Skip to main content

Biodetoxification of Toxic Heavy Metals by Marine Metal Resistant Bacteria- A Novel Approach for Bioremediation of the Polluted Saline Environment

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Heavy metal contamination of the environment is a serious threat to our biological ecosystem due to their toxicity, carcinogenicity and mutagenicity. In recent years, increased mining, industrialisation and urbanisation activities have increased the flow of toxic metal ions to the environment. Toxic heavy metals such as Cr(VI), Cd(II), Pb(II), As(III/V), etc. are harmful for the environment when present above the critical values. Hence, their removal and detoxification in the environment should be done with utmost priority which can be achieved either by conventional physico-chemical or by bio-detoxification techniques. There are several disadvantages for the conventional physico-chemical metal detoxication techniques such as high cost, production of secondary toxic wastes, inconvenience in treating industrial effluents having low metal concentration, etc. which leads to the emergence of bio-detoxification techniques. Bio-detoxification, a cost-effective, environmental friendly and value added technique, can be used as an alternative treatment technology to overcome the drawbacks of conventional methods. Bio-detoxification of toxic heavy metals includes either transformation of metals from its toxic valency state to less toxic form using biological agents or their removal from the environment by using biosorption techniques. Bacteria from metal polluted habitats are adapted and possess a multiple metal tolerant capacity towards high metal concentration which can be the potential candidates for bio detoxification. Extracellular Polymeric Substances (EPS) of bacterial cell wall plays an important role in heavy metal detoxification. EPS comprising of different components such as peptidoglycan, teichoic and teichuronic acids, phospholipids, lipopolysaccharides and various proteins are responsible for metal binding and transportation across membrane. Most of the industrial effluents are saline in nature and bioremediation of the toxic metals present in such saline environments is a major challenge because it cannot be treated by non-halotolerant microbes due to their growth hindrance in saline rich environments. Metal-resistant and salt tolerant marine bacteria are most efficient agents for rapid adaptation and metal bioremediation from the polluted high saline environment as they are inhabited to the adverse marine environments. Hence, salt tolerant and metal resistant bacteria from marine environment are more suitable for bio-detoxification of heavy metals. The present chapter emphasizes the use of salt tolerant bacteria from different marine habitat for bioremediation of various toxic metals in saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAP: American Academy of Pediatrics, Committee on Environmental Health (2005) Lead exposure in children: prevention, detection, and management. Pediatrics 116(4):1036–1046

    Article  Google Scholar 

  • Abd-Elnaby H, Abou-Elela GM, El-Sersy NA (2011) Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. Afr J Biotechnol 10(17):3412–3423

    Article  CAS  Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):71–79

    CAS  Google Scholar 

  • Ahsan N, Faruque K, Shamma F, Islam N, Akhand AA (2012) Arsenic adsorption by bacterial extracellular polymeric substances. Bangladesh J Microbiol 28(2):80–83

    Article  Google Scholar 

  • Aksornchu P, Prasertsan P, Sobhon V (2008) Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil. Sonklanakarin J Sci Technol 30(1):95–102

    Google Scholar 

  • Aksu Z, Gülen H (2002) Binary biosorption of iron (III) and iron (III)-cyanide complex ions on Rhizopusarrhizus: modelling of synergistic interaction. Process Biochem 38(2):161–173

    Article  CAS  Google Scholar 

  • Alencar FLS, Navoni JA, do Amaral VS (2017) The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environ Sci Pollut Res 24:16545–16559. https://doi.org/10.1007/s11356-017-9129-8

    Article  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Prog Biol Sci 2(1):1–11

    Google Scholar 

  • Aryal M, Liakopoulou-Kyriakides M (2011) Equilibrium, kinetics and thermodynamic studies on phosphate biosorption from aqueous solutions by Fe(III)-treated Staphylococusxylosus biomass: common ion effect. Colloids Surf A Physicochem Eng Asp 387:43–49

    Article  CAS  Google Scholar 

  • Aryal M, Liakopoulou-Kyriakides M (2013a) Binding mechanism and biosorption characteristics of Fe(III) by pseudomonas sp. cells. J Water Sustain 3:117–131

