Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 521))

Abstract

Thin-walled structures made of foams, composites, sandwiches or functionally graded materials have many applications in aircraft, automotive, and other industries since they combine functionality, high specific stiffness with light weight. The analysis of such structures can be performed on the base of the three-dimensional theory, but often theories with a lower dimension are applied.

The classical plate theory elaborated by Kirchhoff can be applied to thin plates made of classical materials like steel. But this approach is connected with various limitations (e.g., constant material properties in the thickness direction). In addition, mathematical inconsistencies (for example, the order of the governing equation does not correspond to the number of boundary conditions) exist. Many suggestions for improvements of the classical plate theory are made. The engineering direction of improvements was ruled by applications (e.g., the use of laminates or sandwiches as the plate material), and new hypotheses are introduced. In addition, some mathematical approaches like power series expansions or asymptotic integration techniques are applied.

A conceptional different direction is the direct approach in the plate theory which is applied to plates made of the above mentioned advanced materials. Within this theory static and the vibration problems are solved assuming linear-elastic and linear-viscoelastic behavior. The material properties are changing in the thickness direction only. It is shown that the results based on the direct approach differ significantly from the classical estimates which can be explained by the non-classical estimation of the transverse shear stiffness. In the last part a general linear six-parametric theory is presented. The kinematics of the plate is described by using the vector of translation and the vector of rotation as the independent variables. The relations between the equilibrium conditions of a three-dimensional micropolar plate-like body and the two-dimensional equilibrium equations of the deformable surface are established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Functions. Dover, New York, 1972.

    MATH  Google Scholar 

  • H. Altenbach. Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ing.-Arch., 58:215–228, 1988.

    Article  MATH  Google Scholar 

  • H. Altenbach. An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct., 37(25):3503–3520, 2000a.

    Article  MATH  Google Scholar 

  • H. Altenbach. On the determination of transverse shear stiffnesses of orthotopic plates. ZAMP, 51:629–649, 2000b.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Altenbach and V.A. Eremeyev. Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech., 78(10): 775–794, 2008a.

    Article  MATH  Google Scholar 

  • H. Altenbach and V.A. Eremeyev. Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM, 88(5):332–341, 2008b.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Altenbach and V.A. Eremeyev. Eigen-vibrations of plates made of functionally graded material. CMC, 9 (2): 153–177, 2009a.

    Google Scholar 

  • H. Altenbach and V.A. Eremeyev. On the time-dependent behavior of FGM plates. Key Engineering Materials, 399:63–70, 2009b.

    Article  Google Scholar 

  • H. Altenbach and V.A. Eremeyev. On the bending of viscoelastic plates made of polymer foams. Acta Mechanica, 204(3–4): 137–154, 2009c.

    Article  MATH  Google Scholar 

  • H. Altenbach and V.A. Eremeyev. On the linear theory of micropolar plates. ZAMM, 4(89):242–256, 2009d.

    Article  MathSciNet  Google Scholar 

  • H. Altenbach and P.A. Zhilin. A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki, 11 (4):107–148, 1988.

    MathSciNet  Google Scholar 

  • H. Altenbach and P.A. Zhilin. The theory of simple elastic shells. In R. Kienzler, H. Altenbach, and I. Ott, editors, Critical review of the theories of plates and shells and new applications, Lect. Notes Appl. Comp. Mech. 16, pages 1–12. Springer, Berlin, 2004.

    Google Scholar 

  • H. Altenbach, J. Altenbach, and K. Naumenko. Ebene Flächentragwerke. Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  • H. Altenbach, J. Altenbach, and W. Kissing. Mechanics of Composite Structural Elements. Springer-Verlag, Berlin, 2004.

    Google Scholar 

  • J. Altenbach, H. Altenbach, and V.A. Eremeyev. On generalized Cosserat-type theories of plates and shells. A short review and bibliography. Arch. Appl. Mech., DOI 10.1007/s00419-009-0365-3, 2009.

