Skip to main content
Log in

Molecular improvement of cereals

  • Mini-review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Battraw M, Hall TC: Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci 86: 191–202 (1992).

    Google Scholar 

  2. Becker D, Brettschneider R, Lorz H: Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5: 299–307 (1994).

    Google Scholar 

  3. Bennetzen JL, Freeling M: Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet 9: 259–261 (1993).

    Google Scholar 

  4. Borlaug NE, Dowswell CR: World revolution in agriculture. In: Book of the Year 1988, pp. 5–14. Encyclopedia Brittanica, Chicago (1988).

    Google Scholar 

  5. Bower R, Birch RG: Transgenic sugarcane plants via microprojectile bombardment. Plant J 2: 409–416 (1992).

    Google Scholar 

  6. Cao J, Duan X, McElroy D, Wu R: Regeneration od herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11: 586–591 (1992).

    Google Scholar 

  7. Callis J, Fromm ME, Walbot V: Introns increase gene expression in cultured maize cells. Genes Devel 1: 1183–1200 (1987).

    Google Scholar 

  8. Cassas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM: Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90: 11212–11216 (1993).

    Google Scholar 

  9. Castillo AM, Vasil V, Vasil IK: Rapid production of fertile transgenic plants of rye (Secale cereale L.). In preparation.

  10. Chan M, Chang H, Ho S, Tong W, Yu S:Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol Biol 22: 491–506 (1993).

    Google Scholar 

  11. Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689 (1992).

    Google Scholar 

  12. Christou P, Ford TL, Kofron M: Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9: 957–962 (1991).

    Google Scholar 

  13. Christou P, Ford TL, Kofron M: The development of a variety-independent gene-transfer method for rice. Trends Biotechnol 10: 239–246 (1992).

    Google Scholar 

  14. Clancy M, Vasil V, Hannah LC, Vasil IK: MaizeShrunken-1 intron and exon regions increase gene expression in maize protoplasts. Plant Sci, in press (1994).

  15. Cornejo M, Luth D, Blankenship KM, Anderson OD, Blechl AE: Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23: 567–581 (1993).

    Google Scholar 

  16. Dale PJ, Marks MS, Brown MM, Woolston CJ, Gunn HV, Mullineaux PM, Lewis DM, Kempt JM, Chen DF, Gilmour DM, Flavell RB: Agroinfection of wheat: inoculation ofin vitro grown seedlings and embryos. Plant Sci 63: 237–245 (1989).

    Google Scholar 

  17. Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I: Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20: 619–629 (1992).

    Google Scholar 

  18. Datta SK, Peterhans A, Datta K, Potrykus I: Genetically engineered fertile Indica-rice recovered from protoplasts. Bio/technology 8: 736–740 (1990).

    Google Scholar 

  19. Dekeyser RA, Claes B, DeRycke RMU, Habets ME, vanMontagu MC, Caplan AB: Transient gene expression in intact and organized rice tissues. Plant Cell 2: 591–602 (1990).

    Google Scholar 

  20. De laPena A, Lorz H, Schell J: Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 235: 274–276 (1987).

    Google Scholar 

  21. DeWet JMJ, DeWet AE, Brink DE, Hepburn AG, Woods JH: Gametophyte transformation in maize (Zea mays, Gramineae). In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and Ecology of Pollen, pp. 59–64. Springer-Verlag, New York (1985).

    Google Scholar 

  22. DeWet JR, Wood KV, DeLuca M, Helinski DR: Fire-fly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7: 725–737 (1987).

    Google Scholar 

  23. D'Halluin K, Bonne E, Bossut M, DeBeuckeleer M, Leemans J: Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495–1505 (1992).

    Google Scholar 

  24. Fang RX, Nagy F, Sivasubramaniam S, Chua NH: Multiplecis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1: 141–150 (1989).

    Google Scholar 

  25. Finer JJ, Vain P, Jones MW, McMullen MD: Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11: 323–328 (1992).

    Google Scholar 

  26. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS: Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807 (1983).

