Skip to main content

Methods of Genetic Transformation: Electroporation and Polyethylene Glycol Treatment

  • Chapter
Molecular improvement of cereal crops

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 5))

Abstract

Methods for direct gene transfer into protoplasts via polyethylene glycol (PEG) treatment and electroporation were developed in early 1980’s. Genetic transformation of protoplasts led to the production of the first transgenic cereals. This paper describes events leading up to the stable transformation of protoplasts via these techniques, the possible mechanisms involved, the improvement of the methods, and their application to the molecular improvement of cereals. While no longer the predominant method for transforming cereal crops, protoplast transformation still plays an important role in basic studies of gene regulation and function, understanding of the transformation process, and in the production of transgenic crops, particularly of many grass species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C. L., Petersen, W. L., Buchholz, W. G., Bowen, B. A., and Sulc, S. L. (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep. 9: 335–339.

    Article  CAS  Google Scholar 

  • Ashraf, M., Altschuler, M., Galasinski, S., and Griffiths, T. D. (1993) Alteration of gene expression by restriction enzymes electroporated into plant cells. Mut. Res. 302: 75–82.

    Article  CAS  Google Scholar 

  • Avery, O. T., MacLeod, C. M., and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137 (reprinted in J. Exp. Med. 149: 297-326, 1979).

    Article  PubMed  CAS  Google Scholar 

  • Bates, G. W. (1994) Genetic transformation of plants by protoplast electroporation. Mol. Biotechnol. 2: 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Bates, G. W., Carle, S. A., and Piastuch, W. C. (1990) Linear DNA introduced into carrot protoplasts by electroporation undergoes ligation and recircularization. Plant Mol. Biol.14: 899–908.

    Article  CAS  Google Scholar 

  • Baur, M., Potrykus, I., and Paszkowski, J. (1990) Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10: 492–500.

    PubMed  CAS  Google Scholar 

  • Bergman, P., and Glimelius, K. (1993) Electroporation of rapeseed protoplasts: transient and stable transformation. Physiol. Plant 88: 604–611.

    Article  CAS  Google Scholar 

  • Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res.12: 8711–8721.

    Article  CAS  Google Scholar 

  • Bilang, R., Peterhans, A., Bogucki, A., and Paszkowski, J. (1992) Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol. Cell Biol. 12: 329–336.

    PubMed  CAS  Google Scholar 

  • Bock, R., Kossel H., and Maliga, P. (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO. I. 13: 4623–628.

    CAS  Google Scholar 

  • Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, D. A., Brettell, R. I. S., Last, D. I., Witrzens, B., McElroy, D., Dolferus, R., and Dennis, E. S. (1994) The use of the Emu promoter with antibiotic and herbicide resistance genes for the selection of transgenic wheat callus and rice plants. Aust. J. Plant Physiol. 21:95–112.

    Article  CAS  Google Scholar 

  • Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. (eds) (1992) Guide to Electroporation and Electrofusion. Academic Press, San Diego.

    Google Scholar 

  • Colbere-Garapin, F., Horodniceanu, F., Kourilsky, P., and Garapin, A. C. (1981) A new dominant hybrid selective marker for higher eukaryotic cells. J. Mol. Biol. 150: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Cosloy, S. D., and Oishi, M. (1973) The nature of the transformation process in E.coli K12. Mol. Gen. Genet. 124: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, S. J. (1988) Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb. (tall fescue) and Lolium perenne L (perennial ryegrass). J. Plant Physiol. 132: 170–175.

    Article  Google Scholar 

  • Datta, S. K., Datta, K., and Potrykus, I. (1990) Fertile Indica rice plants regenerated from protoplasts isolated from microspore derived cell suspensions. Plant Cell Rep. 9: 253–256.

    Article  Google Scholar 

  • Davey, M. R., Cocking, E. C., Freeman, J., Pearce, N., and Tudor, I. (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci. Lett. 18: 307–313.

    Article  CAS  Google Scholar 

  • de Block, M., Herrera-Estrella, L., van Montagu, M., Schell, J., and Zambryski, P. M. (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO. J. 3: 1681–1689.

    PubMed  Google Scholar 

  • de Cleene, M., and de Ley, J. (1976) The host range of crown gall. Bot. Rev. 42: 389–466.

