Skip to main content
Log in

Bioremoval of heavy metals by bacterial biomass

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addour, L., Belhocine, D., Boudries, N., Comeau, Y., Pauss, A., & Mameri, N. (1999). Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. Journal of Chemical Technology and Biotechnology, 74, 1089–1095.

    CAS  Google Scholar 

  • Ahmad, M. F., Haydar, S., Bhatti, A. A., & Bari, A. J. (2014). Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochemical Engineering Journal, 84, 83–90.

    CAS  Google Scholar 

  • Ainane, T., Abourriche, A., Kabbaj, M., Elkouali, M., Bennamara, A., & Charrouf, M. (2014). Removal of hexavalent chromium from aqueous solution by raw and chemically modified seaweed Bifurcaria bifurcate. Journal of Materials and Environmental Science, 5, 975–982.

    Google Scholar 

  • Aksu, Z., & Gulen, H. (2002). Binary biosorption of iron(III) and iron(III)-cyanide complex ions on Rhizopus arrhizus: modelling of synergistic interaction. Process Biochemistry, 38, 161–173.

    CAS  Google Scholar 

  • Aravindhan, R., Fathima, A., Selvamurugan, M., Rao, J. R., & Balachandran, U. N. (2012). Adsorption, desorption, and kinetic study on Cr(III) removal from aqueous solution using Bacillus subtilis biomass. Clean Technologies and Environmental Policy, 14, 727–735.

    CAS  Google Scholar 

  • Aryal, M., & Liakopoulou-Kyriakides, M. (2011). Equilibrium, kinetics and thermodynamic studies on phosphate biosorption from aqueous solutions by Fe(III)-treated Staphylococus xylosus biomass: common ion effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 387, 43–49.

    CAS  Google Scholar 

  • Aryal, M., & Liakopoulou-Kyriakides, M. (2013a). Binding mechanism and biosorption characteristics of Fe(III) by Pseudomonas sp. cells. Journal of Water Sustainability, 3, 117–131.

    CAS  Google Scholar 

  • Aryal, M., & Liakopoulou-Kyriakides, M. (2013b). Characterization of Mycobacterium sp. strain Spyr1 biomass and its biosorption behavior towards Cr(III) and Cr(VI) in single, binary and multi ion aqueous systems. Journal of Chemical Technology and Biotechnology, 89, 559–568.

    Google Scholar 

  • Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2010). Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chemical Engineering Journal, 162, 178–185.

    CAS  Google Scholar 

  • Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2011). Comparison of Cr(VI) and As(V) removal in single and binary mixtures with Fe(III)-treated Staphylococus xylosus biomass: Thermodynamic studies. Chemical Engineering Journal, 169, 100–106.

    CAS  Google Scholar 

  • Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2012). Cu(II) biosorption and competitive studies in multi-ions aqueous systems by Arthrobacter sp. Sphe3 and Bacillus sphaericus cells: equillibrium and thermodynamic studies. Water. Air and Soil Pollution, 223, 5119–5130.

    CAS  Google Scholar 

  • Bakyayita, G. K., Norrström, A. C., Nalubega, M., & Kulabako, R. N. (2014). Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents. Water Science and Technology, 69, 2230–2236.

    CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., & Vegliò, F. (2006). Ionic strength effect on copper biosorption by Sphaerotilus natans: Equilibrium study and dynamic modelling in membrane reactor. Water Research, 40, 144–152.

    CAS  Google Scholar 

  • Beveridge, T. J. (1981). Ultrastructure, chemistry and function of the bacterial wall. International Review of Cytology, 72, 229–317.

    CAS  Google Scholar 

  • Blázquez, G., Calero, M., Ronda, A., Tenorio, G., & Martín-Lara, M. A. (2014). Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. Journal of Industrial and Engineering Chemistry, 20, 2754–2760.

    Google Scholar 

  • Calfa, B. A., & Torem, M. L. (2008). On the fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Minerals Engineering, 21, 48–54.

