Skip to main content

Pseudomonadaceae: From Biocontrol to Plant Growth Promotion

  • Chapter
  • First Online:
Rhizotrophs: Plant Growth Promotion to Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

Pseudomonas spp. are aerobic, Gram-negative bacteria that are ubiquitously found in soils. They are particularly well suited for plant root colonization and many strains display plant growth-promoting and/or biocontrol activity against various plant pathogens. Their ability to metabolize a wide array of nutrients, their rapidity and ease of growth and their natural abundance in variety of plant-soil environments make them promising organisms for the development of commercial biocontrol and biofertilizer products. In this chapter, we will discuss their diversity, genetics and ecology, while putting special emphasis on the mechanisms involved in biocontrol and/or plant growth promotion. Recent progress in genomics and transcriptomics, as well as future research on these organisms will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesina MF, Grosch R, Lembke A et al (2009) In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response. FEMS Microbiol Ecol 69:62–74

    Article  CAS  PubMed  Google Scholar 

  • Afsharmanesh H, Ahmadzadeh M, Javan-Nikkhah M et al (2010) Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. J Plant Pathol 92:187–194

    CAS  Google Scholar 

  • Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculating with N-fixing and P-solubilizing bacteria. Agron Sustain Dev 30:487–495

    Article  CAS  Google Scholar 

  • Aksoy H-M, Kutluk Yilmaz N-D (2008) Antagonistic effects of natural Pseudomonas putida biotypes on Polymyxa betae Keskin, the vector of beet necrotic yellow vein virus in sugar beet. J Plant Dis Prot 115:241–246

    Article  Google Scholar 

  • Ali S, Trevor CC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ (1983) Isolation from root and shoot surfaces of agglutinins that show specificity for saprophytic pseudomonads. Can J Bot 61:3438–3443

    Article  CAS  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Arkipova TN, Prinsen EA, Veselov SU et al (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arseneault T, Goyer C, Filion M (2017) Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology 103:995–1000

    Article  CAS  Google Scholar 

  • Arseneault T, Pieterse CMJ, Gerin-Ouellet M et al (2014) Long-term induction of defense gene expression in potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology 104:926–932

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Frankerberger WT Jr (1993) Microbial production of plant growth regulators. In: Metting FB Jr, Dekker M (eds) Soil microbial ecology. Applications in agricultural and environmental management. Marcel Dekker, New York, pp 307–348

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620

    Article  Google Scholar 

  • Babana A, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    Article  CAS  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bakker PAHM, Doornbos RF, Zamioudis C et al (2013) Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J 29:136–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbhaiya H, Rao K (1985) Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 27:233–235

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Beyeler M, Keel C, Michaux P et al (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce Pharis DRP (1989) Identification of gibberellins A1, A3 and Iso-A3 in cultures of Azosporillum lipoferum. Plant Physiol 10:45–47

    Article  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  • Bradley GG, Punja ZK (2010) Composts containing fluorescent pseudomonads suppress Fusarium root and stem rot development on greenhouse cucumber. Can J Microbiol 56:896–905

    Article  CAS  PubMed  Google Scholar 

  • Bruckner B, Blecschmidt D (1991) The gibberellin fermentation. Crit Rev Biotechnol 11:163–192

    Article  Google Scholar 

  • Buell C, Anderson A (1992) Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomonas putida, a beneficial fluorescent pseudomonad. Mol Plant-Microbe Interact 5:154–162

    Article  CAS  PubMed  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces-graminis var tritici by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959

    Article  Google Scholar 

  • Caron M, Patten CL, Ghosh S et al (1996) Effects of the plant growth promoting rhizobacterium Pseudomonas putida GR 122 on the physiology of canola roots. Plant Growth Regul Soc Am Q 7:18–20

    Google Scholar 

  • Carrillo-Castañeda G, Juárez Muños J, Peralta-Videa JR et al (2002) Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv Environ Res 6:391–399

    Article  Google Scholar 

  • Carroll H, Moenne-Loccoz Y, Dowling DN et al (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4 diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets. Appl Environ Microbiol 61:3002–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cézard C, Farvacques N, Sonnet P (2015) Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Curr Med Chem 22:165–186

    Article  PubMed  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphate inorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Chen H, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ Exp Bot 48:119–128

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB et al (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chernyad’ev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress. Appl Biochem Microbiol 45:351–362

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TF, De Priester W, Van Der Bij AJ et al (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain VCS365, using scanning electron microscopy. Mol Plant-Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Mulders IHM et al (2000) Root colonization by phenazine-1-carboxamide producing bacterium Pseudomonas chlororaphis PCL 1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Choi O, Kim J, Kim J-G et al (2008) Pyrrolquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Wray V et al (2009) Insights of the fluorescent pseudomonads in plant growth regulation. Curr Sci 97:170–179

    Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463–472

    CAS  PubMed  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Chapter  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G et al (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiol, Rockville, pp 850–929

    Google Scholar 

  • D’aes J, Hua GKH, De Maeyer K et al (2011) Biological control of Rhizoctonia root rot on bean by phenazine and cyclic lipopeptide producing Pseudomonas CMR12a. Phytopathology 101:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ (1995) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of sub-inhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453

    Article  CAS  PubMed  Google Scholar 

  • De Mot R, Proost P, Van Damme J et al (1992) Homology of the root adhesion of Pseudomonas fluorescens OE 28.3 with porin F of P.neruginosa and P. syringae. Mol Gen Genet 231:489–493

    Article  PubMed  Google Scholar 

  • De Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • De Weert S, Vermeiren H, Mulder IH et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Weger LA, Van Der Vlugt CI, Wijfjes AH et al (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    Article  PubMed  PubMed Central  Google Scholar 

  • De Werra P, Péchy-Tarr M, Keel C et al (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devi SI, Talukdar N, Sharma KC (2011) Screening of rhizobacteria for their plant growth promotion ability and antagonism against damping off and root rot diseases of broad bean (Vicia faba L.) Indian J Microbiol 51:14–21

    Article  CAS  Google Scholar 

  • Dey KB (1988) Phosphate solubilizing organisms in improving fertility status. In: Sen SP, Palit P (eds) Biofertilizers: potentialities and problems. Plant Physiology Forum, Naya Prokash, Calcutta, pp 237–248

    Google Scholar 

  • Dubeikovsky AN, Mordukhova EA, Kochetkov VV et al (1993) Growth promotion of black currant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281

    Article  Google Scholar 

  • Dubuis C, Keel C, Haas D (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119:311–328

    Article  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duine JA, Frank JJ, van Zeeland JK (1979) Glucose dehydrogenase from Acinetobacter calcoaceticus: a “quinoprotein”. FEBS Lett 108:443–446

    Article  CAS  PubMed  Google Scholar 

  • Duine JA, van der Meer RA, Groen BW (1990) The cofactor pyrrolquinoline quinone. Annu Rev Nutr 10:297–318

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semiarid region of Uzbekistan. Sci World J 5:501–509

    Article  CAS  Google Scholar 

  • Fankem H, Tchakounte GVT, Nkot LN et al (2015) Common bean (Phaseolus vulgaris L.) and soya bean (Glycine max) growth and nodulation as influenced by rock phosphate solubilizing bacteria under pot grown conditions. Int J Agric Pol Res 5:242–250

    Google Scholar 

  • Fernando WD, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui Z (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Chapter  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Frölich A, Buddrus-Schiemann K, Durner J et al (2012) Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. J Plant Interact 7:1–9

    Article  Google Scholar 

  • Ghirardi S, Dessaint F, Mazurier S et al (2012) Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microb Ecol 64:725–737

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacteria enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G et al (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czarny J et al (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goldstein A, Lester T, Brown J (2003) Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as possible role for the highly conserved region of quinoprotein dehydrogenases. Biochem Biophys Acta 1647:266–271

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK et al (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Govindappa M, Ravishankar RV, Lokesh S (2011) Screening of Pseudomonas fluorescens isolates for biological control of Macrophomina phaseolina root-rot of safflower. Afr J Agric Res 6:6256–6266

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K et al (2008) Isolation and characterization of ACC deaminase gene from two plant growth promoting rhizobacteria. Curr Microbiol 57:312–317

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  PubMed  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD et al (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14:53–63

    Article  CAS  PubMed  Google Scholar 

  • Guiñazú LB, Andrés JA, Del Papa MF et al (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Article  Google Scholar 

  • Guiñazú LB, Andrés JA, Rovera M et al (2013) Evaluation of rhizobacterial isolates from Argentina, Uruguay and Chile for plant growth promoting characteristics and antagonistic activity towards Rhizoctonia sp. and Macrophomina sp. in vitro. Eur J Soil Biol 54:69–77

    Article  Google Scholar 

  • Gusain YS, Kamal R, Mehta CM et al (2015) Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Hymalaya aimed to improve the growth of rice. J Environ Biol 36:310–307

    Google Scholar 

  • Guyer A, De Vrieze M, Bönisch D et al (2015) The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field. Front Microbiol. doi:10.3389/fmicb.2015.01309

    PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G et al (1999) Involvement of a phosphate-starvation inducible glucose dehydrogenase in soil phosphate solubilisation by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C, Laville J et al (1991) Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Springer, Dordrecht, pp 450–456

    Chapter  Google Scholar 

  • Hammami I, Hsouna AB, Hamdi N et al (2013) Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. C R Biol 336:557–564

    Article  PubMed  Google Scholar 

  • Hatayama K, Wawai S, Shoun H et al (2005) Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 55:1539–1544

    Article  CAS  PubMed  Google Scholar 

  • Henry E, Yadeta KA, Coaker G (2013) Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytol 199:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M et al (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  CAS  Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL et al (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    Article  CAS  PubMed  Google Scholar 

  • Hua GKH, Höfte M (2015) The involvement of phenazines and cyclic lipopeptide sesselin in biocontrol of Rhizoctonia root rot on bean (Phaseolus vulgaris) by Pseudomonas sp. CMR12a is influenced by substrate composition. Plant Soil 388:243–253

    Article  CAS  Google Scholar 

  • James DW Jr, Gutterson NI (1986) Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol 52:1183–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Z, Wu N, Hale L et al (2013) Characterisation of Pseudomonas chlororaphis subsp. aurantiaca strain Pa40 with the ability to control wheat sharp eyespot disease. Ann Appl Biol 163:444–453

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jošić D, Pivić R, Miladinović M et al (2012a) Antifungal activity and genetic diversity of selected Pseudomonas spp. from maize rhizosphere in Vojvodina. Genetika 44:377–388

    Article  Google Scholar 

  • Jošić D, Protolipac K, Starović M et al (2012b) Phenazine producing Pseudomonas isolates decrease Alternaria tenuissima growth, pathogenicity and disease incidence on cardoon. Arch Biol Sci 64:1495–1503

    Article  Google Scholar 

  • Jun S-R, Wassenaar TM, Nookaew I et al (2016) Diversity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis. Appl Environ Microbiol 82:375–383

    Article  CAS  Google Scholar 

  • Kahlon SS, Malhotra S (1986) Production of gibberellic acid by fungal mycelium immobilized in sodium alginate. Enzym Microb Technol 8:613–616

    Article  CAS  Google Scholar 

  • Kang S-M, Radhakrishnan R, Khan AL et al (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoğlu ŞF, İnan S (2006) Auxin, gibberellin, cytokinin and abcissic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Karakoç S, Aksöz N (2006) Some optimal cultural parameters for gibberellic acid biosynthesis by Pseudomonas sp. Turk J Biol 30:81–85

    Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore-mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Katznelson H, Peterson EA, Rovatt JW (1962) Phosphate dissolving microorganisms on seed and in the root zone of plants. Can J Bot 40:1181–1186

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M et al (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0- importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2009) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MR, Brien EO, Carney BR et al (2010) A fluorescent pseudomonad shows potential for the control of net blotch disease of barley. Biol Control 54:41–45

    Article  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prising open the lid of the “Florigen” black box. Annu Rev Plant Physiol Plant Mol Biol 54:307–328

    Article  CAS  Google Scholar 

  • Kloepper J, Schroth M, Miller T (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Krotzky A, Werner D (1987) Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147:48–57

    Article  CAS  Google Scholar 

  • Kwak Y-S, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathol J 29:125–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagzian A, Saberi Riseh R, Khodaygan P et al (2013) Introduced Pseudomonas fluorescens VUPf5 as an important biocontrol agent for controlling Gaeumannomyces graminis var. tritici the causal agent of take-all disease in wheat. Arch Phytopathol Plant Protect 46:2104–2116

    Article  CAS  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T et al (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973

    Article  CAS  PubMed  Google Scholar 

  • Latour X, Delorme S, Mirleau P et al (2003) Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. Agronomie 23:397–405

    Article  Google Scholar 

  • Lee Y, Yeom J, Jim J et al (2010) Phenotypic and physiological alterations by heterologous acylhomoserine lactone synthase expression in Pseudomonas putida. Microbiology 156:3762–3772

    Article  CAS  PubMed  Google Scholar 

  • León M, Yaryura P, Montecchia M et al (2009) Antifungal activity of selected indigenous Pseudomonas and Bacillus from the soybean rhizosphere. Int J Microbiol. doi:10.1155/2009/572049

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd 1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e10002784

    Article  CAS  Google Scholar 

  • Lugtenberg JB, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-González MM, Prieto P, Ramos C et al (2013) From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots. Microb Biotechnol 6:275–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maleki M, Mostafaee S, Mokhtarnejad L et al (2010) Characterization of Pseudomonas fluorescens strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. Aust J Crop Sci 4:676–683

    CAS  Google Scholar 

  • Martinez-Toledo MV, Moreno RJ, Gonzalez-Lopez J (1988) Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azobacter chroococcum. Plant Soil 110:149–152

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE et al (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö et al (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Massart S, Perazzolli M, Höfte M et al (2015) Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. Biocontrol 60:725–746

    Article  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV et al (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA et al (2012a) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrodi OV, Walter N, Elateek S et al (2012b) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102

    Article  Google Scholar 

  • Mavrodi DV, Parejko JA, Mavrodi OV et al (2013) Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 15:675–686

    Article  CAS  PubMed  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS et al (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2614

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSpadden Gardener BB, Gutierrez LJ, Joshi R et al (2007) Distribution and biocontrol potential of phlD + pseudomonads in corn and soybean fields. Phytopathology 95:715–724

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM, Gruffaz C, Raharinosy V et al (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271

    Article  CAS  PubMed  Google Scholar 

  • Migula W (1894) Über ein neues System der Bakterien. Arb Bakteriologischen Inst Tech Hochschule Karlsruhe 1:235–238

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Misra HS, Rajpurohit YS, Khairnar NP (2012) Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci 37:313–325

    Article  CAS  PubMed  Google Scholar 

  • Morohoshi T, Wang WZ, Suto T et al (2013) Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. J Biosci Bioeng 116:580–584

    Article  CAS  PubMed  Google Scholar 

  • Mrabet M, Elkahoui S, Tarhouni B et al (2015) Potato seed dressing with Pseudomonas aeruginosa strain RZ9 enhances yield and reduced black scurf. Phytopathol Mediterr 54:265–274

    CAS  Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D, Rosenzweig C, Powlson D et al (eds) Encyclopedia of soils in the environment. Academic, Oxford, pp 210–215

    Chapter  Google Scholar 

  • Müller H, Zachow C, Alavi M et al (2013) Complete genome sequence of the sugar beet endophyte Pseudomonas poae RE* 1-1-14, a disease-suppressive bacterium. Genome Announc 1:e00020–e00013

    PubMed Central  Google Scholar 

  • Negi YK, Prabha D, Garg SK et al (2011) Genetic diversity among cold-tolerant fluorescent Pseudomonas isolates from Indian Hymalayas and their characterization for biocontrol and plant growth-promoting activities. J Plant Growth Regul 30:128–143

    Article  CAS  Google Scholar 

  • Nelson K, Weinel C, Paulsen I et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto KF, Frankenberger WT (1990) Microbial production of cytokinins. Soil Biochem 6:191–248

    CAS  Google Scholar 

  • Noreen R, Ali SA, Hasan KA et al (2015) Evaluation of biocontrol potential of fluorescent Pseudomonas associated with root nodules of mungbean. Crop Prot 75:18–24

    Article  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Oberhänsli T, Défago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137:2273–2279

    Article  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol. doi:10.3389/fmicb.2015.00745

    PubMed  PubMed Central  Google Scholar 

  • Palleroni NJ (1984) Genus I Pseudomonas. In: Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins Co, Baltimore, pp 141–168

    Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R et al (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    Article  CAS  Google Scholar 

  • Parejko JA, Mavrodi DV, Mavrodi OV et al (2012) Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of Central Washington State (USA). Microb Ecol 64:226–241

    Article  PubMed  Google Scholar 

  • Park JY, Han SH, Lee JH et al (2011) Draft genome sequence of the biocontrol bacterium Pseudomonas putida B001, an oligotrophic bacterium that induces systemic resistance to plant diseases. J Bacteriol 193:6795–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor N, Reynoso M, Tonelli M et al (2010) Potential biological control Pseudomonas sp. PCI2 against damping-off of tomato caused by Sclerotium rolfsii. J Plant Pathol 92:737–745

    Google Scholar 

  • Pastor N, Carlier E, Andrés J et al (2012) Characterization of rhizosphere bacterial for control of phytopathogenic fungi of tomato. J Environ Manag 95:S332–S337

    Article  CAS  Google Scholar 

  • Patra DD (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechnol 22:674–683

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW (1987) Are the hormones involved in assimilate transport? In: Hoad GV, Lenton JR, Jackson MB et al (eds) Hormone action in plant development: a critical appraisal. Butterworths Co. Ltd, Long Ashton, pp 178–188

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT, Press CM, Ravel J et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Perneel M, Heyrman J, Adiobo A et al (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartiaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  Google Scholar 

  • Pierson LS 3rd, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136:101–108

    Article  CAS  Google Scholar 

  • Pierson LS 3rd, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Poelman EH, Van Wees SC, Dicke M (2013) Induced plant responses to microbes and insects. Front Plant Sci. doi:10.3389/fpls.2013.00475

    Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking “secondary” metabolism: physiological role for phenazine antibiotics. Nat Chem Biol 2:71–78

    Article  CAS  PubMed  Google Scholar 

  • Puopolo G, Aida R, Pierson L et al (2011) Selection of a new Pseudomonas chlororaphis strain for the biological control of Fusarium oxysporum f. sp. radices-lycopersici. Phytopathol Mediterr 50:228–235

    Google Scholar 

  • Quagliotto L, Azziz G, Bajsa N et al (2009) Three native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biological agents against damping-off in alfalfa. Biol Control 51:42–50

    Article  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2, 4-diacetyl phloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MM et al (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1080

    Article  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetyl phloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton Leeuw Int J G 81:537–547

    Article  CAS  Google Scholar 

  • Raghu K, MacRae IC (1966) Occurrence of phosphate-dissolving microorganisms in the rhizosphere of rice plants and in submerged soils. J Appl Bacteriol 29:582–586

    Article  CAS  PubMed  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  PubMed  Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.) World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1969

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rong X, Gurel FB, Meulia T et al (2012) Draft genome sequences of the Pseudomonas fluorescens biocontrol strains Wayne1R and Wood1R. J Bacteriol 194:724–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roquigny R, Arseneault T, Gadkar V et al (2015) Complete genome sequence of biocontrol strain Pseudomonas fluorescens LBUM223. Genome Announc 3:e00443–e00415

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth Publishing Company, Belmont, pp 329–407

    Google Scholar 

  • Salisbury SA, Forrest HS, Cruse WBT et al (1979) A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 280:843–844

    Article  CAS  PubMed  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480

    Article  CAS  PubMed  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Selin C, Habibian R, Poritsanos N et al (2010) Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol 71:73–83

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Rai M, Acharya R et al (2009) Biological control of pathogens causing the Cymbidium pseudobulb rot complex using fluorescent Pseudomonas strain BRL-1. J Plant Pathol 91:751–755

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Chen M, Hu H et al (2012) Genome sequence of Pseudomonas chlororaphis GP72, a root colonizing biocontrol strain. J Bacteriol 194:1269–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirzad A, Fallahzadeh-Mamaghani V, Pazhouhandeh M (2012) Antagonistic potential of fluorescent pseudomonads and control of crown and root rot of cucumber caused by Phytophthora drechsleri. Plant Pathol J 28:1–9

    Article  CAS  Google Scholar 

  • Siddiqui Z (2005) PGPR: prospective biocontrol agents of plant pathogens. Springer, Dordrecht

    Google Scholar 

  • Silby MW, Cerdeño-Tárraga AM, Vernikos GS et al (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SA et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defense without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Sponsel VM (2003) Gibberellins. In: Henry HL, Norman AW (eds) Encyclopedia of hormones, vol 2. Academic, Boston, pp 29–40

    Chapter  Google Scholar 

  • Stites TE, Mitchell AE, Rucker RB (2000) Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr 130:719–727

    CAS  PubMed  Google Scholar 

  • Tambong JT, Höfte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudmonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494

    Article  CAS  PubMed  Google Scholar 

  • Thonart P, Ongena M, Henry G (2012) PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnol Agron Soc Environ 16:257–268

    Google Scholar 

  • Trewavas A (2000) Signal perception and transduction. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Amer Soc Plant Physiol, Rockville, pp 930–987

    Google Scholar 

  • Van De Mortel JE, De Vos RC, Dekkers E et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Der Voort M, Meijer HJ, Schmidt Y et al (2015) Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front Microbiol. doi:10.3389/fmicb.2015.00693

    Google Scholar 

  • Van Loon L, Bakker PAHM (2006) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 39–66

    Google Scholar 

  • Van Wees SC, De Swart EA, Van Pelt JA et al (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhagen BW, Glazebrook J, Zhu T et al (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl Environ Microbiol 53:1397–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Knill E, Glick BR et al (2000) Effect of transferring 1-amino cyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMOs. VCH Verlagsgesellschaft, Weinheim, pp 1–18

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB et al (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Winslow CEA, Broadhurst J, Buchanan RE et al (1917) The families and genera of the bacteria. Preliminary report of the society of American Bacteriologists on characterization and classification of bacterial types. J Bacteriol 2:505–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XA, Monchy S, Taghavi S et al (2011) Comparative genomics and functional analysis of nich-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yang M-M, Mavrodi DV, Mavrodi OV et al (2011) Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology 101:1481–1491

    Article  PubMed  Google Scholar 

  • Zhou T, Chen D, Li C et al (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Rasltonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Filion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Roquigny, R., Novinscak, A., Biessy, A., Filion, M. (2017). Pseudomonadaceae: From Biocontrol to Plant Growth Promotion. In: Mehnaz, S. (eds) Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-4862-3_3

Download citation

Publish with us

Policies and ethics