    Google Scholar 

  27. Fromm ME, Taylor LP, Walbot V: Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 882: 5824–5828 (1985).

    Google Scholar 

  28. Fromm ME, Taylor LP, Walbot V: Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793 (1986).

    Google Scholar 

  29. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM: Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8: 833–839 (1990).

    Google Scholar 

  30. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K: Insect resistant rice generated by introduction of a modified δ-endotoxin gene ofBacillus thuringiensis. Bio/technology 11: 1151–1155 (1993).

    Google Scholar 

  31. Gallo-Meagher M, Irvine JE: Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12: 666–670 (1993).

    Google Scholar 

  32. Goff S, Cone KC, Fromm ME: Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes Devel 5: 298–309 (1991).

    Google Scholar 

  33. Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D: Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90: 41–52 (1993).

    Google Scholar 

  34. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG: Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618 (1990).

    Google Scholar 

  35. Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH: Transformation ofZea mays usingAgrobacterium tumefaciens and the shoot apex. Plant Physiol 95: 426–434 (1991).

    Google Scholar 

  36. Grimsley N, Hohn T, Davies JW, Hohn B:Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179 (1987).

    Google Scholar 

  37. Ha S, Wu F, Thorne TK: Transgenic turf-type fall tescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep 11: 601–604 (1992).

    Google Scholar 

  38. Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK: TheViviparious-1 gene and abscisic acid activateC1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Devel 6: 609–618 (1992).

    Google Scholar 

  39. Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT: Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6: 265–270 (1987).

    Google Scholar 

  40. Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK: Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86: 602–606 (1988).

    Google Scholar 

  41. Hauptmann RM, Ashraf M, Vasil V, Hannah LC, Vasil IK, Ferl R: Promoter strength comparisons of maizeShrunken 1 andAlcohol dehydrogenase 1 and2 promoters in mono- and dicotyledonous species. Plant Physiol 88: 1063–1066 (1988).

    Google Scholar 

  42. Hayakawa T, Zhu Y, Itoh K, Kimura Y, Izawa T, Shimamoto K, Toriyama S: Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Natl Acad Sci USA 89: 9865–9869 (1992).

    Google Scholar 

  43. Hess D, Dressler K, Nimmrichter R: Transformation experiments by pipettingAgrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci 72: 233–244 (1990).

    Google Scholar 

  44. Horn ME, Shillito RD, Conger BV, Harms CT: Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep 7: 469–472 (1988).

    Google Scholar 

  45. Iglesias VA, Gisel A, Bilang R, Leduc N, Potrykus I, Sautter C: Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic microtargetting. Planta 192: 84–91 (1994).

    Google Scholar 

  46. Izawa T, Miyazaki C, Yamamoto M, Terada R, Lida S, Shimamoto K: Introduction and transposition of the maize transposable elementAc in rice (Oryza sativa L.). Mol Gen Genet 227: 391–396 (1991).

    Google Scholar 

  47. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in plants. EMBO J 6: 3901–3907 (1987).

    Google Scholar 

  48. Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF: Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 8: 415–418 (1990).

    Google Scholar 

  49. Kaeppler HF, Somers DA, Rines HW, Cockburn AF: Silicon carbide fiber-mediated stable transformation of plant cells. Theor Appl Genet 84: 560–566 (1992).

    Google Scholar 

  50. Kay R, Chan A, Daly M, McPherson J: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 230: 1299–1302 (1987).

    Google Scholar 

  51. Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S: Transformation of microbes, plants and animals by particle bombardment. Bio/technology 10: 286–291 (1992).

    Google Scholar 

  52. Kloti A, Iglesias VA, Wunn J, Burkhardt PK, Datta SK, Potrykus I: Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep 12: 671–675 (1993).

    Google Scholar 

  53. Komari T, Hiei Y, Ohta S, Kumashiro T: Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA. Abstract No. 1666, 14th International Congress of Plant Molecular Biology, Amsterdam, June 19–24 (1994).

  54. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV: Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/technology 11: 194–200 (1993).

    Google Scholar 

  55. Kramer C, DiMaio J, Carswell GK, Shillito RD: Selection of transformed protoplast-derivedZea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190: 454–458 (1993).

    Google Scholar 

  56. Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M: Conservation of genome structure between rice and wheat. Bio/technology 12: 276–278 (1994).

    Google Scholar 

  57. Kyozuka J, Izawa T, Nakajima M, Shimamoto K: Effect of the promoter and the first intron of maizeAdh 1 on foreign gene expression in rice. Maydica 35: 353–357 (1990).

    Google Scholar 

  58. Last DI, Brettell RIS, Chamberlain DA, Chaudhury AM, Larkin PJ, Marsh EL, Peacock WJ, Dennis ES: pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81: 581–588 (1991).

    Google Scholar 

  59. Li L, Qu R, deKochko A, Fauquet C, Beachy RN: An improved rice transformation system using the biolistic method. Plant Cell Rep 12: 250–255 (1993).

    Google Scholar 

  60. Li Z, Hayashimoto A, Murai N: A sulfonylurea herbicide resistance gene fromArabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol 100: 662–668 (1992).

    Google Scholar 

  61. Lorz H, Baker B, Schell J: Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199: 178–182 (1985).

    Google Scholar 

  62. Ludwig SE, Bowen B, Beach L, Wessler SR: A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450 (1990).

    Google Scholar 

  63. Luo Z, Wu R: A simple method for the transformation of rice via the pollen tube pathway. Plant Mol Biol Rep 6: 165–174 (1988).

    Google Scholar 

  64. Mariani C, DeBeuckeleer M, Treuettner J, Leemans J, Goldberg RB: Induction of male sterility in plants by a chimeric ribonuclease. Nature 347: 737–741 (1990).

    Google Scholar 

  65. Mariani C, Gossele V, DeBeuckeleer M, DeBlock M, Goldberg RB, DeGreef W, Leemans J: A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387 (1992).

    Google Scholar 

  66. Mass C, Laufs J, Grant S, Korfhage C, Werr W: The combination of a novel stimulatory element in the first exon of the maizeShrunken-1 gene with the following intron 1 enhances reporter gene expression upto 1000-fold. Plant Sci 16: 199–207 (1991).

    Google Scholar 

  67. Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW: Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15: 913–920 (1990).

    Google Scholar 

  68. McCabe DE, Swain WF, Martinell BJ, Christou P: Stable transformation of soybean (Glycine max) by particle acceleration. Bio/technology 6: 923–926 (1988).

    Google Scholar 

  69. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK: TheViviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 6: 895–905 (1991).

    Google Scholar 

  70. Murai N, Li Z, Kawagoe Y, Hayashimoto A: Transposition of the maizeActivator element in transgenic rice plants. Nucl Acids Res 19: 617–622 (1991).

    Google Scholar 

  71. Murry LE, Elliott LG, Capitant SA, West JA, Hanson KK, Scarafia L, Johnston S, DeLuca-Flaherty C, Nichols S, Cunanan D, Dietrich PS, Mettler IJ, Dewald S, Warnick DA, Rhodes C, Sinibaldi RM, Brunke KJ: Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/technology 11: 1559–1564 (1993).

    Google Scholar 

  72. Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK: Self-fertile transgenic wheat plants regenerated from isolated scuellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5: 285–297 (1994).

    Google Scholar 

  73. Neuhaus G, Spangenberg G, Mittelsten-Scheid O, Schweiger HG: Transgenic rapeseed plants obtained by microinjection of DNA into microspore-derived proembryoids. Theor Appl Genet 75: 30–36 (1987).

    Google Scholar 

  74. Oard JH, Paige D, Dvorak J: Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Rep 8: 156–160 (1989).

    Google Scholar 

  75. Oard JH, Paige DF, Simmonds JA, Gradziel TM: Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol 92: 334–339 (1990).

    Google Scholar 

  76. Ohta Y: High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 83: 715–719 (1986).

    Google Scholar 

  77. Omirulleh S, Abraham M, Golovkin M, Stefanoy I, Karabaev MK, Mustardy L, Morocz S, Dudits D: Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants of maize. Plant Mol Biol 21: 415–428 (1993).

    Google Scholar 

  78. Perez-Vicente R, Wen XD, Wang ZY, Leduc N, Sautter C, Wehrli E, Potrykus I, Spangenberg G: Culture of vegetative and floral meristems in ryegrasses: potential targets for microballistic transformation. J Plant Physiol 142: 610–617 (1993).

    Google Scholar 

  79. Phillips RL, Vasil IK (eds) DNA-Based Markers in Plants. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  80. Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD: Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188 (1985).

    Google Scholar 

  81. Rasmussen JL, Kikkert JR, Roy MK, Sanford JC: Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep 13: 212–217 (1994).

    Google Scholar 

  82. Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ: Genetically transformed maize plants from protoplasts. Science 240: 204–207 (1988).

    Google Scholar 

  83. Russell JA, Roy MK, Sanford JC: Major improvements in biolistic transformation of suspension-cultured tobacco cells.In Vitro Cell Devel Biol 28P: 97–105 (1992).

    Google Scholar 

  84. Sanford JC, Klein TM, Wolf ED, Allen N: Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5: 27–37 (1987).

    Google Scholar 

  85. Sanford JC, DeVit MJ, Russell JA, Smith FD, Harpending PR, Roy MK, Johnson SA: An improved, helium-driven biolistic device. Technique 3: 3–16 (1991).

    Google Scholar 

  86. Sautter C, Waldner H, Neuhaus-Url G, Galli A, Neuhaus G, Potrykus I: Micro-targetting: high efficiency gene transfer using a novel approach for the acceleration of micro-projectiles. Bio/technology 9: 1080–1085 (1991).

    Google Scholar 

  87. Shen W, Escudero J, Schlappi M, Ramos C, Hohn B, Koukolikova-Nicola Z: T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc Natl Acad Sci USA 90: 1488–1492 (1993).

    Google Scholar 

  88. Shewry PR, Tatham AS, Halford NG, Barker JHA, Hannappel U, Gallois P, Thomas M, Kreis M: Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality. Transgen Res 3: 3–12 (1994).

    Google Scholar 

  89. Shimada H, Tada Y, Kawasaki T, Fujimura T: Antisense regulation of the ricewaxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch. Theor Appl Genet 86: 665–672 (1993).

    Google Scholar 

  90. Shimamoto K, Terada R, Izawa T, Fujimoto H: Fertile transgenic rice plants regenrated from transformed protoplasts. Nature 338: 274–276 (1989).

    Google Scholar 

  91. Shimamoto K, Miyazaki Y, Hashimoto H, Izawa T, Itoh K, Terada R, Inagaki Y, Iida S.Trans-activation and stable integration of the maize transposable elementDs cotransfected with theAc transposase gene in transgenic rice plants. Mol Gen Genet 239: 354–360 (1993).

    Google Scholar 

  92. Simmonds J, Steward P, Simmonds D: Regeneration ofTriticum aestivum apical explants after microinjection of germ line progenitor celis with DNA. Physiol Plant 85: 197–206 (1992).

    Google Scholar 

  93. Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR: Fertile, transgenic oat plants. Bio/technology 10: 1589–1594 (1992).

    Google Scholar 

  94. Songstad DD, Halaka FG, DeBoer DL, Armstrong CL, Hinchee MAW, Ford-Santino CG, Brown SM, Fromm ME, Horsch RD: Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell Tiss Org Cult 33: 195–201 (1993).

    Google Scholar 

  95. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM: Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258: 287–292 (1992).

    Google Scholar 

  96. Sukhapinda K, Kozuch ME, Rubin-Wilson B, Ainley WM, Merlo DJ: Transformation of maize (Zea mays L.) protoplasts and regeneration of haploid transgenic plants. Plant Cell Rep 13: 63–68 (1993).

    Google Scholar 

  97. Takeuchi Y, Dotson M, Keen NT: Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol Biol 18: 835–839 (1992).

    Google Scholar 

  98. Tanaka A, Mita S, Ohta S, Kyozuka J, Shimamoto K, Nakamura K: Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucl Acids Res 18: 6767–6770 (1991).

