 211–226

    Chapter  Google Scholar 

  • Bottini R, Cassán F, Piccoli P et al (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jezequel K, Bazot S et al (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286. https://doi.org/10.1016/j.chemosphere.2008.09.013

    Article  PubMed  Google Scholar 

  • Calvet C, Estaún V, Camprubí A et al (2004) Aptitude for mycorrhizal root colonization in Prunus root stocks. Sci Hortic 100:39–49. https://doi.org/10.1016/j.scienta.2003.08.001

    Article  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ et al (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Google Scholar 

  • Chang P, Gerhardt KE, Huang XD et al (2014) Plant growth promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytorem 16:1133–1147. https://doi.org/10.1080/15226514.2013.821447

    Article  CAS  Google Scholar 

  • Chernin L, Toklikishvili N, Ovadis M et al (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH et al (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

    Article  CAS  PubMed  Google Scholar 

  • Dehio C, deBruijn FJ (1992) The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Plant J 2:117–128. https://doi.org/10.1046/j.1365-313X.1992.t01-51-00999.x

    CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Ash F et al (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dweck HKM, Ebrahim SAM, Thoma M et al (2015) Pheromones mediating copulation and attraction in Drosophila. Proc Natl Acad Sci U S A 112:E2829–E2835. https://doi.org/10.1073/pnas.1504527112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farwell AJ, Vesely S, Nero V et al (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal contaminated field site. Environ Pollut 147:540–545

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington, DC, pp 197–203

    Google Scholar 

  • Grichko VP, Glick BR (2001a) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001b) Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Can J Microbiol 47:77–80

    Article  Google Scholar 

  • Gutierrez-Luna FM, Lopez-Bucio J, tamirano-Hernandez J et al (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83. https://doi.org/10.1007/s13199-010-0066-2

    Article  CAS  Google Scholar 

  • Hao L, Willis DK, Andrews-Polymenis H et al (2012) Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica. Appl Environ Microbiol 78:4561–4570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180. https://doi.org/10.1146/annurev-ento-120709-144753

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hefnawy MA, Maisa MA, Shalaby GM et al (2014) Influence of salinity on phosphate solubilization by fungi. Middle East J Appl Sci 4:1080–1089

    Google Scholar 

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Hunt PG, Matheny TA, Wollum AG et al (1988) Yield and N accumulation responses of late-season determinate soybean to irrigation and inoculation with various strains of Bradyrhizobium japonicum. Commun Soil Sci Plant Anal 19:1601–1612

    Article  CAS  Google Scholar 

  • Iyer NJ, Tang Y, Mahalingam R et al (2013) Physiological, biochemical and molecular responses to combination of drought and ozone in Medicago truncatula. Plant Cell Environ 36:706–720. https://doi.org/10.1111/pce.12008

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov A et al (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126. https://doi.org/10.1094/MPMI-19-1121

    Article  CAS  PubMed  Google Scholar 

  • Keles Y, Oncel I (2002) Response of antioxidative defense system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    Article  CAS  Google Scholar 

  • Khan A, Zhao XQ, Javed MT et al (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of NaCl. Environ Exp Bot 124:120–129. https://doi.org/10.1016/j.envexpbot.2015.12.011

    Article  CAS  Google Scholar 

  • Kirda C, Danso SKA, Zapata F et al (1989) Temporal water stress effects on nodulation, nitrogen accumulation and growth of soybean. Plant Soil 120:49–55

    Article  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L et al (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate solubilizing fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S et al (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar KV, Singh N, Behl HM et al (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M et al (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748. https://doi.org/10.1093/nar/gkt1250

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Guinel FC, Glick BR et al (2003a) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma W, Sebestianova S, Sebestian J et al (2003b) Prevalence of 1- aminocyclopropaqne-1-carboxylate in deaminase in Rhizobia spp. Anton Leeuw 83:285–291

    Article  CAS  Google Scholar 

  • Mathesius U, Charon C, Rolfe BG et al (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinins addition. Mol Plant-Microbe Interact 13:617–628. https://doi.org/10.1094/MPMI.2000.13.6.617

    Article  CAS  PubMed  Google Scholar 

  • McCue KF, Hanson AD (1990) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Trends Biotechnol 8:358–362. https://doi.org/10.1016/0167-7799(90)90225-M

    Article  CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101(4):777–786

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed Central  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME et al (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and Expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351. https://doi.org/10.1111/j.1574-6941.2011.01051.x

    Article  CAS  PubMed  Google Scholar 

  • Mishra BK, Meena KK, Dubey PN, Aishwath OP, Kant K, Sorty AM, Bitla U (2016) Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecol Eng 97:327–333

    Article  Google Scholar 

  • Murray JD, Karas BJ, Sato S et al (2007) A cytokinins perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104. https://doi.org/10.1126/science.1132514

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71. https://doi.org/10.1111/j.1399-3054.2005.00592.x

    Article  CAS  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA et al (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. Tasks Veg Sci 44:133–147. https://doi.org/10.1007/978-1-4020-9065-3_15

    Article  Google Scholar 

  • Ortiz-Castro R, Martienz-Trujillo M et al (2008) N-acyl-L-homoserine lactones: a class of bacterial quorumsensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Diaz-Perez C, Martienz-Trujillo M et al (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci U S A 108:7253–7258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul D (2012) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 52:1–10

    Article  Google Scholar 

  • Porras-Soriano A, Soriano-Martin MS, Porras-Piedra A et al (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. doi:10.1104/pp.113.221044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J et al (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG et al (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138. https://doi.org/10.4161/cib.3.2.10584

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryu CM, Faraq MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu CM, Faraq MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadowasky MJ (2005) Soil stress factors influencing symbiotic nitrogen fixation. In: Werner D, Newton WE (eds) Nitrogen fixation research in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 89–102

    Chapter  Google Scholar 

  • Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting Rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotech 34:635–648

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Minakshi G et al (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26. https://doi.org/10.1007/s00374-009-0401-z

    Article  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Valle EM et al (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 10:856–857

    Article  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN et al (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Sen S, Chandrasekhar CN (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 4:62–67

    Google Scholar 

  • Serraj R (2003) Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Indian J Exp Biol 41:1136–1141

    CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (1996) Inhibition of nitrogenase activity and nodule oxygen permeability by water deficit. J Exp Bot 47:1067–1073

    Article  CAS  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K et al (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882. https://doi.org/10.1007/s12010-016-2139-z

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4), a001438-a001438

    Article  Google Scholar 

  • Supanekar S, Sorty A, Raut A (2013) Study of catechol siderophore froma newly isolated Azotobacter sp. SUP-III for its antimicrobial activity. J Microbiol Biotechnol Food Sci 3:270–273

    Google Scholar 

  • Thimann KV (1939) Auxins and the inhibition of plant growth. Biol Rev 14:314–337

    Article  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R et al (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916. https://doi.org/10.1007/s00374-011-0598-5

    Article  CAS  Google Scholar 

  • Torrey JG (1961) Kinetin as trigger for mitosis in mature endomitotic plant cells. Exp Cell Res 23:281–299. https://doi.org/10.1016/0014-4827(61)90038-6

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A et al (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PLoS One 7:e52565. https://doi.org/10.1371/journal.pone.0052565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM et al (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851; PMID:17497164; https://doi.org/10.1007/s00425-007-0530-2

Download references

Acknowledgments

The authors are grateful to Indian Council of Agricultural Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Kumar Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorty, A.M., Bitla, U.M., Meena, K.K., Singh, N.P. (2018). Role of Microorganisms in Alleviating Abiotic Stresses. In: Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_6

Download citation

Publish with us

Policies and ethics