    CAS  Google Scholar 

  • Aryal M, Liakopoulou-Kyriakides M (2013b) Characterization of mycobacterium sp. strain Spyr1 biomass and its biosorptionbehavior towards Cr(III) and Cr(VI) in single, binary and multi ion aqueous systems. J Chem Technol Biotechnol 89:559–568

    Article  CAS  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe(III)-treated biomass of staphylococcus xylosus. Chem Eng J 162:178–185

    Article  CAS  Google Scholar 

  • Aryal M, Ziagova MG, Liakopoulou-Kyriakides M (2012) Cu(II) biosorption and competitive studies in multi-ions aqueous systems by Arthrobacter sp. Sphe3 and Bacillus sphaericus cells: Equillibrium and thermodynamic studies. Water Air Soil Pollut 223(8):5119–5130

    Article  CAS  Google Scholar 

  • Aryal M, Liakopoulou-Kyriakides M (2015) Bioremoval of heavy metals by bacterial biomass. Environ Monit Assess 187(1):4173

    Article  PubMed  CAS  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180(1):5–22

    Article  CAS  PubMed  Google Scholar 

  • Bakyayita GK, Norrström AC, Nalubega M, Kulabako RN (2014) Kinetic studies of cd(II) and Pb(II) ions biosorption from aqueous media using untreated and chemically treated biosorbents. Water Sci Technol 69:2230–2236

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A 46(14):1736–1747

    Article  CAS  Google Scholar 

  • Banjerdkij P, Vattanaviboon P, Mongkolsuk S (2005) Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonascampestris. Appl Environ Microbiol 71(4):1843–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB (2012) Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9(3):433–440

    Article  CAS  Google Scholar 

  • Bhuiyan MA, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173(1):384–392

    Article  CAS  PubMed  Google Scholar 

  • Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43(4):579–584

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic Sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation: origin, interaction and remediation, vol 6. Academic Press, Amsterdam

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Bueno BYM, Torem ML, Molina F, De Mesquita LMS (2008) Biosorption of lead (II), chromium (III) and copper (II) by R. Opacus: equilibrium and kinetic studies. Miner Eng 21(1):65–75

    Article  CAS  Google Scholar 

  • Calfa BA, Torem ML (2008) On the fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Miner Eng 21:48–54

    Article  CAS  Google Scholar 

  • Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 8(6):753–768

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  PubMed  Google Scholar 

  • Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere 87(8):945–953

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty R, Banerjee PC (2012) Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol 108:176–183

    Article  CAS  PubMed  Google Scholar 

  • Chandra P, Singh DP (2014) Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from sāmbhar salt lakeRajastha (India). Cell Mol Biol 60(5):64–72

    CAS  PubMed  Google Scholar 

  • Chathuranga PKD, Dissanayake DMREA, Priyantha N, Iqbal SS, Mohamed Iqbal MC (2014) Biosorption and desorption of lead(II) by Hydrillaverticillata. Biorem J 181:92–203

    Google Scholar 

  • Chaudhary A, Salgaonkar BB, Braganca JM (2014) Cadmium tolerance by haloarchaeal strains isolated from solar salterns of Goa, India. Int J Biosci, Biochem Bioinforma 4(1):1–6

    Google Scholar 

  • Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals–an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: present status and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr (VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121

    Article  CAS  PubMed  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97(2):561–571

    Article  CAS  PubMed  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Poll Bull 44:842–852

    Article  CAS  Google Scholar 

  • Devika L, Rajaram R, Mathivanan K (2013) Multiple heavy metal and antibiotic tolerance bacteria isolated from equatorial Indian Ocean. Int J Microbiol Res 4:212–218

    CAS  Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • Din MI, Hussain Z, Mirza ML, Shah AT, Athar MM (2014) Adsorption optimization of lead (II) using Saccharumbengalense as a non-conventional low cost biosorbent: isotherm and thermodynamics modeling. Int J Phytoremediation 16:889–908

    Article  CAS  PubMed  Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238(3):289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Moselhy KM, Shaaban MT, Ibrahim HA, Abdel-Mongy AS (2013) Biosorption of cadmium by the multiple-metal resistant marine bacterium Alteromonasmacleodii ASC1 isolated from Hurghada harbour, Red Sea. Arch Sci 66(2):259–272