    Article  Google Scholar 

  • De La Pena, A., Lörz, H., and Schell, J. (1987) Transgenic rye plants obtained by injection of DNA into young floral tillers. Nature 325: 274–276.

    Article  Google Scholar 

  • D’Halluin, K., Bonne, E., Bossut, M., DeBeukelaar, M., and Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495–1505.

    PubMed  Google Scholar 

  • Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffmann, N. L., and Woo, S. C. (1983) Expression of bacterial genes in plant cells. Proc. Nat. Acad. Sci. USA 80: 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M. E., Taylor, L. P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot cells by electroporation. Proc. Nat. Acad. Sci. USA 82: 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M. E., Taylor, L. P., and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura, T., Sakurai, M., Negishi, T., and Hirose, A. (1985) Regeneration of rice plants from protoplasts. Plant Tiss. Cult. Lett. 2: 74–75.

    Article  Google Scholar 

  • Gallois, P., Lindsey, K., Malone, R., Kreis, M., and Jones, M. G. (1992) Gene rescue in plants by direct gene transfer of total genomic DNA into protoplasts. Nuc. Acids Res. 20: 3977–3982.

    Article  CAS  Google Scholar 

  • Gisel, A., Rothen, B., Iglesias, V. A., Potrykus, I., and Sautter, C. (1996) In vivo observation of large foreign DNA molecules in host plant cells. Eur. J. Cell Biol. 69: 368–372.

    PubMed  CAS  Google Scholar 

  • Golovkin, M. V., Abraham, M., Morocz, S., Bottka, S., Feher, A., and Dudits, D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci. 90: 41–52.

    Article  CAS  Google Scholar 

  • Guerche, P., Bellini, C., Le Moullec, J. M., and Caboche, M. (1987) Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie. 69: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, G., Shillito, R. D., and Chilton, M. D. (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc. Nat. Acad. Sci. USA 94: 11726–11730.

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann, R. M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S. G., Horsch, R. B., Vasil, I. K., and Fraley, R. T. (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6: 265–270.

    Article  CAS  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transforamtion of rice (Oryza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  • Horn, M. E., Shillito, R. D., Conger, B. V., and Harms, C. T. (1988) Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7: 469–472.

    Article  CAS  Google Scholar 

  • Howard, E. A., Danna, K. J., Dennis, E. S., and Peacock, W. J. (1985) Transient expression in maize protoplasts. UCLA Symp. Mol. Cell Biol. 35: 225–234.

    CAS  Google Scholar 

  • Jahne, A., Becker, D., and Lörz, H. (1995) Genetic engineering of cereal crop plants: a review. Euphytica. 85: 35–34.

    Article  Google Scholar 

  • Joersbo, M., and Brunstedt, J. (1990) Direct gene transfer to protoplasts via mild sonication. Plant Cell Rep. 9: 207–210.

    Article  CAS  Google Scholar 

  • Johnson, C. M., Carswell, G. K., and Shillito, R. D. (1989) Direct gene transfer via polyethylene glycol. J. Tiss. Cult. Meth. 12: 127–133.

    Article  Google Scholar 

  • Junker, B., Zimny, J., Luehrs, R., and Lörz, H. (1987) Transient expression of chimeric genes in dividing and non-dividing cereal protoplasts after PEG-induced DNA uptake. Plant Cell Rep. 6: 329–332.

    Article  CAS  Google Scholar 

  • Klebe, R. J., Harriss, J. V., Sharp, Z. D., and Douglas, M. G. (1983) A general method for polyethylene-glycol-induced genetic transformation of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). Gene 25: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, F., Cardon, G., Pöhlman, M., Gill, R., and Schieder, O. (1989) Enhancement of transformation rates in higher plants by low dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Mol. Biol. 12: 189–199.

    Article  Google Scholar 

  • Krens, F. A., Molendijk, L., Wullems, G. J., and Schilperoort, R. A. (1982) In vitro transformation of plant protoplasts with Ti plasmid DNA. Nature 296: 72–75.

    Article  CAS  Google Scholar 

  • Lee, L., Laramore, C. L., Day, P. R., and Turner, N. E. (1996) Transformation and regeneration of creeping bentgrass (Agrostis palustris Huds.) protoplasts. Crop Sci. 36: 401–406.