    CAS  Google Scholar 

  • Celaya, R. J., Noriega, J. A., Yeomans, J. H., Ortega, L. J., & Ruiz-Manriquez, A. (2000). Biosorption of Zn by Thiobacillus ferrooxidans. Bioprocess Engineering, 22, 539–542.

    CAS  Google Scholar 

  • Chakravarty, R., & Banerjee, P. C. (2012). Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresource Technology, 108, 176–183.

    CAS  Google Scholar 

  • Chang, J. S., & Hong, J. (1994). Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU 21 (Rip 64). Biotechnology and Bioengineering, 44, 999–1006.

    CAS  Google Scholar 

  • Chao, H.-P., Chang, C.-C., & Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, 20, 3408–3414.

    CAS  Google Scholar 

  • Chathuranga, P. K. D., Dissanayake, D. M. R. E. A., Priyantha, N., Iqbal, S. S., & Mohamed Iqbal, M. C. (2014). Biosorption and desorption of lead(II) by Hydrilla verticillata. Bioremediation Journal, 18, 192–203.

    CAS  Google Scholar 

  • Chen, X. C., Wang, Y. P., Lin, Q., Shi, J. Y., Wu, W. X., & Chen, Y. X. (2005). Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids and Surfaces. B, Biointerfaces, 46, 101–107.

    CAS  Google Scholar 

  • Chen, B.-Y., Chen, C.-Y., Guo, W.-Q., Chang, H.-W., Chen, W.-M., Lee, D.-J., Huang, C.-C., Ren, N.-Q., & Chang, J.-S. (2014). Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresource Technology, 160, 175–181.

    CAS  Google Scholar 

  • Choi, S. B., & Yun, Y. S. (2004). Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnology Letters, 26, 331–336.

    CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., & Gorecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.

    CAS  Google Scholar 

  • Chubar, N., Behrends, T., & Cappellen, P. V. (2008). Biosorption of metals (Cu2+, Zn2+) and anions (F, H2PO4 ) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. Colloids and Surfaces. B, Biointerfaces, 65, 126–133.

    CAS  Google Scholar 

  • Colak, F., Atar, N., Yazıcıoglu, D., & Olgun, A. (2011). Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, 422–428.

    CAS  Google Scholar 

  • Colak, F., Olgun, A., Atar, N., & Yazıcıoglu, D. (2013). Heavy metal resistances and biosorptive behaviors of Paenibacillus polymyxa: batch and column studies. Journal of Industrial and Engineering Chemistry, 19, 863–869.

    CAS  Google Scholar 

  • Din, M. I., Hussain, Z., Mirza, M. L., Shah, A. T., & Athar, M. M. (2014). Adsorption optimization of Lead (II) using Saccharum bengalense as a non-conventional low cost biosorbent: Isotherm and thermodynamics modeling. International Journal of Phytoremediation, 16, 889–908.

    CAS  Google Scholar 

  • Dogru, M., Gul-Guven, R., & Erdogan, S. (2007). The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Journal of Hazardous Materials, 149, 166–173.

    CAS  Google Scholar 

  • El Hassouni, E., Abdellaoui, D., El Hani, S., & Bengueddour, R. (2014). Biosorption of cadmium(II) and copper (II) from aqueous solution using red alga (Osmundea pinnatifida) biomass. Journal of Materials and Environmental Science, 5, 967–974.

    Google Scholar 

  • Esposito, A., Pagnanelli, F., Lodi, A., Solisio, C., & Veglio, F. (2001). Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy, 60, 129–141.

    CAS  Google Scholar 

  • Falla, J. A., Petit, E., & Block, J. C. (1995). Extractibility of cadmium, copper and zinc from contaminated biomass using NTA (nitrilotriacetic acid). Environmental Technology, 16, 685–691.

    CAS  Google Scholar 

  • Fan, J., Onal Okyay, T., & Frigi Rodrigues, D. (2014). The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. Journal of Hazardous Materials, 279, 236–243.

    CAS  Google Scholar 

  • Fang, L., Yang, S., Huang, Q., Xue, A., & Cai, P. (2014). Biosorption mechanisms of Cu(II) by extracellular polymeric substances from Bacillus subtilis. Chemical Geology, 386, 143–151.

    CAS  Google Scholar 

  • Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14.

    CAS  Google Scholar 

  • Gabr, R. M., Hassan, S. H. A., & Shoreit, A. A. M. (2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. International Biodeterioration & Biodegradation, 62, 195–203.

    CAS  Google Scholar 

  • Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2, 239–259.

    CAS  Google Scholar 

  • Gialamouidis, D., Mitrakas, M., & Liakopoulou-Kyriakides, M. (2009). Biosorption of nickel ions from aqueous solutions by Pseudomonas sp. and Staphylococcus xylosus cells. Desalination, 248, 907–914.

    CAS  Google Scholar 

  • Gialamouidis, D., Mitrakas, M., & Liakopoulou-Kyriakides, M. (2010). Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. Journal of Hazardous Materials, 182, 672–680.

    CAS  Google Scholar 

  • Giri, A. K., Patel, R. K., & Mahapatra, S. S. (2011). Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chemical Engineering Journal, 178, 15–25.

    CAS  Google Scholar 

  • Green-Ruiz, C., Rodriguez-Tirado, V., Gomez-Gil, B. (2008). Cadmium and zing removal from aqeous solutions by Bacillus jeotgali:pH, salinity and temperature effects. Bioresource Technology, 99, 3864–3870.

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.

    CAS  Google Scholar 

  • Green-Ruiz, C. (2006). Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresource Technology, 97, 1907–1911.

    CAS  Google Scholar 

  • Guo, J., Zheng, X.-D., Chen, Q.-B., Zhang, L., & Xu, X.-P. (2012). Biosorption of Cd(II) from aqueous solution by Pseudomonas plecoglossicida: kinetics and mechanism. Current Microbiology, 65, 350–355.

    CAS  Google Scholar 

  • Gupta, V. K., Bhushan, R., Nayak, A., Singh, P., & Bhushan, B. (2014). Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremediation Journal, 18, 179–191.

    CAS  Google Scholar 

  • Halttunen, T., Finell, M., & Salminen, S. (2007). Arsenic removal by native and chemically modified lactic acid bacteria. International Journal of Food Microbiology, 120, 173–178.

    CAS  Google Scholar 

  • Hasan, H. A., Abdullah, S. R. S., Kofli, N. T., & Kamarudin, S. K. (2012). Isotherm equilibria of Mn+2 biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. Journal of Environmental Management, 111, 34–43.

    Google Scholar 

  • Hassan, S. H., Kim, S. J., Jung, A.-Y., Joo, J. H., Oh, S. E., & Yang, J. E. (2009). Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri. The Journal of General and Applied Microbiology, 55, 27–34.

    CAS  Google Scholar 

  • Huang, W., & Liu, Z.-M. (2013). Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids and Surfaces. B, Biointerfaces, 105, 113–119.

    CAS  Google Scholar 

  • Huang, F., Dang, Z., Guo, C.-L., Lu, G.-N., Guc, R. R., Liu, H.-J., & Zhang, H. (2013). Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces. B, Biointerfaces, 107, 11–18.

    CAS  Google Scholar 

  • Ilamathi, R., Nirmala, G. S., & Muruganandam, L. (2014). Heavy metals biosorption in liquid solid fluidized bed by immobilized consortia in alginate beads. International Journal of ChemTech Research, 6, 652–662.

    CAS  Google Scholar 

  • Incharoensakdi, A., & Kitjaharn, P. (2002). Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophytica. Current Microbiology, 45, 261–264.

    CAS  Google Scholar 

  • Jaafarzadeh, N., Teymouri, P., Babaei, A. A., Alavi, N., Ahmadi, M. (2014). Biosorption of cadmium (II) from aqeous solution by Nacl-treated Ceratophylum demersum. Environmental engineering Journal, 13, 763–773.

  • Javanbakht, V., Alavi, S. A., & Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69, 1775–1787.

    CAS  Google Scholar 

  • Jian-Hua, P., Rui-Xia, L., & Hong-Xiao, T. (2007). Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. Journal of Environmental Sciences, 19, 403–408.

    Google Scholar 

  • Joo, J.-H., Hassan, S. H. A., & Oh, S.-E. (2010). Comparative study of biosorption of Zn+2 by Pseudomonas aeruginosa and Bacillus cereus. International Biodeterioration & Biodegradation, 64, 734–741.

    CAS  Google Scholar 

  • Kang, S., Lee, J., & Kima, K. (2007). Biosorption of Cr(III) and Cr(VI) onto the cell surface of pseudomonas aeruginosa. Biochemical Engineering Journal, 36, 54–58.

    Google Scholar 

  • Kao, W.-C., Huang, C.-C., & Chang, J.-S. (2008). Biosorption of nickel, chromium and zinc by MerP expressing recombinant Escherichia coli. Journal of Hazardous Materials, 158, 100–106.

    CAS  Google Scholar 

  • Koduru, J. R., Chang, Y.-Y., & Kim, I.-S. (2014). Low-cost schizandra chinesis fruit peel for Co(II) removal from aqueous environment: adsorption properties and mechanism. Asian Journal of Chemistry, 26, 289–297.

    CAS  Google Scholar 

  • Kordialik-Bogacka, E., & Diowksz, A. (2014). Metal uptake capacity of modified Saccharomyces pastorianus biomass from different types of solution. Environmental Science and Pollution Research, 21, 2223–2229.

    CAS  Google Scholar 

  • Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., & Wei, G. (2010). Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72–14. Journal of Hazardous Materials, 179, 151–159.

    CAS  Google Scholar 

  • Liang, S., Guo, X., Lautner, S., & Saake, B. (2014a). Removal of hexavalent chromium by different modified spruce bark adsorbents. Journal of Wood Chemistry and Technology, 34, 273–290.

    CAS  Google Scholar 

  • Liang, X., He, C.-Q., Ni, G., Tang, G. E., Chen, X.-P., & Lei, Y.-R. (2014b). Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere, 24, 322–329.

    CAS  Google Scholar 

  • Lin, C. C., & Lai, Y. T. (2006). Adsorption and recovery of lead (II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. Journal of Hazardous Materials, 137, 99–105.

    CAS  Google Scholar 

  • Liu, H.-L., Chen, B.-Y., Lan, Y.-W., & Cheng, Y. C. (2004). Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chemical Engineering Journal, 97, 195–201.

    CAS  Google Scholar 

  • Long, J., Luo, D., & Chen, Y. (2014). Identification and biosorption characterization of a thallium-resistant strain. Chinese Journal of Applied and Environmental Biology., 20, 426–430.

    CAS  Google Scholar 

  • Loukidou, M. X., Karapantsios, T. D., Zouboulis, A., & Matis, K. A. (2004a). Diffusion kinetic study of chromium (VI) biosorption by Aeromonas caviae. Industrial and Engineering Chemistry Research, 43, 1748–1755.

    CAS  Google Scholar 

  • Loukidou, M. X., Karapantsios, T. D., Zouboulis, A. I., & Matis, K. A. (2004b). Diffusion kinetic study of cadmium(II) biosorption by Aeromonas caviae. Journal of Chemical Technology & Biotechnology, 79, 711–719.

    CAS  Google Scholar 

  • Lu, W.-B., Shi, J.-J., Wang, C.-H., & Chang, J.-S. (2006). Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of Hazardous Materials, 134, 80–86.

    CAS  Google Scholar 

  • Mameri, N., Boudries, N., Addour, L., Belhocine, D., Lounici, H., Grib, H., & Pauss, A. (1999). Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Research, 33, 1347–1354.

    CAS  Google Scholar 

  • Mao, J., Won, S. W., & Yun, Y.-S. (2013). Development of poly(acrylic acid)-modified bacterial biomass as a high-performance biosorbent for removal of Cd(II) from aqueous solution. Industrial and. Engineering Chemistry Research, 52, 6446–6452.

    CAS  Google Scholar 

  • Masood, F., & Malik, A. (2011). Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1. Journal of Environmental Science and Health, Part A, 46, 1667–1674.

    CAS  Google Scholar 

  • Masoudzadeh, N., Zakeri, F., Lotfabad, T. B., Sharafi, H., Masoomi, F., Zahiri, H. S., Ahmadian, G., & Noghabi, K. A. (2011). Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. Journal of Hazardous Materials, 197, 190–198.

    CAS  Google Scholar 

  • Mattuschka, B., & Straube, G. (1993). Biosorption of metals by a waste biomass. Journal of Chemical Technology & Biotechnology, 58, 57–63.

    CAS  Google Scholar 

  • Maurya, N. S., & Mittal, A. K. (2014). Kinetic model for the immobilised biosorbents: uptake of cationic dyes. Chemical Engineering Journal, 254, 571–578.

    CAS  Google Scholar 

  • Mejias Carpio, I. E., Machado-Santelli, G., Kazumi Sakata, S., Ferreira Filho, S. S., & Rodrigues, D. F. (2014). Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor. Water Research, 62, 156–166.

    CAS  Google Scholar 

  • Moon, E. M., & Peacock, C. L. (2011). Adsorption of Cu(II) to Bacillus subtilis: a pH-dependent EXAFS and thermodynamic modelling study. Geochimica et Cosmochimica Acta, 75, 6705–6719.

    CAS  Google Scholar 

  • Morillo, J. A., Garcia-Ribera, R., Quesada, T., Aguilera, M., Ramos-Cormenzana, A., & Monteoliva-Sanchez, M. (2008). Biosorption of heavy metals by the EPS produced by Paenibacillus jamilae. World Journal of Microbiology and Biotechnology, 24, 2699–2704.

    Google Scholar 

  • Morsy, F. M. (2011). Hydrogen production from acid hydrolyzed molasses by the hydrogen overproducing Escherichia coli strain HD701 and subsequent use of the waste bacterial biomass for biosorption of Cd(II) and Zn(II). International Journal of Hydrogen Energy, 36, 14381–14390.

    CAS  Google Scholar 

  • Nakajima, A., Yasuda, M., Yokoyama, H., Ohya-Nishiguchi, H., & Kamada, H. (2001). Copper biosorption by chemically modified Micrococcus luteus cells. World Journal of Microbiology and Biotechnology, 17, 342–347.

    Google Scholar 

  • Ni, H., Xiong, Z., Ye, T., Zhang, Z., Ma, X., & Li, L. (2012). Biosorption of copper(II) from aqueous solutions using volcanic rock matrix-immobilized Pseudomonas putida cells with surface-displayed cyanobacterial metallothioneins. Chemical Engineering Journal, 204–206, 264–271.

    Google Scholar 

  • Oliveira, R. C., Hammer, P., Guibal, E., Taulemesse, J.-M., & Garcia, O. (2014). Characterization of metal-biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chemical Engineering Journal, 239, 381–391.

    CAS  Google Scholar 

  • Oves, M., Khan, M. S., & Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20, 121–129.

    CAS  Google Scholar 

  • Oyetibo, G. O., Ilori, M. O., Obayori, O. S., & Amund, O. O. (2014). Equilibrium studies of cadmium biosorption -non-viable bacterial strains isolated from polluted sites. International Biodeterioration & Biodegradation, 91, 37–44.

    CAS  Google Scholar 

  • Ozdemir, G., & Baysal, S. H. (2004). Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Applied Microbiology and Biotechnology, 64, 599–603.

    CAS  Google Scholar 

  • Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobacterium anthropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90, 71–74.

    CAS  Google Scholar 

  • Özdemir, S., Kılınç, E., Poli, A., & Nicolaus, B. (2013). Biosorption of heavy metals (Cd2+, Cu2+, Co2+, and Mn2+) by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus: equilibrium and kinetic studies. Bioremediation Journal, 17, 86–96.

    Google Scholar 

  • Ozturk, A., Artan, T., & Ayar, A. (2004). Biosorption of nickel (II) and copper (II) ions from aqueous solution by Streptomyces coelicolor A3 (2). Colloids and Surfaces. B, Biointerfaces, 34, 105–111.

    CAS  Google Scholar 

  • Pagnanelli, F., Petrangeli, P. M., Trifoni, M., Toro, L., & Veglio, F. (2000). Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environmental Science and Technology, 34, 2773–2778.

    CAS  Google Scholar 

  • Pagnanelli, F., Esposito, A., & Veglio, F. (2002). Multi-metallic modelling for biosorption of binary systems. Water Research, 36, 4095–4105.

    CAS  Google Scholar 

  • Paul, S., Bera, D., Chattopadhyay, P., & Ray, L. (2006). Biosorption of Pb(II) by Bacillus cereus M1 16 immobilized in calcium alginate gel. Journal of Hazardous Substance Research, 5, 1–13.

    Google Scholar 

  • Paul, M. L., Samuel, J., Chandrasekaran, N., & Mukherjee, A. (2012). Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chemical Engineering Journal, 187, 104–113.

    CAS  Google Scholar 

  • Péter, K. A., Csudai, C., Felinger, A., Kilár, F., & Pernyeszi, T. (2014). Potential of various biosorbents for Zn(II) removal. Water, Air, & Soil Pollution, 225, 2089–2098.

    Google Scholar 

  • Prasad, K. S., Srivastava, P., Subramanian, V., & Paul, J. (2011). Biosorption of As(III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies. Separation Science and Technology, 46, 2517–2525.

    CAS  Google Scholar 

  • Prasad, K. S., Ramanathan, A. L., Paul, J., Subramanian, V., & Prasad, R. (2013). Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environmental Technology, 34, 2701–2708.

    CAS  Google Scholar 

  • Prithviraja, D., Deboleena, K., Neelu, N., Noor, N., Aminur, R., Balasaheb, K., & Abu, M. (2014). Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine. Ecotoxicology and Environmental Safety, 107, 260–268.

    Google Scholar 

  • Puranik, P. R., & Paknikar, K. M. (1997). Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. Journal of Biotechnology, 55, 113–124.

    CAS  Google Scholar 

  • Puranik, P. R., & Paknikar, K. M. (1999). Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnology Progress, 15, 228–237.

    CAS  Google Scholar 

  • Raja Rao, P., Pallavi, D., & Venkateshwarlu, T. (2014). Removal of heavy metals in fly ash by using Saccharomyces cerevisiae. International Journal of Applied Engineering Research, 9, 107–114.

    Google Scholar 

  • Rangabhashiyam, S., Anu, N., & Selvaraju, N. (2013). Biosorption of heavy metals using low cost agricultural by products. Research Journal of Chemistry and Environment, 17, 112–123.

    CAS  Google Scholar 

  • Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D., & Harvey, N. W. (2006). Production, composition and Pb 2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa. Water Research, 40, 3759–3766.

    CAS  Google Scholar 

  • Rawat, A. P., Giri, K., & Rai, J. P. N. (2014). Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcasin single and multi-metal system. Environmental Monitoring and Assessment, 186, 1679–1687.

    CAS  Google Scholar 

  • Resmi, G., Thampi, S. G., Chandrakaran, S., & Elias, P. (2010). Biosorption of lead by immobilized biomass of Brevundimonas vesicularis: batch and column studies. Separation Science & Technology, 45, 2356–2362.

    CAS  Google Scholar 

  • Rodríguez, C. E., Quesada, A., & Rodríguez, E. (2006). Nickel biosorption by Acinetobacter baumanni and Pseudomonas aeruginosa isolated from industrial wastewater. Brazilian Journal of Microbiology, 37, 465–467.

    Google Scholar 

  • Rodriguez-Tirado, V., Green-Ruiz, C., & Gomez-Gil, B. (2012). Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: kinetic and equilibrium studies. Chemical Engineering Journal, 181–182, 352–359.

    Google Scholar 

  • Sag, Y., & Kutsal, T. (1995). Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and comparison of biosorption characteristics. Chemical Engineering Journal, 60, 181–188.

    CAS  Google Scholar 

  • Şahin, Y., & Öztürk, A. (2005). Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, 1895–1901.

    Google Scholar 

  • Sahmoune, M. N., Louhab, K., Boukhiar, A., Addad, J., & Barr, S. (2009). Kinetic and equilibrium models for the biosorption of Cr(III) on Streptomyces rimosus. Toxicological & Environmental Chemistry, 91, 1291–1303.

    CAS  Google Scholar 

  • Salehi, P., Tajabadi, F. M., Younesi, H., & Dashti, Y. (2014). Optimization of lead and nickel biosorption by Cystoseira trinodis (brown algae) using response surface methodology. Clean-Soil, Air, Water, 42, 243–250.

    CAS  Google Scholar 

  • Sar, P., Kazy, S. K., Asthana, R. K., & Singh, S. P. (1999). Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. International Biodeterioration and Biodegradation, 44, 101–110.

    CAS  Google Scholar 

  • Sari, A., & Tuzen, M. (2009). Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hipidus) biomass: equilibrium and kinetics studies. Journal of Hazardous Materials, 164, 1372–1378.

    CAS  Google Scholar 

  • Scott, J. A., & Palmer, S. J. (1988). Cadmium biosorption by bacterial exopolysaccharide. Biotechnology Letters, 10, 21–24.

    CAS  Google Scholar 

  • Seki, H., Suzuki, A., & Mitsueda, S. I. (1998). Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16. Journal of Colloid and Interface Science, 197, 185–190.

    CAS  Google Scholar 

  • Selatnia, A., Bakhti, M. Z., Madani, A., Kertous, L., & Mansouri, Y. (2004a). Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy, 75, 11–24.

    CAS  Google Scholar 

  • Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., & Chergui, A. (2004b). Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochemistry, 39, 1643–1651.

    CAS  Google Scholar 

  • Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A., & Kerchich, Y. (2004c). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19, 127–135.

    CAS  Google Scholar 

  • Selatnia, A., Madani, A., Bakhti, M. Z., Kertous, L., Mansouri, Y., & Yous, R. (2004d). Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Minerals Engineering, 17, 903–911.

    CAS  Google Scholar 

  • Serencam, H., Ozdes, D., Duran, C., & Tufekci, M. (2013). Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions. Environmental Monitoring and Assessment, 185, 6003–6011.

    CAS  Google Scholar 

  • Sheu, C. W., & Freese, E. (1973). Lipopolysaccharide layer protection of Gram-negative bacteria against inhibition by long-chain fatty acids. Journal of Bacteriology, 115, 869–875.

    CAS  Google Scholar 

  • Silva, B., Figueiredo, H., Quintelas, C., Neves, I. C., & Tavares, T. (2012). Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. International Biodeterioration & Biodegradation, 74, 116–123.

    CAS  Google Scholar 

  • Singh, A. L., & Sarma, P. N. (2010). Removal of arsenic(III) from waste water using Lactobacillus acidophilus. Bioremediation Journal, 14, 92–97.

    CAS  Google Scholar 

  • Sinha, A., Pant, K. K., & Khare, S. K. (2012). Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. International Biodeterioration & Biodegradation, 71, 1–8.

    CAS  Google Scholar 

  • Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.

    CAS  Google Scholar 

  • Tabaraki, R., & Nateghi, A. (2014). Multimetal biosorption modeling of Zn 2+, Cu 2+ and Ni 2+ by Sargassum ilicifolium. Ecological Engineering, 71, 197–205.

    Google Scholar 

  • Tangaromsuk, J., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2002). Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresource Technology, 85, 103–105.

    CAS  Google Scholar 

  • Tapia, J. M., Muñoz, J. A., González, F., Blázquez, M. L., & Ballester, A. (2011). Mechanism of adsorption of ferric iron by extracellular polymeric substances (EPS) from a bacterium Acidiphilium sp. Water Science and Technology, 64, 1716–1722.

    CAS  Google Scholar 

  • Tunali, S. C., Abuk, A., & Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 115, 203–211.