    Google Scholar 

  • Elsilk SE, El-Shanshoury AERR, Ateya PS (2014) Accumulation of some heavy metals by metal resistant avirulent Bacillus anthracis PS2010 isolated from Egypt. Afr J Microbiol Res 8(12):1266–1276

    Article  CAS  Google Scholar 

  • Ergul-Ulger Z, Ozkan AD, Tunca E, Atasagun S, Tekinay T (2014) Chromium (VI) biosorption and bioaccumulation by live and acid-modified biomass of a novel Morganellamorganii isolate. Sep Sci Technol 49(6):907–914

    Article  CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Lodi A, Solisio C, Veglio F (2001) Biosorption of heavy metals by Sphaerotilusnatans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60:129–141

    Article  CAS  Google Scholar 

  • Fan J, Okyay TO, Rodrigues DF (2014) The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. J Hazard Mater 279:236–243

    Article  CAS  PubMed  Google Scholar 

  • Fernandez DS, Puchulu ME, Georgieff SM (2014) Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucum an, Argentina). Environ Geochem Health 36:489–503

    Article  CAS  PubMed  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501–523

    CAS  PubMed  Google Scholar 

  • Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Di Biasio P, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeterior Biodegrad 66(1):63–70

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37(3):399–403

    Article  CAS  Google Scholar 

  • Friis N, Myers-Keith P (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas Aeruginosa ASU 6a. Int Biodeter Biodegr 62:195–203

    Article  CAS  Google Scholar 

  • Gallego JLR, Loredo J, Lamas JF, Azquez FV, Anchez JS (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335

    Article  CAS  PubMed  Google Scholar 

  • Galun M, Galun E, Siegel BZ, Keller P, Lehr H, Siegel SM (1987) Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water Air Soil Pollut 33(3–4):359–371

    Article  CAS  Google Scholar 

  • Gialamouidis D, Mitrakas M, Liakopoulou-Kyriakides M (2010) Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. J Hazard Mater 182:672–680

    Article  CAS  PubMed  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7(2):311–319

    Article  CAS  Google Scholar 

  • Gu Y, Xu W, Liu Y, Zeng G, Huang J, Tan X, Wang D (2015) Mechanism of Cr (VI) reduction by aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Environ Sci Pollut Res 22(8):6271–6279

    Article  CAS  Google Scholar 

  • Guo J, Zheng XD, Chen QB, Zhang L, XP X (2012) Biosorption of cd(II) from aqueous solution by pseudomonas plecoglossicida: kinetics and mechanism. Curr Microbiol 65:350–355

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Bhushan R, Nayak A, Singh P, Bhushan B (2014) Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Biorem J 18:179–191

    Article  CAS  Google Scholar 

  • Hasan HA, Abdullah SRS, Kofli NT, Kamarudin SK (2012) Isotherm equilibria of Mn+2biosorption in drinking water treatment by locally isolated bacillus species and sewage activated sludge. J Environ Manag 111:34–43

    Article  CAS  Google Scholar 

  • Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in polar oceans. Oceanography 20:140–145

    Article  Google Scholar 

  • Hopenhayn C (2006) Arsenic in drinking water: impact on human health. Elements 2(2):103–107

    Article  CAS  Google Scholar 

  • Hossain SM, Anantharaman N (2006) Studies on bacterial growth and arsenic (III) biosorption using Bacillus subtilis. Chem Biochem Eng Q 20(2):209–216

    CAS  Google Scholar 

  • Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang F, Dang Z, Guo CL, GN L, RR G, Liu HJ, Zhang H (2013) Biosorption of cd (II) by live and dead cells of Bacillus Cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B: Biointerfaces 107:11–18

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Guo CL, GN L, Yi XY, Zhu LD, Dang Z (2014) Bioaccumulation characterization of cadmium by growing Bacillus Cereus RC-1 and its mechanism. Chemosphere 109:134–142

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Liu ZM (2013) Biosorption of cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B: Biointerfaces 105:113–119

    Article  CAS  PubMed  Google Scholar 

  • Ilamathi R, Nirmala GS, Muruganandam L (2014) Heavy metals biosorption in liquid solid fluidized bed by immobilized consortia in alginate beads. Int J Chem Tech Res 6:652–662

    Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. PNAS Microbiol 103:2815–2820

    Article  CAS  Google Scholar 

  • Iqbal S, Muntner P, Batuman V, Rabito FA (2008) Estimated burden of blood lead levels ⩾5μg/dl in 1999-2002 and declines from 1988 to 1994. Environ Res 107(3):305–311

    Article  CAS  PubMed  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50(3):340–343

    Article  CAS  PubMed  Google Scholar 

  • Jaafarzadeh N, Teymouri P, Babaei AA, Alavi N, Ahmadi M (2014) Biosorption of cadmium(II) from aqeous solution by NaCl-treated Ceratophylum demersum. Environ Eng J 13:763–773

    CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  • Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69:1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoSOne 6(4):e18514

    Article  CAS  Google Scholar 

  • Jin W, Zhang Z, Wu G, Tolba R, Chen A (2014) Integrated lignin-mediated adsorption-release process and electrochemical reduction for the removal of trace Cr (VI). RSC Adv 4(53):27843–27849

    Article  CAS  Google Scholar 

  • Joo JH, Hassan SHA, SE O (2010) Comparative study of biosorption of Zn+2 by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegrad 64:734–741

    Article  CAS  Google Scholar 

  • Kang S, Lee J, Kima K (2007) Biosorption of Cr(III) and Cr(VI) onto the cell surface of pseudomonas aeruginosa. Biochem Eng J 36:54–58

    Article  CAS  Google Scholar 

  • Kao WC, Huang CC, Chang JS (2008) Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia Coli. J Hazard Mater 158(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Rehman A, Hussain SZ, Nisar MA, Zulfiqar S, Shakoori AR (2016) Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express 6(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiliç NK, Stensballe A, Otzen DE, Dönmez G (2010) Proteomic changes in response to chromium (VI) toxicity in Pseudomonas Aeruginosa. Bioresour Technol 101(7):2134–2140

    Article  PubMed  CAS  Google Scholar 

  • Koduru JR, Chang YY, Kim IS (2014) Low-cost schizandra chinesis fruit peel for co(II) removal from aqueous environment: adsorption properties and mechanism. Asian J Chem 26:289–297

    CAS  Google Scholar 

  • Kordialik-Bogacka E, Diowksz A (2014) Metal uptake capacity of modified Saccharomyces pastorianus biomass from different types of solution. Environ Sci Pollut Res 21:2223–2229

    Article  CAS  Google Scholar 

  • Kothe E, Dimkpa C, Haferburg G, Schmidt A, Schmidt A et al (2010) Streptomycete heavy metal resistance: extracellular and intracellular mechanisms. In: Sherameti I, Varma A (eds) Soil biology. Springer, Berlin/Heidelberg, pp 225–235

    Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  • Lam TV, Agovino P, Niu X, Roché L (2007) Linkage study of cancer risk among lead-exposed workers in New Jersey. Sci Total Environ 372(2):455–462

    Article  CAS  PubMed  Google Scholar 

  • Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Hang CS, Brown MV, Robb FT, Kjelleberga S, Cavicchiol R (2009) The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–15533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JL, Zhang CX, Wang YX, Liao XP, Yao LL, Liu M, Xu L (2015) Pollution characteristics and distribution of polycyclic aromatic hydrocarbons and organochlorine pesticides in groundwater at Xiaodian sewage irrigation area, Taiyuan City. Huan jing ke xue= Huanjing kexue 36(1):172–178

    PubMed  Google Scholar 

  • Liang S, Guo X, Lautner S, Saake B (2014) Removal of hexavalent chromium by different modified spruce bark adsorbents. J Wood Chem Technol 34:273–290

    Article  CAS  Google Scholar 

  • Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Ni JY, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78(3):565–585

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Lai YT (2006) Adsorption and recovery of lead (II) from aqueous solutions by immobilized Pseudomonas Aeruginosa PU21 beads. J Hazard Mater 137:99–105

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn (II) and cu (II) by the indigenous Thiobacillusthiooxidans. Chem Eng J 97(2):195–201

    Article  CAS  Google Scholar 

  • Loka Bharathi PA, Nair S (2005) Rise of the dormant: simulated disturbance improves culturable abundance, diversity and functions of deep-sea bacteria of Central Indian Ocean Basin. Mar Georesour Geotechnol 23:419–428

    Article  Google Scholar 

  • Long J, Luo D, Chen Y (2014) Identification and biosorption characterization of a thallium-resistant strain. Chin J App Environ Biol 20:426–430

    CAS  Google Scholar 

  • Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wang P, Wang C, Zhang SH, Cheng S (2015) Isolation and characterization of Pb-resistant strains and the removal of Pb(II). Fresenius Environ Bull 24(3b):1150–1157

    Google Scholar 

  • Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42(4):607–633

    CAS  PubMed  Google Scholar 

  • Maldonado J, Diestra E, Huang L, Domènech AM, Villagrasa E, Puyen ZM, Duran R, Esteve I, Solé A (2010) Isolation and identification of a bacterium with high tolerance to lead and copper from a marine microbial mat in Spain. Ann Microbiol 60(1):113–120

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278

    Article  CAS  PubMed  Google Scholar 

  • Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H, Pauss A (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces Rimosus biomass. Water Res 33(6):1347–1354

    Article  CAS  Google Scholar 

  • Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791

    Google Scholar 

  • Mangaiyarkarasi MM, Vincent S, Janarthanan S, Rao TS, Tata BVR (2011) Bioreduction of Cr (VI) by alkaliphilic Bacillus Subtilis and interaction of the membrane groups. Saudi J Biol Sci 18(2):157–167

    Article  CAS  Google Scholar 

  • Mao J, Won SW, Yun YS (2013) Development of poly (acrylic acid)-modified bacterial biomass as a high-performance biosorbent for removal of cd (II) from aqueous solution. Ind Eng Chem Res 52(19):6446–6452

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Masood F, Malik A (2011) Biosorption of metal ions from aqueous solution and tannery effluent by bacillus sp. FM1. J Environ Sci Health A 46:1667–1674

    Article  CAS  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9(3):207–215

    CAS  PubMed  Google Scholar 

  • Mathivanan K, Rajaram R (2014a) Tolerance and biosorption of cadmium (II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment. Indian journal of geo-marine. Sciences 43(4):580–588

    Google Scholar 

  • Mathivanan K, Rajaram R (2014b) Isolation and characterisation of cadmium-resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chem Ecol 30(7):622–635

    Article  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47(1):0051–0054

    Article  CAS  Google Scholar 

  • Mishra RR, Dhal B, Dutta SK, Dangar TK, Das NN, Thatoi HN (2012) Optimization and characterization of chromium (VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Mater 227-228:219–226

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra RK, Panda CR (2017) Spatiotemporal variation of water quality and assessment of pollution potential in Paradip port due to port activities. Indian J Geo Marine Sci 46(07):1274–1286

    Google Scholar 

  • Mohapatra RK, Pandey S, Thatoi H, Panda CR (2017b) Reduction of chromium (VI) by marine bacterium Brevibacillus laterosporus under varying saline and pH conditions. Environ Eng Sci 34(9):617–626

    Google Scholar 

  • Mohapatra RK, Pandey S, Thatoi HN, Panda CR (2016) Screening and evaluation of multi-metal tolerance of chromate resistant marine bacteria isolated from water and sediment samples of Paradip port, Odisha Coast. J Adv Microbiol 2(3):135–147

    Google Scholar 

  • Mohapatra RK, Parhi PK, Thatoi H, Panda CR (2017a) Bioreduction of hexavalent chromium by Exiguobacteriumindicum strain MW1 isolated from marine water of Paradip port, Odisha, India. Chem Ecol 33(2):114–130

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2011) Adsorption of cu (II) to Bacillus subtilis: a pH-dependent EXAFS and thermodynamic modelling study. Geochim Cosmochim Acta 75(21):6705–6719

    Article  CAS  Google Scholar 

  • Muñoz AJ, Espínola F, Moya M, Ruiz E (2015) Biosorption of Pb (II) ions by Klebsiella sp. 3S1 isolated from a wastewater treatment plant: kinetics and mechanisms studies. Biomed Res Int 2015:1–12

    Google Scholar 

  • Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, Lairini K, Espínola F (2012) Heavy metal tolerance of microorganisms isolated from wastewaters: identification and evaluation of its potential for biosorption. Chem Eng J 210:325–332