    Google Scholar 

  • G. Ambrogio, L. Filice, F. Gagliardi, L. Manco, and D. Umbrello. Some considerations on incremental forming of aluminum foam sandwiches. In L.-P. Lefebvre, J. Banhart, and D. C. Dunand, editors, Porous Metals and Metallic Foams: MET FOAM 2007, pages 403–406, 2008.

    Google Scholar 

  • M.F. Ashby. The properties of foams and lattices. Phil. Trans. R. Soc. A., 364(1838):15–30, 2006.

    Article  MathSciNet  Google Scholar 

  • M.F. Ashby and L.U. Tianjian. Metal foams: A survey. Science in China (Series B), 46 (6):521–532, 2003.

    Article  Google Scholar 

  • M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley. Metal Foams: A Design Guid. Butterworth-Heinemann, Boston, 2000.

    Google Scholar 

  • J. Banhart. Manufacturing routes for metallic foams. J. of the Minerals, 52 (12):22–27, 2000.

    Google Scholar 

  • J. Banhart. Metallschäume. MIT Verlag, Bremen, 1997.

    Google Scholar 

  • J. Banhart. Metal foams: Production and stability. Advanced Engineering Materials, 8 (9):781–794, 2006.

    Article  Google Scholar 

  • J. Banhart and H.W. Seeliger. Aluminium foams and sandwich panels: Manufacture, metallurgy and applications. Advanced Engineering Materials, 10(9):793–802, 2008.

    Article  Google Scholar 

  • J. Banhart, M.F. Ashby, and N.A. Fleck, editors. Metal Foams and Porous Metal Structures. Verlag MIT Publishing, Bremen, 1999.

    Google Scholar 

  • H. Bart-Smith, J.W. Hutchinson, N.A. Fleck, and A.G. Evans. Influence of imperfections on the performance of metal foam core sandwich panels. Int. J. Solids Struct., 39:4999–5012, 2002.

    Article  MATH  Google Scholar 

  • Z.P. Bažant, Y. Zhou, G. Zi, and I.M. Daniel. Size effect and asymptotic matching analysis of fracture of closed-cell polymeric foam. Int. J. Solids Struct, 40:7197–7217, 2003.

    Article  MATH  Google Scholar 

  • J.T. Beals and M.S. Thompson. Density gradient effects on aluminium foam compression behaviour. J. Materials Science, 32:3595–3600, 1997.

    Article  Google Scholar 

  • D. Benderly and S. Putter. Characterization of the shear/compression failure envelope of Rohacell foam. Polymer Testing, 23:51–57, 2004.

    Article  Google Scholar 

  • B. Bhushan, editor. Springer Handbook of Nanotechnology. Springer, Berlin, 2nd edition, 2004.

    Google Scholar 

  • H.F. Brinson and C.L. Brinson, editors. Polymer Engineering Science and Viscoelasticity. An Introduction. Springer, New York, 2008.

    Google Scholar 

  • F.C. Caner and Z.P. Bažant. Size effect on strength of laminate-foam sandwich plates: Finite element analysis with interface fracture. Composites: Part B, 40(5):337–348, 2009.

    Article  Google Scholar 

  • G. Caprino, P. Iaccarino, A. Langella, and A. Lamboglia. On the rigidity in bending of a sandwich with thick CFRP facings and thin soft core. Applied Composite Materials, 16 (3): 163–172, 2009.

    Article  Google Scholar 

  • S. Chang, D. Hong, and F.-P. Chiang. Macro and micro deformations in a sandwich foam core. Composites: Part B, 35:503–509, 2004.

    Article  Google Scholar 

  • C. Chen and N.A. Fleck. Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids, 50:955–977, 2002.

    Article  MATH  Google Scholar 

  • C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan. Size dependence of Young’s modulus in ZnO nanowires. Physycal Review Letters, 96(7): 075505–4, 2006.

    Article  Google Scholar 

  • R.M. Christensen. Theory of Viscoelasticity. An Introduction. Academic Press, New York, 1971.

    Google Scholar 

  • J. Chróścielewski, J. Makowski, and W. Pietraszkiewicz. Statics and Dynamics of Multifold Shells. Non-linear Theory and Finite Element Method (in Polish). Wydawnictwo IPPT PAN, Warszawa, 2004.