    Article  Google Scholar 

  • Lindsey, K., and Jones, M. G. K. (1987) Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol. Biol. 10: 43–52.

    Article  CAS  Google Scholar 

  • Li, Z., Xie, Q., Rush, M. C., and Murai, N. (1992) Fertile transgenic rice plants generated via protoplasts from the U.S. cultivar labelle. Crop Sci. 32: 810–814.

    Article  Google Scholar 

  • Lörz, H., Baker, B., and Schell, J. (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 199: 179–182.

    Article  Google Scholar 

  • Loyter, A., Scango, G., Juricek, D., Keene, D., and Ruddle, F. H. (1982) Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy. Exp. Cell Res. 139: 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Lurquin, P. F. (1979) Entrapment of plasmid DNA by liposomes and their interactions with plant protoplasts. Nuc. Acids Res. 3: 3773–3784.

    Article  Google Scholar 

  • Lyznik, A., Rao, K. V., and Hodges, T. K. (1996) FLP-mediated recombination of FRT sites in the maize genome. Nuc. Acids Res. 24: 3784–3789.

    Article  CAS  Google Scholar 

  • Maas, C, and Werr, W. (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep. 8: 148–151.

    Article  CAS  Google Scholar 

  • Maccarrone, M., Rosato, N., and Agro, A. F. (1995) Electroporation enhances cell membrane peroxidation and luminescence. Biochem. Biophys. Res. Comm. 206: 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Marton, L., Wullems, G. J., Molendijk, L., and Schilperoort, R. A. (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277: 129–131.

    Article  Google Scholar 

  • Matsuzawa, Y., and Yoshikawa, K. (1993) Controlling the conformation of large DNA molecule in aqueous solution. Nuc. Acids Symp. Ser. 108: 147–148.

    Google Scholar 

  • Morocz, S., Donn, G., Nemeth, J., and Dudits, D. (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from highly embryogenic suspension culture. Theor. Appl. Genet. 80: 721–726.

    Article  Google Scholar 

  • Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G., and Sala, F. (1987). Hybrid genes in the analysis of transformation conditions: I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol. Biol. 8: 363–374.

    Article  CAS  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyorna cells by electroporation in high electric fields. EMBO. J. 1: 841–845.

    PubMed  CAS  Google Scholar 

  • Ohyama, K., Pelcher, L. E., and Horn, D. (1979) DNA binding and uptake by nuclei isolated from plant protoplasts: factors affecting DNA binding and uptake. Plant Physiol. 60: 98–101.

    Article  Google Scholar 

  • Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I. (1984) Direct gene transfer to plants. EMBO. J. 3: 2717–2722.

    PubMed  CAS  Google Scholar 

  • Penmetsa, R. V., and Ha, S. B. (1994) Factors influencing transient gene expression in electroporated tall fescue protoplasts. Plant Sc. 100: 171–178.

    Article  CAS  Google Scholar 

  • Prioli, L. M., and Sondahl, M. R. (1989) Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L.). Bio/Technology 7: 589–595.

    Article  Google Scholar 

  • Potrykus, I., Saul, M. W., Petruska, J., Paszkowski, J., and Shillito, R. D. (1985) Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199: 183–188.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1990) Gene transfer to cereals: an assessment. Bio/technology 8: 535–542.

    Article  CAS  Google Scholar 

  • Rathus, C, and Birch, R. G. (1992) Optimization of conditions for electroporation and transient expression of foreign genes in sugarcane protoplasts. Plant Sci. 81: 65–74.

    Article  CAS  Google Scholar 

  • Rao, K. V., Rathore, K. S., and Hodges, T. K. (1995) Physical, chemical and physiological parameters for electroporation-mediated gene delivery into rice protoplasts. Transgen. Res. 4: 361–368.

    Article  CAS  Google Scholar 

  • Rhodes, C. A., Lowe, K. S., and Ruby, K. L. (1988) Plant regeneration from protoplasts isolated from embryognic maize cell cultures. Bio/Technology 6: 56–60.

    Article  Google Scholar 

  • Riggs, C. D., and Bates, G. W. (1986) Stable transformation of tobacco (Nicotiana tabacum cultivar Xanthi) by electroporation: Evidence for plasmid concatenation. Proc. Nat. Acad. Sci. USA 83: 5602–5606.