    Article  CAS  Google Scholar 

  • Murthy S, Bali G, Sarangi SK (2012) Biosorption of lead by Bacillus Cereus isolated from industrial effluents. British Biotechnol J 2(2):73–84

    CAS  Google Scholar 

  • Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7

    Article  CAS  PubMed  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Bioremediation of metals mediated by marine bacteria. In: Microorganisms in Environmental Management. Springer, Netherlands, pp 665–682

    Chapter  Google Scholar 

  • Nakajima A, Yasuda M, Yokoyama H, Ohya-Nishiguchi H, Kamada H (2001) Copper biosorption by chemically treated Micrococcus Luteus cells. World J Microbiol Biotechnol 17(4):343–347

    Article  CAS  Google Scholar 

  • Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ (2007) Lead exposure and cardiovascular disease: a systematic review. Environ Health Perspect 115:472–482

    Article  CAS  PubMed  Google Scholar 

  • Nweke CO, Okpokwasili GC (2003) Drilling fluid base oil biodegradation potential of a soil staphylococcus species. African J Biotechnol 2:293–295

    Article  CAS  Google Scholar 

  • Ohtake H, Takahashi K, Tsuzuki Y, Toda K (1985) Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res 19:1587–1594

    Article  CAS  Google Scholar 

  • Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microbial Ecol 12:65–78

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  PubMed  Google Scholar 

  • Pagnanelli F, Petrangeli PM, Trifoni M, Toro L, Veglio F (2000) Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorptionmodeling. Environ Sci Technol 34:2773–2778

    Article  CAS  Google Scholar 

  • Paranjape K, Gowariker V, Krishnamurthy V, Gowariker S (2014) The pesticide encyclopedia. Cabi, Oxfordshire

    Google Scholar 

  • Paul ML, Samuel J, Chandrasekaran N, Mukherjee A (2012) Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem Eng J 187:104–113

    Article  CAS  Google Scholar 

  • Pepi M, Borra M, Tamburrino S, Saggiomo M, Viola A, Biffali E, Balestra C, Sprovieri M, Casotti R (2016) A bacillus sp. isolated from sediments of the Sarno River mouth, gulf of Naples (Italy) produces a biofilm biosorbingPb (II). Sci Total Environ 562:588–595

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opinion Biotechnol 11:262–270

    Article  CAS  Google Scholar 

  • Prakash D, Raushan RK, Sangodkar UX (2008) Isolation and characterization of meta-toluic acid degrading marine bacterium. Indian. J Mar Sci 37:322–325

    CAS  Google Scholar 

  • Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (as+3) and arsenate (as+5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34(19):2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol Prog 15(2):228–237

    Article  CAS  PubMed  Google Scholar 

  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus Luteus DE2008. Bioresour Technol 126:233–237

    Article  CAS  PubMed  Google Scholar 

  • Rainbow PS (1995) Bio monitoring of heavy metal availability in the marine environment. Mar Poll Bull 31:183–192

    Article  CAS  Google Scholar 

  • Raja Rao P, Pallavi D, Venkateshwarlu T (2014) Removal of heavy metals in fly ash by using Saccharomyces Cerevisiae. Int J Appl Eng Res 9:107–114

    Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Environ Biol 41:935–944

    CAS  Google Scholar 

  • Rangabhashiyam S, Anu N, Selvaraju N (2013) Biosorption of heavy metals using low cost agricultural by products. Res J Chem Environ 17:112–123

    CAS  Google Scholar 

  • Ren G, Jin Y, Zhang C, Gu H, Qu J (2015) Characteristics of bacillus sp. PZ-1 and its biosorption to Pb (II). Ecotoxicol Environ Saf 117:141–148

    Article  CAS  PubMed  Google Scholar 

  • Sabdono A (2010) Cadmium removal by a bioreducpiun coral bacterium Pseudoalteromonas sp. strain CD15 isolated from the tissue of coral Goniastreaaspera, Jepara waters. J Coast Dev 13(2):15–25

    Google Scholar 

  • Sar P, Kazy SK, Asthana RK, Singh SP (1999) Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. International biodeterioration. Biodegradation 44(2):101–110