    Google Scholar 

  • L. Collatz. Eigenwert auf gaben mit Technischen Anwendungen. Akademische Verlaggeselschaft, Leipzig, 1963.

    Google Scholar 

  • E. Cosserat and F. Cosserat. Théorie des corps déformables. Herman et Fils, Paris, 1909.

    Google Scholar 

  • St. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physycal Review B, 69 (16):165410–5, 2004.

    Article  Google Scholar 

  • H.P. Degischer and B. Kriszt, editors. Handbook of Cellular Metals. Production, Processing, Applications. Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  • V.S. Deshpande and N.A. Fleck. Collapse 3-point bending. Int. J. Solids Struct., 38:6275–6305, 2001.

    Article  MATH  Google Scholar 

  • V.S. Deshpande, N.A. Fleck, and M.F. Ashby. Effect of face sheet material on the indentation response of metallic foams. J. Mech. Phys. Solids, 49: 1747–1769, 2001.

    Article  MATH  Google Scholar 

  • S. Diebels. A micropolar theory of porous media: constitutive modelling. Transport in Porous Media, 34:193–208, 1999.

    Article  Google Scholar 

  • S. Diebels and H. Steeb. Stress and couple stress in foams. Computational Materials Science, 28:714–722, 2003.

    Article  Google Scholar 

  • T. Dillard, S. Forest, and P. Ienny. Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. European Journal of Mechanics A-Solids, 25(3):526–549, 2006.

    Article  MATH  Google Scholar 

  • H. L. Duan, J. Wang, and B. L. Karihaloo. Theory of elasticity at the nanoscale. In Advances in Applied Mechanics, volume 42, pages 1–68. Elsevier, 2008.

    Article  Google Scholar 

  • M.A. El Hadek and H.V. Tippur. Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. Int. J. Solids Struct., 40:1885–1906, 2003.

    Article  Google Scholar 

  • V.A. Eremeyev and W. Pietraszkiewicz. Local symmetry group in the general theory of elastic shells. J. Elast, 85(2):125–152, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • V.A. Eremeyev and L.M. Zubov. On constitutive inequalities in nonlinear theory of elastic shells. ZAMM, 87(2):94–101, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • V.A. Eremeyev and L.M. Zubov. Mechanics of Elastic Shells (in Russian). Nauka, Moscow, 2008.

    Google Scholar 

  • J.L. Ericksen and C. Truesdell. Exact theory of stress and strain in rods and shells. Arch. Rat. Mech. Anal., 1(1):295–323, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  • A.C. Eringen. Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York, 1999.

    Google Scholar 

  • T. Fiedler. Numerical and Experimental Investigation of Hollow Sphere Structures in Sandwich Panels. Trans Tech Publications Inc, Stafa-Zürich, Switzerland, 2008.

    Google Scholar 

  • N.A. Fleck, O.B. Olurin, C. Chen, and M.F. Ashby. The effect of hole size upon the strength of metallic and polymeric foams. J. Mechanics Physics of Solids, 49:2015–2030, 2001.

    Article  MATH  Google Scholar 

  • E.A. Friis, R.S. Lakes, and J.B. Park. Negative Poisson’s ratio polymeric and metallic materials. Journal of Materials Science, 23:4406–4414, 1988.

    Article  Google Scholar 

  • L.J. Gibson. Biomechanics of cellular solids. J. Biomechanics, 38:377–399, 2005.

    Article  Google Scholar 

  • L.J. Gibson and M.F. Ashby. Cellular Solids: Structure and Properties. Cambridge Solid State Science Series. Cambridge University Press, Cambridge, 2nd edition, 1997.

    Google Scholar 

  • K.A. Gonthier and C.F. Cox. Predictions for the impact of a granular solid having spatially non-uniform bulk porosity. Comput. Mech., 39:419–437, 2007.

    Article  MATH  Google Scholar 

  • E.I. Grigolyuk and I.T. Selezov. PatNonclassical theories of vibration of beams, plates and shells (in Russian). In Itogi nauki i tekhniki, volume 5 of Mekhanika tverdogo deformiruemogo tela. VINITI, Moskva, 1973.

    Google Scholar 

  • N. Gupta and W. Ricci. Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Materials Science Engng. A, 427:331–342, 2006.

    Article  Google Scholar 

  • Ph. Hartman. Ordinary Differential Equations. Wiley, New York, 1964.

    MATH  Google Scholar 

  • P. Haupt. Continuum Mechanics and Theory of Materials. Springer, Berlin, 2nd edition, 2002.

    MATH  Google Scholar 

  • J. Hohe. A direct homogenisation approach for determination of the stiffness matrix for microheterogeneous plates with application to sandwich panels. Composites: Part B, 34:615–626, 2003.

    Article  Google Scholar 

  • Y.H. Hsu, I.C Turner, and A.W. Miles. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Materials Science: Materials in Medicine, 18(12): 2251–2256, 2007.

    Article  Google Scholar 

  • A. Ionita and Y.J. Weitsman. A model for fluid ingress in closed cell polymeric foams. Mechanics of Materials, 39:434–444, 2007.

    Article  Google Scholar 

  • G. Y. Jing, H. L. Duan, X. M. Sun, Z. S. Zhang, J. Xu, Y. D. Li, J. X. Wang, and D. P. Yu. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physycal Review B, 73(23):235409–6, 2006.

    Article  Google Scholar 

  • G.A. Kardomateas, G.J. Simitses, L. Shen, and R. Li. Mechanics of cellular and other low-density materials. Int. J. Non-Linear Mech., 37:1239–1247, 2002.

    Article  MATH  Google Scholar 

  • O. Kesler and L.J. Gibson. Size effects in metallic foam core sandwich beams. Materials Science Engineering A, 326:228–234, 2002.

    Article  Google Scholar 

  • O. Kesler, L.K. Crews, and L.J. Gibson. Creep of sandwich beams with metallic foam cores. Materials Science Engineering A, 341:264–272,2003.

    Article  Google Scholar 

  • R. Kienzler. On consistent plate theories. Arch. Appl. Mech., 72:229–247, 2002.

    Article  MATH  Google Scholar 

  • R. Kienzler, H. Altenbach, and I. Ott, editors. Critical review of the theories of plates and shells, new applications, volume 16 of Lect. Notes Appl. Comp. Mech., Berlin, 2004. Springer.

    Google Scholar 

  • G.R. Kirchhoff. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik, 40: 51–88, 1850.

    Article  MATH  Google Scholar 

  • A. Kraatz. Berechnung des mechanischen Verhaltens von geschlossenzelligen Schaumstoffen unter Einbeziehung der Mikrostruktur. Diss., Zentrum für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle, 2007.

    Google Scholar 

  • N. Kulkarni, H. Mahfuz, S. Jeelani, and L.A. Carlsson. Fatigue failure mechanism and crack growth in foam core sandwich composites under flexural loading. J. Reinforced Plastics Composites, 23(1):83–94, 2004.

    Article  Google Scholar 

  • R.S. Lakes. Experimental micro elasticity of two porous solids. International Journal of Solids and Structures, 22:55–63, 1986.

    Article  Google Scholar 

  • R.S. Lakes. Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. AS ME. J. Engng Materials Techn., 113:148–155, 1991.

    Article  Google Scholar 

  • R.S. Lakes. Foam structures with a negative Poisson’s ratio. Science, 235: 1038–1040,1987.

    Article  Google Scholar 

  • R.S. Lakes. The time-dependent Poisson’s ratio of viscoelastic materials can increase or decrease. Cellular Polymers, 11:466–469, 1992.

    Google Scholar 

  • R.S. Lakes. Experimental methods for study of Cosserat elastic solids and other generalized continua. In H. Mühlhaus, editor, Continuum Models for Materials with Micro-Structure, pages 1–22. Wiley, N. Y., 1995.

    Google Scholar 

  • R.S. Lakes and A. Wineman. On Poisson’s ratio in linearly visco elastic solids. J. Elast, 85:45–63, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • A.H. Landrock, editor. Handbook of Plastic foams. Types, Properties, Manufacture and applications, Park Ridge, New Jersey, 1995. Noes Publications.

    Google Scholar 

  • S.T. Lee and N.S. Ramesh, editors. Polymeric Foams. Mechanisms and Materials, Boca Raton, 2004. CRC Press.

    Google Scholar 

  • L.-P. Lefebvre, J. Banhart, and D.C. Dunand. Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials, 10(9):775–787, 2008.

    Article  Google Scholar 

  • M. Levinson. An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Comm., 7(6):343–350, 1980.

    Article  MATH  Google Scholar 

  • A. Libai and J.G. Simmonds. The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge, 2nd edition, 1998.

    MATH  Google Scholar 

  • A.I. Lurie. Theory of Elasticity. Foundations of Engineering Mechanics. Springer, Berlin, 2005.

    Book  Google Scholar 

  • A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, and D.P. Papapostolou. On the crushing response of composite sandwich panels subjected to edgewise compression: experimental. Composite Structures, 71:246–257, 2005.

    Article  Google Scholar 

  • T.M. McCormack, R. Miller, O. Kesler, and L.J. Gibson. Failure of sandwich beams with metallic foam cores. Int. J. Solids Struct., 38:4901–4920, 2001.

    Article  MATH  Google Scholar 

  • N. Mills. Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide. Butterworth-Heinemann, Amsterdam, 2007.

    Google Scholar 

  • R.D. Mindlin. Influence of rotatory inertia and shear on fiexural motions of isotropic elastic plates. Trans. ASME. J. Applied Mechanics, 18:31–38, 1951.

    MATH  Google Scholar 

  • K. Mohan, T.-H. Yip, I. Sridhar, and H.P. Seow. Effect of face sheet material on the indentation response of metallic foams. J. Materials Science, 42: 3714–3723, 2007.

    Article  Google Scholar 

  • P. Naghdi. The theory of plates and shells. In S. Flügge, editor, Handbuch der Physik, volume Via/2, pages 425–640. Springer, 1972.

    Google Scholar 

  • S. Nemat-Nasser, W.J. Kang, J.D. McGee, W.-G. Guo, and J.B. Isaacs. Experimental investigation of energy-absorption characteristics of components of sandwich structures. Int. J. Impact Engng, 34(6): 1119–1146, 2007.

    Article  Google Scholar 

  • W. Nowacki. Theory of Asymmetric Elasticity. Pergamon-Press, Oxford et al., 1986.

    MATH  Google Scholar 

  • J.F. Nye. Physical Properties of Crystals. Oxford Science Publications. Clarendon, Oxford, 2000.

    Google Scholar 

  • Q.H. Qin and T.J. Wang. Impulsive loading of a fully clamped circular metallic foam core sandwich plate. In F.L. Huang, Q.M. Li, and T.S. Lok, editors, Proc. 7th International Conference on Shock & Impact Loads on Structures, pages 481–488, 2007.

    Google Scholar 

  • D.T. Queheillalt and H.N.G. Wadley. Cellular metal lattices with hollow trusses. Acta Materialia, 53(2):303–313, 2005.

    Article  Google Scholar 

  • S.V. Raj and L.J. Ghosn. Failure maps for rectangular 17-4PH stainless steel sandwiched foam panels. Materials Science Engineering A, 474 (1–2):88–95, 2008.

    Article  Google Scholar 

  • S.V. Raj, L.J. Ghosn, B.A. Lerch, M. Hebsur, L.M. Cosgriff, and J. Fedor. Mechanical properties of 17-4PH stainless steel foam panels. Materials Science Engineering A, 456:305–316, 2007.

    Article  Google Scholar 

  • F.G. Rammerstorfer, D.H. Pahr, T. Daxner, and W.K. Vonach. Buckling in thinwalled micro and meso structures of lightweight materials and material compounds. Comput. Mech., 37:470–478, 2006.

    Article  MATH  Google Scholar 

  • J. Reany and J.L. Grenestedt. Corrugated skin in a foam core sandwich panel. Composite Structures, 89 (3):345–355, 2009.