    Article  PubMed  CAS  Google Scholar 

  • Salianov, V. I., Pogrebniak, V. G., Skuridin, S. G., Lortkipanidze, G. B., and Chidzhavadze, Z. G. (1978) Relationship between the molecular structure of aqueous solutions of polyethylene glycol and the compactness of double-stranded DNA molecules. Mol. Biol. (Moskva) 12: 485–495.

    CAS  Google Scholar 

  • Salmenkallio, M. M., Aspegren, K., Akerman, S., Kurten, U., Mannonen, L., Ritala, R., Teeri, T. H., and Kauppinen, V. (1995) Transgenic barley (Hordeum vulgare L.) by electroporation of protoplasts. Plant Cell Rep. 15: 301–304.

    Google Scholar 

  • Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, I. (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4: 1093–1096.

    Article  CAS  Google Scholar 

  • Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276.

    Article  CAS  Google Scholar 

  • Shillito, R. D., Saul, M. W., Paszkowski, J., Müller, M., and Potrykus, I. (1985) High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Article  Google Scholar 

  • Shillito, R. D., Carswell, G. K., Johnson, C. M., DiMaio, J. J., and Harms, C. T. (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.

    Article  Google Scholar 

  • Takano, M., Egawa, H., Ikeda, J. E., and Wakasa, K. (1997) The structures of integration sites in transgenic rice. Plant J. 11: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Toriyama, K., Arimoto, Y., Uchimiya, H., and Hinata, K. (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6: 1072–1074.

    Article  CAS  Google Scholar 

  • Vasil, I. K. (1994) Molecular improvement of cereals. Plant Mol. Biol. 25: 925–937.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, I. K., and Vasil, V. (1992) Advances in cereal protoplast research. Physiol. Plant 85: 279–283.

    Article  CAS  Google Scholar 

  • Vasil, V., Redway, F., and Vasil, I. K. (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.). Bio/Technology 8: 429–434.

    Article  Google Scholar 

  • Vasil, V., and Vasil, I. K. (1984) Isolation and maintenance of embryogenie cell suspension cultures of gramineae. In: Vasil, I.K. (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 1, pp. 152–158. Academic Press, New York.

    Google Scholar 

  • Vasil, V., Hauptmann, R. M., Morrish, F. M., and Vasil, I. K. (1988) Comparative analysis of free DNA delivery and expression into protoplasts of Panicum maximum Jacq. (Guinea grass) by electroporation and polyethylene glycol. Plant Cell Rep. 7: 499–503.

    Article  CAS  Google Scholar 

  • Wang, Z. Y., Takamizo, T., Iglesias, V. A., Osusky, M., Nagel, J., Potrykus, I., and Spangenberg, G. (1992) Transgenic plants of tall fescue (Festuca arundinacea Schreb) obtained by direct gene transfer to protoplasts. Bio/Technology 10: 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X. P., and Li, B. J. (1994) Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep. 13: 237–242.

    Article  CAS  Google Scholar 

  • Yang, N. (1985) Transient gene expression in electroporated plant cells. Trends Biotech. 3:191–192.

    Article  CAS  Google Scholar 

  • Yang, J. S., Ge, K. L., Wang, Y. Z., Wang, B., and Tan, C. C. (1993) Highly efficient transfer and stable integration of foreign DNA into partially digested rice cells using a pulsed electrophoretic drive. Transgen. Res. 2: 245–251.

    Article  CAS  Google Scholar 

  • Zhou, G. Y., Weng, J., Gong, Z., Zhen, Y., Yang, W., Shen, W., Wang, Z., Tao, Q., and Huang, J. (1988) Molecular breeding of agriculture: A technique for introducing exogenous DNA into plants after self-pollination. Sci. Agr. Sinica. 21: 1–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shillito, R. (1999). Methods of Genetic Transformation: Electroporation and Polyethylene Glycol Treatment. In: Vasil, I.K. (eds) Molecular improvement of cereal crops. Advances in Cellular and Molecular Biology of Plants, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4802-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4802-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6016-5

  • Online ISBN: 978-94-011-4802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics