Skip to main content

Advertisement

Log in

Cu(II) Biosorption and Competitive Studies in Multi-ions Aqueous Systems by Arthrobacter sp. Sphe3 and Bacillus sphaericus Cells: Equillibrium and Thermodynamic Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arthrobacter sp. Sphe3 and Bacillus sphaericus cells were used for Cu(II) biosorption. The effect of contact time, biosorbent dose, equilibrium pH, temperature and the presence of other ions on the efficiency of the process were extensively studied. Optimum pH value and biomass concentration were determined at 5.0 and 1.0 g/l, whereas contact time was found to be 5 and 10 min for Arthrobacter sp. Sphe3 and Bacillus sphaericus biomass, respectively. Equilibrium data fitted very well to Freundlich model (R 2 = 0.996, n = 2.325, K f = 8.141) using Arthrobacter sp. Sphe3. In the case of B. sphaericus, a Langmuir adsorption model [R 2 = 0.996, Q max = 51.54 mg-Cu(II)/g] showed to better describe the results. Potentiometric titration and Fourier transform infrared (FTIR) spectroscopy showed that amine, carboxyl and phosphate groups participate in Cu(II)-binding. The calculated thermodynamic parameters indicated the spontaneous and feasible nature of Cu(II) biosorption on both biosorbents. Selectivity of Cu(II) biosorption was examined in binary and multi-ions systems with various anions and cations which are commonly found in municipal and industrial wastewater. A specificity towards Cu(II) was observed in binary mixtures with Cl-, CO -23 , NO -3 , SO -24 , PO -34 , Mg+2 and Ca+2, and As(V) with the maximum uptake capacity remaining constant even at high competitive ion’s concentrations of 200 mg/l. Desorption studies showed that Cu(II) could be completely desorbed from Cu(II)-loaded Arthrobacter strain Sphe3 and B. sphaericus biomass using 1.0 and 0.8 M HCl, respectively, and both bacterial species could be effectively reused up to five cycles, making their application in wastewater detoxification more attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksu, Z., Sag, Y., & Kutsal, T. (1992). The biosorption of copper(II) by C. vulgaris and Z. Ramigera. Environmental Technology, 13, 579–586.

    Article  CAS  Google Scholar 

  • Aksu, Z., Egretli, G., & Kutsal, T. (1998). A comparative study of copper(II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Process Biochemistry, 33, 393–400.

    Article  CAS  Google Scholar 

  • Al-Rub, F. A. A., El-Naas, M. H., Ashour, I., & Al-Marzouqi, M. (2006). Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochemistry, 41, 457–464.

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., & Radhakrishnan, P. G. (2008). Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. The Journal of Chemical Thermodynamics, 40, 702–709.

    Article  CAS  Google Scholar 

  • Aryal, M., & Liakopoulou-Kyriakides, M. (2011). Equilibrium, kinetics and thermodynamic studies on phosphate biosorption from aqueous solutions by Fe(III)-treated Staphylococus xylosus biomass: Common ion effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 387, 43–49.

    Article  CAS  Google Scholar 

  • Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2010). Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chemical Engineering Journal, 162, 178–185.

    Article  CAS  Google Scholar 

  • Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2011). Comparison of Cr(VI) and As(V) removal in single and binary mixtures with Fe(III)-treated Staphylococus xylosus biomass: Thermodynamic studies. Chemical Engineering Journal, 169, 100–106.

    Article  CAS  Google Scholar 

  • Baral, S. S., Das, S. N., & Rath, P. (2006). Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31, 216–222.

    Article  CAS  Google Scholar 

  • Basci, N., Kocadagistan, E., & Kocadagistan, B. (2004). Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination, 164, 135–140.

    Article  CAS  Google Scholar 

  • Chang, J. S., Law, R., & Chang, C. C. (1997). Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Reserch, 31, 1651–1658.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., & Gorecka, H. (2005). Biosorption of Cr+3, Cd+2 and Cu+2 ions by blue-green algae spirulina sp.: Kinetics equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.

    Article  CAS  Google Scholar 

  • Dursun, A. Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal, 28, 187–195.

    Article  CAS  Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Sciences, 28, 309–314.

    Article  Google Scholar 

  • Fagundes-Klen, M. R., Veit, M. T., Borba, C. E., Bergamasco, R., de Vaz, L. G., Silva, L., & da, E. A. (2010). Copper biosorption by biomass of marine alga: Study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column. Water, Air, and Soil Pollution, 213, 15–26.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Ueber die adsorption in Loesungen. Zeitschrift für Physikalische Chemie, 57A, 385–470.

    Google Scholar 

  • Gialamouidis, D., Mitrakas, M., & Liakopoulou-Kyriakides, M. (2010). Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. Journal of Hazardous Materials, 182, 672–680.

    Article  CAS  Google Scholar 

  • Grimm, A., Zanzi, R., Bjornbom, E., & Cukierman, A. L. (2008). Comparison of different types of biomasses for copper biosorption. Bioresource Technology, 99, 2559–2565.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Rastogi, A., Saini, V. K., & Jain, N. (2006). Biosorption of copper(II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296, 59–63.

    Article  CAS  Google Scholar 

  • Hanafiah, M. A. K. M., Zakaria, H., & Ngah, W. S. W. (2009). Preparation, characterization, and adsorption behavior of Cu(II) ions onto alkali-treated weed (Imperata cylindrica) leaf powder. Water Air Soil Polluttion, 201, 43–53.

    Article  CAS  Google Scholar 

  • Jian-hua, P., Rui-xia, L., & Hong-xiao, T. (2007). Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. Journal of Environmental Sciences, 19, 403–408.

    Article  Google Scholar 

  • Kaewsarn, P. (2002). Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere, 47, 1081–1085.

    Article  CAS  Google Scholar 

  • Khormaei, M., Nasernejad, B., Edrisi, M., & Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials, 149, 269–274.

    Article  CAS  Google Scholar 

  • Lambert, J. B., Shurvell, H. F., Lightner, D. A., & Cooks, R. G. (1998). Organic structrural spectroscopy. New Jersey, USA: Prentice Hall.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 1361–1367.

    Article  CAS  Google Scholar 

  • Lin, S.-H., Kao, H.-C., Su, H.-N., & Juang, R.-S. (2005). Effect of formaldehyde on Cu(II) removal from synthetic complexed solutions by solvent extraction. Journal of Hazardous Materials, 20, 1–7.

    Article  CAS  Google Scholar 

  • Machado, M. D., Soares, H. M. V. M., & Soares, E. V. (2010). Removal of chromium, copper, and nickel from an electroplating effluent using a flocculent brewer’s yeast strain of Saccharomyces cerevisiae. Water, Air, and Soil Pollution, 212, 199–204.

    Article  CAS  Google Scholar 

  • Majumdar, S. S., Das, S. K., Saha, T., & Panda, G. C. (2008). Tarashankar Bandyopadhyoy, Arun K. Guha, Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Colloids and Surfaces. B, Biointerfaces, 63, 138–145.

    Article  CAS  Google Scholar 

  • Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., & Munoz, J. A. (2008). Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 158, 316–323.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, M. (2008). Role of surface properties during biosorption of copper by pretreated Aspergillus niger biomass, Colloids and Surfaces A: Physicochemical Engineering Aspects, 95–99.

  • Naja, G., Mustin, C., Berthelin, J., & Volesky, B. (2005). Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. Journal of Colloid and Interface Science, 292, 537–543.

    Article  CAS  Google Scholar 

  • Nuhoglu, Y., & Oguz, E. (2003). Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Process Biochemistry, 38, 1627–1631.

    Article  CAS  Google Scholar 

  • Öztürk, A., Artan, T., & Ayar, A. (2004). Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids and Surfaces. B, Biointerfaces, 34, 105–111.

    Article  Google Scholar 

  • Patrón-Prado, M., Acosta-Vargas, B., Serviere-Zaragoza, E., & Méndez-Rodríguez, L. C. (2010). Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water, Air, and Soil Pollution, 210, 197–202.

    Article  Google Scholar 

  • Sadrzadeh, M., Mohammadi, T., Ivakpour, J., & Kasiri, N. (2009). Neural network modeling of Pb2+ removal from wastewater using electrodialysis. Chemical Engineering and Processing: Process Intensification, 48, 1371–1381.

    Article  CAS  Google Scholar 

  • Sag, Y., & Kutsal, T. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 6, 145–151.

    Article  CAS  Google Scholar 

  • Snell, F. D., & Snell, C. T. (1959). Colorimetric methods of analysis (3rd ed.). New York: Van Nostrand.

    Google Scholar 

  • Vijayaraghavan, K., & Prabu, D. (2006). Potential of Sargassum wightii biomass for copper(II) removal from aqueous solutions: Application of different mathematical models to batch and continuous biosorption data. Journal of Hazardous Materials, B137, 558–564.

    Article  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. S., Loureiro, J. M., & Boaventura, R. A. R. (2008). Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column. Bioresource Technology, 99, 5830–5838.

    Article  CAS  Google Scholar 

  • Wang, X. S., Li, Z. Z., & Sun, C. (2009). A comparative study of removal of Cu(II) from aqueous solutions by locally low-cost materials: Marine macroalgae and agricultural by-products. Desalination, 235, 146–159.

    Article  CAS  Google Scholar 

  • Won, S. W., Choi, S. B., Yun, Y.-S. (2005). Interaction between protonated waste biomass of Corynebacterium glutamicum and anionic dye reactive red 4. Colloids and Surfaces A: Physicochemical Engineering Aspects, 175–180.

  • Zhang, Y., Liu, W., Xu, M., Zheng, F., & Zhao, M. (2010). Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. Journal of Hazardous Materials, 178, 1085–1093.

    Article  CAS  Google Scholar 

  • Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., & Kyriakides, M. L. (2007). Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource Technology, 98, 2859–2865.

    Article  CAS  Google Scholar 

  • Zubair, A., Bhatti, H. N., Hanif, M. A., & Shafqat, F. (2008). Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by citrus reticulate waste biomass. Water, Air, and Soil Pollution, 191, 305–318.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Liakopoulou-Kyriakides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aryal, M., Ziagova, M.G. & Liakopoulou-Kyriakides, M. Cu(II) Biosorption and Competitive Studies in Multi-ions Aqueous Systems by Arthrobacter sp. Sphe3 and Bacillus sphaericus Cells: Equillibrium and Thermodynamic Studies. Water Air Soil Pollut 223, 5119–5130 (2012). https://doi.org/10.1007/s11270-012-1263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1263-9

Keywords

Navigation