    Google Scholar 

  99. Taylor MG, Vasil V, Vasil IK: Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep 12: 491–495 (1993).

    Google Scholar 

  100. Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H: Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100: 1503–1507 (1992).

    Google Scholar 

  101. Uchimiya H, Iwata M, Nojiri C, Samarajeewa PK, Takamatsu S, Ooba S, Anzai H, Christensen AH, Quail PH, Toki S: Bialaphos treatment of transgenic rice plants expressing abar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/technology 11: 835–836 (1993).

    Google Scholar 

  102. Vasil IK: The realities and challenges of plant biotechnology. Bio/technology 8: 296–301 (1990).

    Google Scholar 

  103. Vasil IK, Vasil V: Advances in cereal protoplast research. Physiol Plant 85: 279–283 (1992).

    Google Scholar 

  104. Vasil IK, Vasil V:in vitro culture of cereals and grasses. In: Vasil IK, Thorpe TA (eds) Plant Cell and Tissue Culture, pp. 293–212. Kluwer Academic Publishers, Dordrecht (1984).

    Google Scholar 

  105. Vasil V, Vasil IK: Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts ofPennisetum americanum. Theor Appl Genet 56: 97–99 (1980).

    Google Scholar 

  106. Vasil V, Hauptmann RM, Morrish FM, Vasil IK: Comparative analysis of free DNA delivery and expression into protoplasts ofPanicum maximum Jacq. (Guinea grass) by electroporation and polyethylene glycol. Plant Cell Rep 7: 499–503 (1988).

    Google Scholar 

  107. Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah LC: Increased gene expression by the first intron of maizeShrunken-1 locus in grass species. Plant Physiol 91: 1575–1579 (1989).

    Google Scholar 

  108. Vasil V, Castillo AM, Fromm ME, Vasil IK: Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/technology 10: 667–574 (1992).

    Google Scholar 

  109. Vasil V, Srivastava V, Castillo AM, Fromm ME, Vasil IK: Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/technology 11: 1553–1558 (1993).

    Google Scholar 

  110. Visser RGF, Jacobsen E: Towards modifying plants for altered starch content and composition. Trends Biotechnol 11: 63–68 (1993).

    Google Scholar 

  111. Walters DA, Vetsch CS, Potts DE, Lundquist RC: Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18: 189–200 (1992).

    Google Scholar 

  112. Wan Y, Lemaux PG: Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104: 37–48 (1994).

    Google Scholar 

  113. Wang Z, Takamizo T, Iglesias VA, Osusky M, Nagel J, Potrykus I, Spangenberg G: Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/technology 10: 691–696 (1992).

    Google Scholar 

  114. Weeks IT, Anderson OD, Blechl AE: Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077–1084 (1993).

    Google Scholar 

  115. Xu X, Li B: Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep 13: 237–242 (1994).

    Google Scholar 

  116. Yoder JI, Goldsbrough AP: Transformation systems for generating marker-free transgenic plants. Bio/technology 12: 263–267 (1994).

    Google Scholar 

  117. Zambryski P, Joss H, Genetello C, Leemans J, VanMontagu M, Schell J: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150 (1983).

    Google Scholar 

  118. Zhang W, McElroy D, Wu R: Analysis of riceActl 5′ region activity in transgenic rice plants. Plant Cell 3: 1155–1165 (1991).

    Google Scholar 

  119. Zhong H, Bolyard MG, Srinivasan C, Sticklen MB: Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep 13: 1–6 (1993).

    Google Scholar 

  120. Zilberstein A, Schuster S, Flaishman M, Pnini-Cohen S, Koncz C, Maas C, Schell J, Eyal Z: Stable transformation of spring wheat cultivars. Abstract No. 2013, 14th International Congress of Plant Molecular Biology, Amsterdam, June 19–24 (1994).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on plenary and keynote addresses delivered at the 8th IAPTC Congress in Florence (Italy) and the 4th ISPMB Congress in Amsterdam (Netherlands), June 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil, I.K. Molecular improvement of cereals. Plant Mol Biol 25, 925–937 (1994). https://doi.org/10.1007/BF00014667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014667

Key words

Navigation