    CAS  Google Scholar 

  • Tuzen, M., Saygi, K. O., Usta, C., & Soylak, M. (2008). Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresource Technology, 99, 1563–1570.

    CAS  Google Scholar 

  • Uslu, G., & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. Journal of Hazardous Materials, 135, 87–93.

    CAS  Google Scholar 

  • Uzel, A., & Ozdemir, G. (2009). Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresource Technology, 100, 542–548.

    CAS  Google Scholar 

  • Veglio, F., Beolchini, F., & Gasbarro, A. (1997). Biosorption of toxic metals: An equilibrium study using free cells of Arthrobacter sp. Process Biochemistry, 2, 99–105.

    Google Scholar 

  • Veneu, D. M., Torem, M. L., & Pino, G. A. H. (2013). Fundamental aspects of copper and zinc removal from aqueous solutions using a Streptomyces lunalinharesii strain. Minerals Engineering, 48, 44–50.

    CAS  Google Scholar 

  • Vijayaraghavan, K., & Joshi, U. M. (2014). Application of Ulva sp. biomass for single and binary biosorption of chromium(III) and manganese(II) ions: equilibrium modeling. Environmental Progress and Sustainable Energy, 33, 147–153.

    CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.

    CAS  Google Scholar 

  • Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216.

    CAS  Google Scholar 

  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.

    Google Scholar 

  • Wang, H. C., Wong, P. K., Lo, W. H., & Yu, P. H. F. (2003). Ni+2 removal and recovery from electroplating effluent by Pseudomonas putida 5-x cell biomass. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 38, 521–531.

    CAS  Google Scholar 

  • Wang, L., Li, F. T., & Zhou, Q. (2006). Contribution of cell-surface components to Cu 2+ adsorption by Pseudomonas putida 5-x. Applied Biochemistry and Biotechnology, 128, 33–46.

    CAS  Google Scholar 

  • Wierzba, S., & Latala, A. (2010). Biosorption lead(II) and nikel(II) from an aqueous solution by bacterial biomass. Polish Journal of Chemical Technology, 12, 72–78.

    Google Scholar 

  • Yalçin, S. (2014). The mechanism of heavy metal biosorption on green marine macroalga Enteromorpha linza. Clean-Soil, Air, Water., 42, 251–259.

    Google Scholar 

  • Yan, G., & Viraraghavan, T. (2000). Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA, 26, 119–124.

    CAS  Google Scholar 

  • Yan, L., Yin, H., Zhang, S., Leng, F., Nan, W., & Li, H. (2010). Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. Journal of Hazardous Materials, 178, 209–217.

    CAS  Google Scholar 

  • Ye, J., Yin, H., Xie, D., Peng, H., Huang, J., & Liang, W. (2013). Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a]pyrene. Chemical Engineering Journal, 219, 1–9.

    CAS  Google Scholar 

  • Yin, Y., Hu, Y., & Xiong, F. (2013). Biosorption properties of Cd(II), Pb(II), and Cu(II) of extracellular polymeric substances (EPS) extracted from Aspergillus fumigatus and determined by polarographic method. Environmental Monitoring and Assessment, 185, 6713–6718.

    CAS  Google Scholar 

  • Zhou, M., Liu, Y., Zeng, G., Li, X., Xu, W., & Fan, T. (2007). Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World Journal of Microbiology and Biotechnology, 23, 43–48.

    CAS  Google Scholar 

  • Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., & Liakopoulou-Kyriakides, M. (2007). Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource Technology, 98, 2859–2865.

    CAS  Google Scholar 

  • Ziagova, M., Koukkou, A. I., & Liakopoulou-Kyriakides, M. (2014). Optimization of cultural conditions of Arthrobacter sp. Sphe3 for growth-associated chromate(VI) reduction in free and immobilized cell systems. Chemosphere, 95, 535–540.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Liakopoulou-Kyriakides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, M., Liakopoulou-Kyriakides, M. Bioremoval of heavy metals by bacterial biomass. Environ Monit Assess 187, 4173 (2015). https://doi.org/10.1007/s10661-014-4173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4173-z

Keywords

Navigation