Skip to main content
Log in

The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal pollution is a current environmental issue as a consequence of unregulated anthropic activiy. A wide range of bioremediation strategies have been successfully implemented to recover contaminated areas. Among them, bacterial bioremediation stands out as a promising tool to confront these types of concerns. This study aimed to compare and discuss worldwide scientific evolution of bacterial potential for metal bioremediation in aquatic ecosystems. The study consisted of a systematic review, elaborated through a conceptual hypothesis model, during the period from 2000 to 2016, using PubMed, MEDLINE, and SciELO databases as data resources. The countries with the largest number of reports included in this work were India and the USA. Industrial wastewater discharge was the main subject associated to metal contamination/pollution and where bacterial bioremediations have mostly been applied. Biosorption is the main bioremediation mechanism described. Bacterial adaptation to metal presence was discussed in all the selected studies, and chromium was the most researched bioremedied substrate. Gram-negative Pseudomonas aeruginosas and the Gram-positive Bacillus subtilis bacteria were microorganisms with the greatest applicability for metal bioremediation. Most reports involved the study of genes and/or proteins related to metal metabolism and/or resistence, and Chromobacterium violaceum was the most studied. The present work shows the relevance of metal bacterial bioremediation through the high number of studies aimed at understanding the microbiological mechanisms involved. Moreover, the developed processes applied in removal and/or reducing the resulting environmental metal contaminant/pollutant load have become a current and increasingly biotechnological issue for recovering impacted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelatey LM, Khalil WKB, Ali TA, Mahrous KF (2011) Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in egyptian soils. J Appl Sci Environ Sanit 6(2):201–211

    CAS  Google Scholar 

  • Abou-Shanab RAI, Van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  Google Scholar 

  • Ahemad M, Malik A (2012) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2(1):12–21

    Article  Google Scholar 

  • Alencar FLS, Araújo MFF, Do Nascimento ED (2016) Microbiology for environmental conservation: a systematic review of bioremediation of heavy metals by Chromobacterium violaceum. Gaia Scientia 10:320–333

  • Andreazza R, Camargo FAO, Antoniolli ZI, Quadro MS, Barcelos AA (2013) Biorremediação de áreas contaminadas com cobre. Revista de Ciências Agrárias 36(2):127–136

    Google Scholar 

  • Antônio RV, Pasa TBC (2004) Genetic analysis of violacein biosynthesis by Chromobacterium violaceum. Genet Mol Res 3(1):85–91

    Google Scholar 

  • Azevedo JS, Silva-rocha R, Silva A, Carepo MSP, Schneider MPC (2008) Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472. Can J Microbiol 54:137

    Article  Google Scholar 

  • Benedetto JS, De Almeida SK, Gomes HA, Vazoller RF, Ladeira ACQ (2005) Moni-toring of sulfate-reducing bacteria in acidwater fromuranium mines. Min Eng 18:1341–1343

    Article  CAS  Google Scholar 

  • Biondi CM, Nascimento CWA, Neta ABF, Ribeiro MR (2011) Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil. Rev Bras Ciênc Solo 35(3):1057–1066

  • Bobillo C, Navoni JA, Olmos V, Merini LJ, Villaamil LE, Corach D (2014) Ethnic characterization of a population of children exposed to high doses of arsenic via drinking water and a possible correlation with metabolic processes. Int J Mol Epidemiol Genet 1:1–10

    Google Scholar 

  • Brierley JA, Brierley CL (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59:233–239

    Article  CAS  Google Scholar 

  • Burak DL et al (2010) Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma 160:131–142

    Article  CAS  Google Scholar 

  • Campos V, Moraga R, Fernández Í, Yáñez F, Valenzuela A, Mondaca MA (2013) Reduction of hexavalent cromium by Serratia marcecens immobilized on active carbon and their potencial use in bioremediation. Rev Gayana 77(1):61–63

    Google Scholar 

  • Carepo MSP et al (2004) Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification. Genet Mol Res 3:181–194

    CAS  Google Scholar 

  • Cervantes JC et al (2001) Interaction of chromium with microorganisms and plant. FEMS Microbiol Rev, Amsterdam 25(7):335–347

    Article  CAS  Google Scholar 

  • Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4(7):619–627

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2003) Reduction of chromate (CrO4-2) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere, Oxford 52(8):1523–1529

    Article  CAS  Google Scholar 

  • De Mora et al (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  Google Scholar 

  • DIAS JP et al (2005) Chromobacteriosis in Ilhéus, Bahia: epidemiologic, clinical and laboratorial investigation. Rev Soc Bras Med Trop 38(6):503–506

    Article  Google Scholar 

  • Dong J et al (2011) Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China. Environ Earth Sci 64:1317–1321

    Article  CAS  Google Scholar 

  • EPA: ENVIRONMENTAL PROTECTION AGENCY, UNITED STATES (2004) How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. Chapter IX—Monitored Natural Attenuation, EPA 510-B-94-003; EPA 510-B-95-007 and EPA 510-R-04-002

  • Esposito A, Pagnanelli F, Lodi A, Solisio C, Veglio F (2001) Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60:129–141

    Article  CAS  Google Scholar 

  • Francois F et al (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78:1097–1106

    Article  CAS  Google Scholar 

  • Gaad GM (2000) Bioremedial potential of microbial mechanism of metal mobilization and immobilization. Curr Opin Biotecnol 11:271–279

    Article  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3(1):58–66

    Google Scholar 

  • Gaylarde CC, Bellinaso MDL, Manfio GP (2005) Aspectos biológicos e técnicos da biorremediação de xenobióticos. Biotecnologia Ciência & Desenvolvimento 34

  • Gibert O, De Pablo J, Cortina JL, Ayora C (2004) Chemical characterization of natural organic substrates for biological mitigation of acid mine drainage. Water Res 38:4186–4196

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Hasan SH, Srivastava P, Talat M (2010) Biosorption of lead using immobilized Aeromonas hydrophila biomass in up flow column system: factorial design for process optimization. J Hazard Mater 177(1–3):312–322

    Article  CAS  Google Scholar 

  • Huang F, Guo CL, Lu GN, Yi XY, Zhu LD, Dang Z (2014) Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109:134–142

    Article  CAS  Google Scholar 

  • Hussein H, Ibrahim SF, Kandeel K, Moawad H (2004) Biosorption of heavy metals from waste water using Pseudomonas sp. Electron J Biotechnol 7:38–46

    Article  Google Scholar 

  • Icgen B, Harrison S (2006) Exposuretosulphide causes populations shifts in sulphate- reducing consortia. Res Microbiol 157:784–791

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  Google Scholar 

  • Javis AP, Younger PL (2000) EIA procedure: broadening the scope of mine water environmental impact assessment: a UK perspective. Environ Impact Assess Rev:85–96

  • Kamika I, Momba MNB (2013) Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol 13(1):28

    Article  CAS  Google Scholar 

  • Kermani AJN et al (2010) Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Iran J Environ Health Sci Eng 10(4):279–286

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kim K et al (2010) Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol 8:10–166

    Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface- engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 36:182–186

    Article  Google Scholar 

  • Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67(4):1437–1444

    Article  CAS  Google Scholar 

  • Lima DC et al (2014) The influence of iron on the proteomic profile of Chromobacterium violaceum. BMC Microbiol 14:267

    Article  Google Scholar 

  • Lima-bittencourt CI et al (2007) Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems. BMC Microbiol 7:58

    Article  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Am J Public Health, NY 15(9):812

    Google Scholar 

  • Maiti SK, Bera D, Chattopadhyay P, Ray L (2009) Determination of kinetic parameters in the biosorption of Cr (VI) on immobilized bacillus cereus M1 16 in a continuous packed bed column reactor. Appl Biochem Biotechnol 159(2):488–504

    Article  CAS  Google Scholar 

  • Majumder S, Gangadhar G, Raghuvanshi S, Gupta S (2015) A comprehensive study on the behavior of a novel bacterial strain Acinetobacter guillouiae for bioremediation of divalent copper. Bioprocess Biosyst Eng 38(9):1749–1760

    Article  CAS  Google Scholar 

  • Martins PSDO, De Almeida NF, Leite SGF (2008) Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system. Braz J Microbiol 39(4):780–786

    Article  Google Scholar 

  • Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98:334–343

    Article  CAS  Google Scholar 

  • Nabulo G, Young SD, Black CR (2010) Assessing risk to human health fromtropical leafy vegetables grown on contaminated urban soils. Sci Total Environ 408:5338–5351

    Article  CAS  Google Scholar 

  • Navoni JA, De Pietri D, Garcia S, Villaamil LE (2012) Health risk for the vulnerable population exposed to arsenic in the province of Buenos Aires, Argentina. Pan Am J Public Health 31:1

    Article  Google Scholar 

  • Navoni JA, De Pietri D, Olmos V, Gimenez C, Bovi Mitre G, De Titto E, Edda CVL (2014) Human health risk assessment with spatial analysis: study of a population chronically exposed to arsenic through drinking water from Argentina. Sci Total Environ 499:166–174

    Article  CAS  Google Scholar 

  • O’Neil RA et al (2008) Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation. Environ Microbiol 10(5):1218–1230

    Article  Google Scholar 

  • Ontañon OM, González PS, Agostini E (2015) Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. Environ Sci Pollut Res 22(17):13014–13023

    Article  Google Scholar 

  • Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70(5):3091–3095

    Article  CAS  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

  • Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2013) Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage. Environ Monit Assess 185(8):6809–6818

    Article  CAS  Google Scholar 

  • Pereira GC, Ebecken NFF (2009) Knowledge discovering for coastal waters classification. Expert Syst Appl 36(4):8604–8609

    Article  Google Scholar 

  • Pirog T, Sofilkanych A, Shevchuk T, Shulyakova M (2013) Biosurfactants of rhodococcus erythropolis IMV Ac-5017: synthesis intensification and practical application. Appl Biochem Biotechnol 170(4):880–894

    Article  CAS  Google Scholar 

  • Puig S, Lee J, Lau M, Thiele DJ (2002) Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277:26021–26030

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  CAS  Google Scholar 

  • Reddad Z, Gérente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36(9):2067–2073

    Article  CAS  Google Scholar 

  • Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27(2–3):197–213

  • Robb J, Moyer E (2001) Natural attenuation of benzene and MTBE at four midwestern retail gasoline marketing outlets. Contaminated Soil Sediment and Water, Special issue (Spring):64–71

  • Robins KJ, Hooks DO, Rehm BHA, Ackerley DF (2013) Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One 8(3). doi:10.1371/journal.pone.0059200

  • Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS One 6(3)

  • Roundhill DM, Koch HF (2002) Methods and techniques for the selective extraction and recovery of oxoanions. Chem Soc Rev 31:60–67

    Article  CAS  Google Scholar 

  • Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9(4):337–345

    Article  CAS  Google Scholar 

  • Seebaugh DR, Goto D, Wallace WG (2005) Bioenhancement of cadmium transfer along a multi-level food chain. Mar Environ Res 59(5):473–491

    Article  CAS  Google Scholar 

  • Sem SK, Raut S, Dora TK, Mohapatra PK (2014) Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. J Hazard Mater 265:47–60

    Article  Google Scholar 

  • Silva RCA, Araújo TM (2003a) Groundwater quality in urban areas of Feira de Santana, State of Bahia. Ciência e Saúde Coletiva 9:1019–1028

    Article  Google Scholar 

  • Silva RCA, Araújo TM (2003b) Groundwater quality in urban areas of Feira de Santana, State of Bahia. Ciência e Saúde Coletiva 9(4):1019–1028

    Article  Google Scholar 

  • Singer AC, GasT CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23(2):74–77

    Article  CAS  Google Scholar 

  • Singh A et al (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Article  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253

    Article  CAS  Google Scholar 

  • Singh RK et al (2012) An overview of sustainability assessment methodologies Ecol. Indicators 9:189–212

    Article  Google Scholar 

  • Singh R, Bishnoi NR, Kirrolia A (2013) Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology. Bioresour Technol 138:222–234

    Article  CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2009) Pseudomonas aeruginosa KUCd1, a possible candidate for cadmium bioremediation. Braz J Microbiol 40:655–662

    Article  CAS  Google Scholar 

  • Siqueira GW et al (2005) Distribuição do mercúrio em sedimentos de fundo no Estuário de Santos SP/Brasil. Rem: Rev Esc Minas, Ouro Preto 58(4):309–316

    Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol, Bradford 88(6):983–991

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Article  CAS  Google Scholar 

  • Sousa W, Attayde JL, Rocha ES, Eskinazi-Sant’anna EM (2008) The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J Plankton Res 30(6):699–708

    Article  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Sumita TC et al (2007) Evaluation of interaction of zinc, aluminum, copper and manganese on Chromobacterium violaceum. Ambiente & Água—Interdisciplinary J Appl Sci 2(3):44–53

    Article  Google Scholar 

  • Tewari N, Vasudevan P, Guha BK (2005) Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23(2):185–192

  • Trasande L et al (2010) Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach. Environ Health 9(1)

  • Turner BL et al (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci 100(14):8074–8079

    Article  CAS  Google Scholar 

  • Vargas-García MC, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

    Article  Google Scholar 

  • Vasconcelos ATR et al (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A—PNAS 100(20):11660–11665

    Article  Google Scholar 

  • Velasquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour Technol 97:1411–1419

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

  • Wang QR, Dong Y, Cui Y, Liu X (2001) Instances of soil and crop heavy metal contamination in China. Soil Sediment Contam 10:497–510

    Article  Google Scholar 

  • Weber J (2004) Biogeochemical processes and role of heavy metals in the soil environment. Geoderma 122:105–107

    Article  Google Scholar 

  • Weber KA, Pollock J, Cole KA, Connor SMO, Achenbach LA, Coates JD (2006) Anaerobic nitrate-dependent iron (II) bio-oxidation by a novel. Society 72(1):686–694

    CAS  Google Scholar 

  • Yakubu MB (2007) Biological approach to oil spills remediation in the soil. Afr J Biotechnol, Nigeria 6(24):2735–2739

    Article  CAS  Google Scholar 

  • Yang QW, Lan CY, Wang HB, Zhuang P, Shu WS (2006) Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric Water Manag 84:147–152

    Article  Google Scholar 

  • Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012) Enhanced Cr (VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249

    Article  Google Scholar 

  • Zietz BP, Vergara JD, Dunkelberg H (2003) Copper concentrations in tap water and possible effects on infant’s health—results of a study in lower Saxony, Germany. Environ Res 92(2):129–138

    Article  CAS  Google Scholar 

  • Zukowska J, Biziuk M (2008) Methodological evaluation of method for dietary heavy metal intake. J Food Sci 73:21–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Souza do Amaral.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

ESM 1

Gram-negative bacterias estudied for bioremediation of metals (DOCX 14 kb)

ESM 2

Gram-positive bacterias with applicability for bioremediation of metals (DOCX 12 kb)

ESM 3

Phenotypic adaptation and bioremediation mechanisms for metals by Gram-negative bacteria.* unicelular microalga (DOCX 21 kb)

ESM 4

Phenotypic adaptation and bioremediation mechanisms for metals by Gram-positive bacteria (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Alencar, F.L.S., Navoni, J.A. & do Amaral, V.S. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environ Sci Pollut Res 24, 16545–16559 (2017). https://doi.org/10.1007/s11356-017-9129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9129-8

Keywords

Navigation