Skip to main content

Genetic Engineering of Poplar: Current Achievements and Future Goals

  • Chapter
  • First Online:
Plant Biotechnology: Recent Advancements and Developments

Abstract

Global biomass demand for industrial applications is ever increasing especially in biofuels and pulp industries. Poplar is likely to have great biological advantages over the other forest trees which include small genome size, large number of species, rapid juvenile growth, ease of clonal propagation, easy recovery of genetic transformants, and available genome draft. Wide and sustainable farming of rapidly growing trees such as poplars may supplement to attain the requirement of renewable resources. This chapter covers the progress in both basic and applied studies in poplar genetic tailoring. Certain advices are given for future direction of the research in poplar genetic tailoring so as to achieve the needs of environmental cleansing system and the timber industries. Emerging new thoughts for designing wood improvement approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Doorsselaere JV et al (1996) Red xylem and higher lignin extractability by down regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baucher M, Montagu MV, Boerjan W, Arencibia AD (2000) Improvement of wood quality for the pulp and paper industry by genetic modification of lignin biosynthesis in poplar. In. Proceedings of the International Symposium on Plant Genetic Engineering, Havana, Cuba, pp 215–221

    Google Scholar 

  • Boyd RS, Martens SN (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70:21–25

    Article  CAS  Google Scholar 

  • Brasileiro ACM, Leple JC, Muzzin J, Ounnoughi D et al (1991) An alternate approach for gene transfer in trees using wild type Agrobacterium strains. Plant Mol Biol 17:441–452

    Article  CAS  PubMed  Google Scholar 

  • Brasileiro ACM, Tourneur C, Leple JC, Combes V, Jouanin L (1992) Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Res 1:133–141

    Article  CAS  Google Scholar 

  • Caihong J, Huayan Z, Hongzhi W, Zhifeng X et al (2004) Obtaining the transgenic poplars with low lignin content through down-regulation of 4CL. Chin Sci Bull 49(9):905–909

    Google Scholar 

  • Calligari P, Collot T, Zelasco S, Nervo G (2008) Genetic transformation of elite poplar clones for useful traits. In: 23rd session of international poplar commission on poplars, Willows and People’s Wellbeing. Beijing, China, p 28

    Google Scholar 

  • Catranis CM, Maynard CA, Powell WA (1997) Stable transformation of hybrid poplar. Phytopathology 87(6):515–516

    Google Scholar 

  • Chaney RL, Green CE, Filcheva E, Brown SL (1994) Effect of iron, manganese, and zinc enriched biosolids compost on uptake of cadmium by lettuce from cadmium-contaminated soils. In: Clapp CE, Larson WE, Dowdy RH (eds) Sewage sludge: land utilization and the environment. SSSA Miscellaneous Publication, Madison, pp 205–207

    Google Scholar 

  • Charest PJ, Steward D, Budicky PL (1992) Root induction in hybrid poplar by Agrobacterium genetic transformation. Can J For Res 22:1832–1837

    Article  Google Scholar 

  • Chen V, Han Y, Tian Y, Li L, Nie S (1995) Study on plant regeneration from Populus deltoides explants transformed with Bt. toxin gene. Sci Silvae Sin 31:97–103

    Google Scholar 

  • Chen Y, Li O, Li L, Han YF, Tian YC (1996) Western blot analysis of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene. Sci Silvae Sin 37(3):274–276

    Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Saiky D et al (1977) Stable incorporation of plasmid DNA into higher plant cells, the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chupeau MC, Pautot V, Chupeau Y (1994) Recovery of transgenic trees after electroporation of poplar protoplasts. Transgenic Res 3:13–19

    Article  CAS  Google Scholar 

  • Confalonieri M, Belenghi B, Balestrazzi A, Negri S et al (2000) Transformation of elite white poplar (Populus alba L.) cv. ‘Villafrance’ and evaluation of herbicide resistance. Plant Cell Rep 19:978–982

    Article  CAS  Google Scholar 

  • Cornu D, Leple JC, Bonade-Bottino M, Ross A et al (1996) Expression of a proteinase inhibitor and a Bacillus thuringiensis delta-endotoxin in transgenic poplars. In: Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publishers, Dordrecht, pp 131–136

    Chapter  Google Scholar 

  • Dai WH, Cheng ZM, Sargent W (2003) Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues. In Vitro Cell Dev Biol Plant 39:6–11

    Article  Google Scholar 

  • Dai H, Jia G, Feng S, Wei A et al (2011) Phytoremediation with transgenic poplar. J Food Agric Environ 9(3&4):710–713

    CAS  Google Scholar 

  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A et al (2001) Transformation of white poplar (Populus alba L.) with a noval Arabidopsis thaliana cysteine proteinase inhibitor gene and analysis of insect pest resistance. Mol Breed 7:35–42

    Article  CAS  Google Scholar 

  • Devantier YA, Moffatt B, Jones C, Charest PJ (1993) Microprojectile-mediated DNA delivery to the Salicaceae family. Can J Bot 71:1458–1466

    Article  CAS  Google Scholar 

  • Devillard C (1991) Obtaining genetically transformed roots of Populus tremula x P. alba and P. trichocarpa x P. deltoides after inoculation with Agrobacteirum rhizogenes. Annales de Researches Sylvicoles 5:22

    Google Scholar 

  • Donahue RA, Davis TD, Michler CM, Riemenschneider CF et al (1994) Growth, photosynthesis and herbicide tolerance of genetically modified hybrid poplar. Can J For Res 24(12):2377–2383

    Article  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A et al (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci U S A 104:16816–16821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doty SL, Kang JW, James A, Vajzovic A et al (2008a) Enhancing phytoremediation and plant growth in poplar and willow. In: 23rd session of international poplar commission on poplars, Willows and People’s Wellbeing. Beijing, China, p 55

    Google Scholar 

  • Elkind Y, Edwards R, Movandad M, Hedrick SA et al (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologus phenylalanin ammonia-lyase gene. PNAS 87:9057–9061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JF, Han Y, Li L, Peng X, Li JR (2002) Studies on transformation of mtlD/gutD divalent genes to Populus deltoids x P. cathayana. Biotechnol Lett 24:281–286

    CAS  Google Scholar 

  • Filichkin SA, Wu Q, Busov V, Meilan R et al (2006) Enhancer trapping in woody plants: isolation of the ET304 gene encoding a putative AT-hook motif transcription factor and characterization of the expression patterns conferred by its promoter in transgenic Populus and Arabidopsis. Plant Sci 171:206–216

    Article  CAS  Google Scholar 

  • Fillaiti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genomics 206:192–199

    Article  Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M et al (1995) Over-expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109(3):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, McMichael CM, Meyer K, Shirley AM et al (2000) Modified lignin in tobacco and poplar plants over expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22(3):223–224

    Article  CAS  PubMed  Google Scholar 

  • Gallardo F, Fu JM, Canton FR, Garciagutierrez A et al (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26

    Article  CAS  PubMed  Google Scholar 

  • Giachetti G, Sebastiani L (2006) Metal accumulation in poplar plant grown with industrial wastes. Chemosphere 64:446–454

    Article  CAS  PubMed  Google Scholar 

  • Giorcelli A, Spar-voli F, Mattivi F, Tava A et al (2004) Expression of the stilbene synthase (stsy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13(3):203–214

    Article  CAS  PubMed  Google Scholar 

  • Gray M, Moutor EK, Cukovic D, Carlson JE, Dounglas CJ (1999) Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Plant Mol Biol 39:657–669

    Article  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy metal binding proteins are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XH, Jiang J, Lin SJ, Wang BC et al (2009) A ThCAP gene from Tamarix hispida confers cold tolerance in transgenic Populus (P. davidiana x P. bolleana). Biotechnol Lett 31:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Gyulai G, Humphreys MO, Bittsanszky A, Skot KP et al (2005) AFLP analysis and improved phytoextraction capacity of transgenic gshl-poplar clones (Populus x canescens) for copper in vitro. In: Proceedings of an international OECD workshop, Matrahaza, Hungary, 2004

    Google Scholar 

  • Han KH, Gordon MP, Strauss SH (1996) Cellular and molecular biology of Agrobacterium-mediated transformation of plant and its application to genetic transformation of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa/Ontario, pp 201–202

    Google Scholar 

  • Han KH, Gordon MP, Strauss SH (1997a) High frequency transformation of cotton woods (genus Populus) by Agrobacterium tumefaciens. Can J For Res 24:464–470

    Article  Google Scholar 

  • Han KH, Ma CP, Strauss SH (1997b) Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Res 6:415–420

    Article  CAS  Google Scholar 

  • Han KH, Meilan R, Ma C, Strauss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cotton wood hybrids (genus Populus). Plant Cell Rep 19:315–320

    Article  CAS  Google Scholar 

  • Han MS, Noh EW, Han SH (2013) Enhanced drought and salt tolerance by expression of AtGSK1 gene in poplar. Plant Biotechnol Rep 7:39–47

    Article  Google Scholar 

  • Herrera-Estrella L, Depicker A, Montagu MV, Schell J (1983) Expression of chimeric genes transferred into plant cell using a Ti plasmid vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Herschbach C, Jouanin L, Rennenberg H (1998) Over-expression of gamma-glutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees. Plant Cell Physiol 39(4):447–451

    Article  CAS  Google Scholar 

  • Heuchelin SA, McNabb MS, Klopfenstein NR (1997) Agrobacterium -mediated transformation of Populus x euramericana ‘Ogy’ using the chimeric CaMV 35S pin2 gene fusion. Can J For Res 27(7):1041–1048

    CAS  Google Scholar 

  • Howe GT, Goldfarb B, Strauss SH (1994) Agrobacterium-mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants. Plant Cell Tissue Organ Cult 36:59–71

    Article  CAS  Google Scholar 

  • Hu WJ, Kawaoka A, Tsai CJ, Lung J et al (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (Populus tremuloides). PNAS 95(9):5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL et al (1999) Repression of lignobiosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Lu H, Liu QL, Chen XM, Jiang XN (2005) Over expression of mtID gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25(10):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Igasaki T, Ishida Y, Mohri T, Ishikawa H, Shinohara K (2002) Transformation of Populus alba and direct selection of Transformants with the herbicide bialaphos. Bulletin FFPRI 1:235–240

    CAS  Google Scholar 

  • JingBo Q, Ishihara Y, Kuroda H, Sakai F, Sakai H, Komano T (1997) Transient expression of goat growth hormone gene in poplar (Populus alba L.) protoplasts: a quick method for detection of foreign gene expression in mRNA level. Biosci Biotechnol Biochem 61:1580–1581

    Article  Google Scholar 

  • Jouanin L (1997) Modification of lignin composition in trees by genetic engineering. C R Seances Soc Biol Fil 191(2):155–159

    CAS  Google Scholar 

  • Jouanin L, Brasiliero AM, Leple JC, Pilate G, Cornu D (1999) Genetic transformation: a short review of methods and their applications, results and perspectives for forest trees. Ann For Sci 50:325–336

    Article  Google Scholar 

  • Jouanin L, Goujon T, Nadai V, Martin MT et al (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyl transferase activity. Plant Physiol 123:1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanin L, Goujon T, Sibout R, Pollet B et al (2004) Comparison of the consequences on lignin content and structure of COMT and CAD down-regulation in poplar and Arabidopsis thaliana. Plantation Forest Biotechnology for the 21st Century, pp 219–229

    Google Scholar 

  • Kajita S, Osakabe K, Katayamsa Y et al (1994) Agrobacterium-mediated transformation of poplar using a disarmed binary vector and the overexpression of a specific member of a family of poplar peroxidase genes in transgenic poplar cell. Plant Sci 103:231–239

    Article  CAS  Google Scholar 

  • Kajita S, Hishiyama S, Tomimura Y, Katayama Y, Omori S (1997) Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-Coumarate: Coenzyme A ligase is depressed. Plant Physiol 114:871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang B, Osburn L, Kopsell D, Tuskan GA, Cheng ZM (2009) Micropropagation of Populus trichocarpa ‘Nisqually-1’: the genotype deriving the Populus reference genome. Plant Cell Tissue Organ Cult 99:251–257

    Article  CAS  Google Scholar 

  • Kim YW, Noh EW, Youn Y, Noh ER (1995) Genetic transformation of Populus nigra using Agrobacterium tumefaciens LBA 4404/pBKS-1. Research Report of the Forest Genetics Research Institute (Kyonggido) 3:160–166

    Google Scholar 

  • Kirby EG, Wu D, Fu J, Gallard F, Canovas FM (1999) Expression of a pine cytosolic glutamine synthetase gene in transgenic poplar. In: Forestry biotechnology-99: proceedings of a conference, Keble College, University of Oxford, UK, p 43

    Google Scholar 

  • Klopfenstein NB, Allen KK, Avila FJ, Heuchelin SA, Martinez J, Carman RC, Hall RB, Hart ER, McNabb HS Jr (1997) Proteinase inhibitor II gene in transgenic poplar: chemical and biological assays. Biomass Bioenergy 12(4):299–311

    Google Scholar 

  • Kṏmives T, Gullner G (2000) Phytoremediation. In: Wilkinson RE (ed) Plant-environment interactions, 2nd edn. Marcel Dekker, New York, pp 437–452

    Google Scholar 

  • Kṏmives T, Gullner G, Rennenberg H (2003) Roles of glutathione and glutathione-related enzymes in remediation of polluted soils by transgenic poplars. In: Davidian JC, Grill D, De Kok LJ et al (eds) Sulfur transport and assimilation in plants. Regulation, interaction and signaling. Backhuys Publishers, Leiden, pp 101–109

    Google Scholar 

  • Koprivova A, Kopriva S, Jager D, Will B et al (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670

    Article  CAS  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    Article  CAS  PubMed  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szezypka M et al (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci U S A 94:42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yifan L, Liang T, Yingchuan L et al (1999a) Cloning of ACC oxidase cDNA and its inhibition of ethylene synthesis by its antisense RNA in transgenic P. deltoides. For Res 12:223–228

    Google Scholar 

  • Li ML, Han YF, Qiu DY, Li N, Tian YC (1999b) Cloning of ACC synthase cDNA and its inhibition of ethylene synthesis by its antisense RNA in transgenic Populus deltoides. Sci Silvae Sin 35(3):10–15

    Google Scholar 

  • Li C, Wang X, Lu W, Tian QR, Sun Y, Luo K (2014) A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation. Plant Cell Tissue Organ Cult 119(3):553–563

    Article  CAS  Google Scholar 

  • Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  • Lin T, Wang ZY, Liu KY, Jing TZ, Zhang CX (2006) Transformation of spider neurotoxin gene with prospective insecticidal properties into hybrid poplar Populus simonii x P. nigra. Acta Entomol Sin 49(4):593–598

    CAS  Google Scholar 

  • Liu JR, Suh MC, Choi D (2000) Phytoremediation of cadmium contamination: overexpression of metallothionin in transgenic tobacco plants. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 43:126–130

    Article  Google Scholar 

  • Liu B, Li HS, Wang QH, Cui DC (2002) Transformation of Populus tomentosa with anti-PLD gene. Hereditas (Beijing) 24:40–44

    Google Scholar 

  • Liu J, Wang C, Wang B, Liu J, Zhao J et al (2008) Study on the salt tolerance of genetically modified triploid Chinese white poplar. For Res Beijing 21:379–385

    Google Scholar 

  • Ma C, Strauss SH, Meilan R (2004) Agrobacterium-mediated transformation of the genome-sequenced poplar clone, Nisqually-1 (Populus trichocarpa). Plant Mol Biol Rep 22:1–9

    Article  Google Scholar 

  • Main GD, Williamson A, Trvine RJ, Gartland JS et al (1998) The use of green fluorescent protein (gfp) as a reporter gene in tree genetic manipulations. Tree Biotechnology: Towards the Millennium. Nottingham University Press, UK, pp 315–320

    Google Scholar 

  • McCown BH, McCabe DE, Russel DR, Robinson DJ et al (1991) Transformation of Populus spp. and incorporation of pest resistance by electric discharge particle acceleration (direct gene transfer) method. Plant Cell Rep 9:590–594

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Meilan R, Han KYH, Ma CP, James RR et al (2000) Development of glyphosate-tolerant hybrid cottonwoods. TAPPI J 83:164–166

    CAS  Google Scholar 

  • Meilan R, Han KH, Ma C, DiFazio SP et al (2002) The CP4 transgene provides high levels of tolerance of round up Reg. herbicide in field-grown hybrid poplars. Can J For Res 32(6):967–976

    Article  CAS  Google Scholar 

  • Meyer S, Nowak K, Sharma VK, Schulze J et al (2004) Vectors for RNAi technology in poplar. Plant Biol 6(1):100–103

    Article  CAS  PubMed  Google Scholar 

  • Meyermans H, Morreel K, Lapierre C, Pollet B (2000) Modificaition in lignin and accumulation of phenolic glucosides in poplar xylem upon down regulation of caffeoyl-coenzymeA-o-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275(47):36899–36909

    Article  CAS  PubMed  Google Scholar 

  • Mijnsbrugge K, Montagu M, Inze D, Boerjan W (1996) Tissue-specific expression conferred by the S-adenosyl-L-methionine synthetase promoter of Arabidopsis thaliana in transgenic poplar. Plant Cell Physiol 31(8):1108–1115

    Article  Google Scholar 

  • Mohri T, Igasaki T, Futamura N, Shinohara K (1999) Morphological changes in transgenic poplar induced by expression of the rice homeobox gene OSHI. Plant Cell Rep 18:816–819

    Article  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J et al (1997) Uptake and biotransformation of trichioroethylene by hybrid poplars. Environ Sci Technol 31(4):1062–1067

    Article  CAS  Google Scholar 

  • Nicolescu C, Sandre C, Jouanin L, Chriqui D (1996) Genetic engineering of phenolic metabolism in poplar in relation with resistance against pathogens. Acta Botanica Gallica 143(6):539–546

    Article  CAS  Google Scholar 

  • Noctor G, Arisi AM, Jouanin L, Kunert KJ et al (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:249–279

    CAS  Google Scholar 

  • Noel A, Levasseur C, Van QL, Seguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. PIMP Physiol Mol Plant Pathol 67(2):92–99

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T et al (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15(5):637–646

    Article  CAS  PubMed  Google Scholar 

  • Ovadis M, Chernin L, Tzfira T, Canaan V et al (1998) Transformation of tobacco and aspen plants with the ‘ita’ locus of IncQ plasmid confers resistance to Agrobacterium tumefaciens. In: Plant biotechnology and in vitro biology in the 21st century. Proceedings of the IXth international congress of the International Association of the Plant Tissue Culture and Biotechnolgy 36: 286–288

    Google Scholar 

  • Paques M, Bercetche J, Bruneau G, Bregeon JM et al (1995) Genetic engineering for poplar improvement. Estat et perspectives de la populicutture. Colloque Organise 29 et 30 mars 1995. Ecolc superieure du Bois, Nantis, France. Comptes Rendus de (‘Academic d’ Agriculture de France) 81(3):153–162

    Google Scholar 

  • Park YW, Baba K, Furuta Y, Tida T et al (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FFBS Lett 564(1/2):183–187

    Article  CAS  Google Scholar 

  • Parsons TJ, Sinkar VP, Steller RF, Nester EW, Garden MP (1986) Transformation of poplar by Agrobacterium tumefaciens. Biotechnology 4:533–536

    Article  CAS  Google Scholar 

  • Pollard JA, Baker AJM (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicacea). New Phytol 135:655–658

    Article  CAS  Google Scholar 

  • Rao HY, Chen Y, Yuang MR, Wang MX et al (2000) Genetic transformation of poplar NL-80106 transferred by ‘Bt.’ gene and its insect-resistance. J Plant Res Environ 9:1–5

    CAS  Google Scholar 

  • Rubinelli PM, Chuck G, Li X, Meilan R (2012) Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenergy 54:312–321

    Article  CAS  Google Scholar 

  • Sala F, Castiglione S, Jianjun H, Zheng Y, Han Y (2000) Field and molecular evaluation of insect-resistant transgenic poplar (Populus nigra L.) trees. In: Proceeding of the international symposium on plant genetic engineering, Havana, Cuba, p 137–147

    Google Scholar 

  • Salyaev R, Rekoslavskaya N, Chepinoga A et al (2006) Transgenic poplar with enhanced growth by introduction of the ugt and acb genes. New For 32(2):211–229

    Article  Google Scholar 

  • Sanchez N, Manzanera JA, Bueno MA (2004) Agrobacterium-mediated transformation of white poplar (Populus alba L.). Int J Exp Bot 73:123–130

    Google Scholar 

  • Schwartzenberg K, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14(l):27–35

    Article  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    Article  CAS  Google Scholar 

  • Shani Z, Dekel M, Jensen CJ, Tzfira T et al (2000) Arabidopsis thaliana Endo-1, 4-β-glucanase (cell) promoter mediates ‘uida’ expression in elongating tissues of aspen (Populus tremula). J Plant Physiol 156:118–120

    Article  CAS  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,5-β-glucanase (cell). Mol Breed 14(3):321–330

    Article  Google Scholar 

  • Shim D, Kim S, Choi YI, Song WY et al (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90(4):1478–1486

    Article  CAS  PubMed  Google Scholar 

  • Son S, Hyun J (1998) Transformation of Populus nigra × P. maximowiczii using Agrobacterium tumefaciens vector. J Korean For Soc 87:164–172

    Google Scholar 

  • Song J, Lu S, Chen ZZ, Lourenco R, Chiang VL (2006) Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol 47(11):1582–1589

    Article  CAS  PubMed  Google Scholar 

  • Soudek P, Tykva R, Vaněk T (2004) Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere 55:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Studart GC, Lacorte C, Brasileiro ACM (2006) Evaluation of heterologous promoters in transgenic Populus tremula x P. alba plants. Biol Plant 50(1):15–20

    Article  Google Scholar 

  • Thakur AK, Sharma S, Srivastava DK (2005) Plant regeneration and genetic transformation studies in petiole tissue of Himalayan poplar (Populus ciliata Wall.) Curr Sci 89:664–668

    CAS  Google Scholar 

  • Thakur AK, Aggarwal G, Srivastava DK (2012) Genetic modification of lignin biosynthetic pathway in Populus ciliata Wall.via Agrobacterium-mediated antisense CAD Gene transfer for quality paper production. Nat Acad Sci Lett 35(2):79–84

    Article  CAS  Google Scholar 

  • Tian LN, Levee V, Mentag R, Charest PJ, Seguin A (1999) Green fluorescent protein as a tool for monitoring transgene expression in forest tree species. Tree Physiol 19(8):541–546

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Chen J, Wang D, Wang HL et al (2016) Overexpression of a Populus euphratica CBF4 gene in poplar confers tolerance to multiple stresses. Plant Cell Tissue Organ Cult:1–17. doi:10.1007/s11240-016-1118-y

  • Tollier MT, Chabbert B, Lapierre C, Monties B et al (1995) Lignin composition in transgenic poplar plants with modified cinnamyl alcohol dehdrogenase activity with reference to dehydropolymer models of lignin. In: Proceedings of 17th International Conference, Palma de Mallorca, Spain, p 339–340

    Google Scholar 

  • Tsai CJ, Podila GK, Chiang VL (1994) Agrobacterium -mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants. Plant Cell Rep 14:94–97

    CAS  PubMed  Google Scholar 

  • Tzfira T, Jensen CS, Wang W, Zuker A et al (1998) Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol Biol Rep 15:219–235

    Article  Google Scholar 

  • Tzfira T, Vainstein A, Altman A (1999) rol-gene expression in transgenic aspen (Populus trernula) plants results in accelerated growth and improved stem production index. Trees Struct Funct 14:49–54

    Google Scholar 

  • Van-Doorsselaere J, Baucher M, Chognot E et al (1995) A novel lignin in poplar trees with a reduced caffeic acid/5 hydroxyferulic acid O-methyl transferase activity. Plant J 5:855–864

    Article  Google Scholar 

  • Wang JH, Constabel CP (2004) Polyphenol oxidase over-expression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220(l):87–96

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Emerick RM, Denchev PD, Conger RV, Tuskan GA (1995) A biolistic approach for the transient expression of a GUS reporter gene in callus cultures of hybrid poplar. In Vitro Cell Dev Biol Plant 31(4):226

    Google Scholar 

  • Wang GJ, Castiglione S, Cheri Y, Li L et al (1996) Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res 5:289–301

    Article  CAS  Google Scholar 

  • Wang WX, Tzfira T, Levin N, Shoseyov O, Altman A (1999) Plant tolerance to water and salt stress: the expression pattern of a water stress responsive protein (Bsp A) in transgenic aspen plants. In: Plant biotechnology and in vitro biology in the 21st century. Proceedings of the IXth international congress of the International Association of Plant Tissue Culture and Biotechnology 36:66–68

    Google Scholar 

  • Wang H, Wang C, Liu H, Tang R, Zhang H (2011) An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba x P. berolinensis and Populus davidiana x P. bolleana. Plant Cell Rep 30:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li L, Xu L, Zhou J et al (2013) Isolation and functional analysis of the poplar RbcS Gene promoter. Plant Mol Biol Rep 31:120–127

    Article  CAS  Google Scholar 

  • Wi SG, Lee KH, Park BD, Park YG, Kim YS (2004) Anatomical, chemical and topochemical characteristics of transgenic poplar down-regulated with O-methyltransferase. J Kor Wood Sci Technol 32(3):15–24

    Google Scholar 

  • Xiong J, Liang J, Chen XY, Li W, Li H, Liu Y (2005) The rooting ability of rolB transformed clones of Populus tomentosa. J Beijing For Univ 27(5):54–58

    CAS  Google Scholar 

  • Yadav R, Kumar D, Arora P, Raghuvanshi S, Dilbaghi N, Chaudhury A (2008) Genetic modification in Populus deltoides: An antisense approach for lignin repression. Published in Proceedings “International Conference on Poplars, willows and people’s wellbeing” Beijing, China, October 26–30

    Google Scholar 

  • Yadav R, Arora P, Kumar D, Katyal D, Dilbaghi N, Chaudhury A (2009) High frequency direct plant regeneration from leaf, internode, and root segments of Eastern Cottonwood (Populus deltoides). Plant Biotechnol Rep 3:175–182

    Article  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Yang CP, Liu GF, Liang HW, Zhang H (2001) Study on the transformation of Populus simonii x P. nigra with salt resistance gene Bet-A. Sci Silvae Sin 37(6):34–38

    Google Scholar 

  • Yang MS, Li ZL, Wang Y, Wang JM, Liang HY (2006) Transformation and expression of two insect-resistant genes to hybrid triploid of Chinese White Poplar. Sci Silvae Sin 42(9):61–68

    Google Scholar 

  • Yang C, Li H, Cheng Q, Chen Y (2009) Transformation of drought and salt resistant gene (DREB1C) in Populus x euramericana cv. Nanlin 895. Sci Silvae Sin 45:17–21

    CAS  Google Scholar 

  • Yang L, Sun Y, Xie L, Liang A (2010) A novel approach for in situ bud transformation of Populus by Agrobacterium. Scandinavian J For Res 25:3–9

    Article  Google Scholar 

  • Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry. Plant Cell Rep 29:211–221

    Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J et al (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBOJ 2:2143–2150

    CAS  Google Scholar 

  • Zelasco S, Reggi S, Calligari P, Balestrazzi A et al (2006) Expression of the Vitreoscilla haemoglobin (VHb) – encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative tress conditions. Mol Breed 17(3):201–216

    Google Scholar 

  • Zhang BY, Su XH, Huang QJ, Zhang XH, Hu ZM (2005a) Regeneration of transgenic poplar (Populus alba x P. glandulosa) expressing levansucrase from Bacillus subtilis. Sci Silvae Sin 41(3):48–53

    Google Scholar 

  • Zhang GC, Zou CS, Wang ZY (2005b) Transformation system of chimeric gene for spider insecticidal peptide and Bt of Populus euramericana cv.“114/69”. J Northeast For Univ 54(6):43–44

    CAS  Google Scholar 

  • Zhang Q, Zhang ZY, Lin SZ, Lin YZ (2005c) Resistance of transgenic hybrid triploids in Populus tomentosa Carr. Against 3 species of Lepidopterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genetica 54(3):108–116

    Google Scholar 

  • Zhang BY, Su XH, Li YL, Zhang YA et al (2006a) Production of Populus alba x P. glandulosa with a coleopterous insect resistant gene and analysis of insect resistance. J Beijing For Univ 28(2):102–105

    Google Scholar 

  • Zhang BY, Su XH, Li YL, Huang QJ et al (2006b) Regeneration of vgb-transgenic poplar (Populus alba x P. glandulosa) and the primary observation of growth. Chin J Agric Biotechnol 3(1):59–64

    Article  CAS  Google Scholar 

  • Zhang TT, Song YZ, Liu YD et al (2008) Overexpression of phospholipase Da gene enhances drought and salt tolerance of Populus tomentosa. Chin Sci Bull 53:3656–3665

    Article  CAS  Google Scholar 

  • Zhang W, Chu Y, Ding C, Zhang B et al (2014) Transcriptome sequencing of transgenic poplar (Populus x euramericana ‘Guariento’) expressing multiple resistance genes. BMC Genet 15(1):1–17

    Google Scholar 

  • Zhang Y, Jun Z, Jinping L, Jinmao W et al (2016) Temporal and spatial changes in Bt toxin expression in Bt-transgenic poplar and insect resistance in field tests. J For Res 27(6):1249–1256

    Article  CAS  Google Scholar 

  • Zhao XY, Zheng HQ, Li SW, Yang CP et al (2013) The rooting of poplar cuttings: a review. New For 45(1):21–34

    Article  Google Scholar 

  • Zheng JB, Zhang YM, Yang WZ, Pei D et al (1995) Plant regeneration from excised leaves of poplar hybrid 741 and transformation with insect resistant Bt. toxin gene. J Hebei Agric Univ 18:20–25

    Google Scholar 

  • Zheng L, Guifeng L, Xiangnan M, Yanbang L, Yucheng W (2012) A versatile Agrobacterium-mediated transient Gene expression system for herbaceous plants and trees. Biochem Genet 50:761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhong RQ, Morrison WH, Himmlsbach OS, Poole FL II et al (2000) Essential role of caffeoyl-coenzyme A-O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124(2):563–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang J, Bi Y, Wang L et al (2014) Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Rep 32(1):185–197

    Article  CAS  PubMed  Google Scholar 

  • Zou WH, Zhao OA, Cui OC, Wang B (2006) Transformation of Populus deltoides with anti-PLD gamma gene and chitinase gene. Sci Silvae Sin 42(1):37–42

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yadav, R., Yadav, N., Goutam, U., Kumar, S., Chaudhury, A. (2017). Genetic Engineering of Poplar: Current Achievements and Future Goals. In: Gahlawat, S., Salar, R., Siwach, P., Duhan, J., Kumar, S., Kaur, P. (eds) Plant Biotechnology: Recent Advancements and Developments. Springer, Singapore. https://doi.org/10.1007/978-981-10-4732-9_17

Download citation

Publish with us

Policies and ethics