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2009) Biosorption of as(III) and as(V) from aqueous solution by macrofungus (Inonotus hipidus) biomass: equilibrium and kinetics studies. J Hazard Mater 164:1372–1378

    Article  CAS  PubMed  Google Scholar 

  • Seki H, Suzuki A, Mitsueda SI (1998) Biosorption of heavy metal ions on Rhodobactersphaeroides and Alcaligeneseutrophus H16. J Colloid Interface Sci 197:185–190

    Article  CAS  PubMed  Google Scholar 

  • Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004b) Biosorption of cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces Rimosus biomass. Hydrometallurgy 75(1):11–24

    Article  CAS  Google Scholar 

  • Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004a) Biosorption of lead(II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19(2):127–135

    Article  CAS  Google Scholar 

  • Semerjian L (2010) Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinushalepensis sawdust. J Hazard Mater 173(1):236–242

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12

    Article  PubMed  CAS  Google Scholar 

  • Shamim S, Rehman A (2012) Cadmium resistance and accumulation potential of Klebsiella Pneumoniae strain CBL-1 isolated from industrial wastewater. Pak J Zool 44:203–208

    Google Scholar 

  • Shrestha RA, Lama B, Joshi J, Sillanpää M (2008) Effects of Mn (II) and Fe (II) on microbial removal of arsenic (III). Environ Sci Pollut Res 15(4):303–307

    Article  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siripongvutikorn S, Asksonthong R, Usawakesmanee W (2016) Evaluation of harmful heavy metal (hg, Pb and cd) reduction using Halomonaselongata and Tetragenococcushalophilus for protein hydrolysate product. Funct Foods Health Dis 6(4):195–205

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Hernd GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere. Proc Nat Acad Sci 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowmya M, Rejula MP, Rejith PG, Mohan M, Karuppiah M, Hatha AM (2014) Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium. J Environ Biol 35(4):655–660

    CAS  PubMed  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  PubMed  Google Scholar 

  • Stanley ME (2005) Environmental chemistry. CRC, Boca Raton. ISBN 1-56670-633-5

    Google Scholar 

  • Stramski D, Kiefer DA (1998) Can heterotrophic bacteria be important to marine light absorption? J Plankton Res 20:1489–1500

    Article  Google Scholar 

  • Subramanian S, Sam S, Jayaraman G (2012) Hexavalent chromium reduction by metal resistant and halotolerant Planococcusmaritimus VITP21. Afr J Microbiol Res 6(47):7339–7349

    Article  CAS  Google Scholar 

  • Swapna TH, Papathoti NK, Khan MY, Reddy G, Hameeda B (2016) Bioreduction of Cr (VI) by biosurfactant producing marine bacterium Bacillus subtilis SHB 13. J Sci Ind Res 75:432–438

    CAS  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    Article  CAS  PubMed  Google Scholar 

  • Tangaromsuk J, Pokethitiyook P, Kruatrachue M, Upatham ES (2002) Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresour Technol 85:103–105

    Article  CAS  PubMed  Google Scholar 

  • Taran M, Safari M, Monaza A, Reza JZ, Bakhtiyari S (2013) Optimal conditions for the biological removal of arsenic by a novel halophilic archaea in different conditions and its process optimization. Polish journal of. Chem Technol 15(2):7–9

    CAS  Google Scholar 

  • Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis, and carcinogenesis-a health risk assessment and management approach. Mol Cell Biochem 255(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Thatheyus AJ, Ramya D (2016) Biosorption of chromium using bacteria: an overview. Sci Inter 4(7):74–79

    Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115(3):203–211

    Article  CAS  Google Scholar 

  • Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto pseudomonas putida: effect of temperature. J Hazard Mater 135:87–93

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41(1):91–128

    Article  CAS  PubMed  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316

    Article  CAS  Google Scholar 

  • Veneu DM, Torem ML, Pino GAH (2013) Fundamental aspects of copper and zinc removal from aqueous solutions using a Streptomyces lunalinharesii strain. Miner Eng 48:44–50

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan R, Rajendran S (2011) Studies on agar degrading Salegentibacter sp. and characterization of its agarase. Int J Biosci 1:56–64

    CAS  Google Scholar 

  • Vishnoi N, Singh DP (2014) Biotransformation of arsenic by bacterial strains mediated by oxido-reductase enzyme system. Cell Mol Biol 60(5):7–14

    CAS  PubMed  Google Scholar 

  • Voica DM, Bartha L, Banciu HL, Oren A (2016) Heavy metal resistance in halophilic bacteria and archaea. FEMS Microbiol Lett 363(14):fnw146

    Article  PubMed  Google Scholar 

  • Volesky B (1986) Biosorbent materials. Biotechnol Bioeng Symp 16:121–126

    CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192(2):95–117

    Article  CAS  PubMed  Google Scholar 

  • Waite CCC, da Silva GOA, Bitencourt JAP, Sabadini-Santos E, Crapez MAC (2016) Copper and lead removal from aqueous solutions by bacterial consortia acting as biosorbents. Mar Pollut Bull 109(1):386–392

    Article  CAS  PubMed  Google Scholar 

  • Walton FS, Harmon AW, Paul DS, Drobná Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 198(3):424–433

    Article  CAS  PubMed  Google Scholar 

  • Wang JL (2002) Immobilization techniques for biocatalysts and water pollution control. Science press, Beijing

    Google Scholar 

  • Wang L, Chua H, Wong PK, Lo WH, PHF Y (2003) Ni2+ removal and recovery from electroplating effluent by Pseudomonas putida 5-x cell biomass. J Environ Sci Health A 38(3):521–531

    Article  CAS  Google Scholar 

  • Wang L, Li FT, Zhou Q (2006) Contribution of cellsurface components to Cu2+ adsorption by pseudomonas putida 5-x. Appl Biochem Biotechnol 128:33–46

    Article  CAS  PubMed  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2013) Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess 185(10):8147–8155

    Article  PubMed  Google Scholar 

  • Watt GCM, Britton A, Gilmour HG, Moore MR, Murray GD, Robertson SJ (2000) Public health implications of new guidelines for lead in drinking water: a case study in an area with historically high water lead levels. Food Chem Toxicol 38:S73–S79

    Article  CAS  PubMed  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. International biodeterioration. Biodegradation 35(1–3):17–40

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. WHO Chron 38:104–108

    Google Scholar 

  • Wierzba S, Latała A (2010) Biosorption lead (II) and nikel (II) from an aqueous solution by bacterial biomass. Pol J Chem Technol 12(3):72–78

    Article  Google Scholar 

  • Woodruff TJ, Carlson A, Schwartz JM, Giudice LC (2008) Proceedings of the summit on environmental challenges to reproductive health and fertility: executive summary. Fertil Steril 89(2):e1–e20

    Article  PubMed  Google Scholar 

  • Wu Q, Leung JYS, Geng X, Chen S, Huang X et al (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506:217–225

    Article  PubMed  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011(402647). https://doi.org/10.5402/2011/402647

  • Yan L, Yin H, Zhang S, Leng F, Nan W, Li H (2010) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillusferrooxidans BY-3. J Hazard Mater 178:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Yin H, Xie D, Peng H, Huang J, Liang W (2013) Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo [a] pyrene. Chem Eng J 219:1–9

    Article  CAS  Google Scholar 

  • Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65(13):2037–2042

    Article  CAS  Google Scholar 

  • Yoshida T, Yamauchi H, Sun GF (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198(3):243–252

    Article  CAS  PubMed  Google Scholar 

  • Zeng D, Zhu K, Pei X (2014) Characteristics of heavy metal circulation in biosphere. Agric Sci Technol 15(4):642–647

    Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24(10):1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Ma Y, Zhou J, Zhang Y (2013) Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Extremophiles 17(5):723–731

    Article  CAS  PubMed  Google Scholar 

  • Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of cd(II) and Cr(VI) biosorption on staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865

    Article  CAS  PubMed  Google Scholar 

  • Zobell CE, Upham HC (1944) A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanog 5:239–292

    Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39(8):909–916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Kumar Mohapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohapatra, R.K., Parhi, P.K., Patra, J.K., Panda, C.R., Thatoi, H.N. (2017). Biodetoxification of Toxic Heavy Metals by Marine Metal Resistant Bacteria- A Novel Approach for Bioremediation of the Polluted Saline Environment. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_15

Download citation

Publish with us

Policies and ethics