    Article  Google Scholar 

  • J.N. Reddy. A simple higher-order theory for laminated composite plates. Trans. ASME. J. Appl. Mech., 51:745–752, 1984.

    Article  MATH  Google Scholar 

  • E. Reissner. On the theory of bending of elastic plates. J. Math. Phys., 23: 184–194, 1944.

    MATH  MathSciNet  Google Scholar 

  • E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech., 12(11):A69–A77, 1945.

    MathSciNet  Google Scholar 

  • E. Reissner. On bending of elastic plates. Quart. Appl. Math., 5:55–68, 1947.

    MATH  MathSciNet  Google Scholar 

  • E. Reissner. Reflections on the theory of elastic plates. Appl. Mech. Rev., 38(11):1453–1464, 1985.

    Article  Google Scholar 

  • E. Riande, R. Diaz-Calleja, M.G. Prolongo, R.M. Masegosa, and C. Salom. Polymer Viscoelasticity: Stress and Strain in Practice. Marcel Dekker, New York, Basel, 2000.

    Google Scholar 

  • M.C. Rice, C.A. Fleischer, and M. Zupan. Study on the collapse of pin-reinforced foam sandwich panel cores. Experimental Mechanics, 46:197–204, 2006.

    Article  Google Scholar 

  • V. Rizov, A. Shipsha, and D. Zenkert. Indentation study of foam core sandwich composite panels. Composite Structures, 69:95–102, 2005.

    Article  Google Scholar 

  • H. Rothert. Direkte Theorie von Linien-und Flächentragwerken bei viskoelastischen Werkstoffverhalten. Techn.-Wiss. Mitteilungen des Instituts für Konstruktiven Ingenieurbaus 73-2, Ruhr-Universität, Bochum, 1973.

    Google Scholar 

  • M.B. Rubin. Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht, 2000.

    MATH  Google Scholar 

  • V. Rubino, V.S. Deshpande, and N.A. Fleck. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates. Eur. J. Mech. A — Solids, 28(1): 14–24, 2009.

    Article  MATH  Google Scholar 

  • A. Salimon, Y. Brechet, M.F. Ashby, and A.L. Greer. Potential applications for steel and titanium metal foams. J. Materials Science, 40(22):5793–5799, 2005.

    Article  Google Scholar 

  • W.S. Sanders and L.J. Gibson. Mechanics of hollow sphere foams. Materials Science Engineering A, 347:70–85, 2003a.

    Article  Google Scholar 

  • W.S. Sanders and L.J. Gibson. Mechanics of BCC and FCC hollow-sphere foams. Materials Science Engineering A, 352:150–161, 2003b.

    Article  Google Scholar 

  • J. B. Sha, T.H. Yip, and J. Sun. Responses of damage and energy of sandwich and multilayer beams composed of metallic face sheets and aluminum foam core under bending loading. Metallurgical Materials Transactions A, 37A:2419–2433, 2006.

    Article  Google Scholar 

  • J.B. Sha and T.H. Yip. In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading. Materials Science Engineering A, 386:91–103, 2004.

    Google Scholar 

  • J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, New York, 1980.

    Google Scholar 

  • V.L. Tagarielli, V.S. Deshpande, and N.A. Fleck. The dynamic response of composite sandwich beams to transverse impact. Int. J. Solids Struct., 44(7–8):2442–2457, 2007.

    Article  Google Scholar 

  • C. Tekoglu and P.R. Onck. Size effects in the mechanical behavior of cellular materials. J. Materials Science, 40:591–5917, 2005.

    Article  Google Scholar 

  • J. Tian, T.J. Lu, H.P. Hodson, D.T. Queheillalt, and H.N.G. Wadley. Cross flow heat exchange of textile cellular metal core sandwich panels. Int. J. Heat Mass Transfer, 50:2521–2536, 2007.

    Article  MATH  Google Scholar 

  • S.P. Timoshenko. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. Ser. 6(245), 41: 744–746, 1921.

    Article  Google Scholar 

  • S.P. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw Hill, New York, 1985.

    Google Scholar 

  • S. Torsakul. Modellierung und Simulation eines Verbunds von Sand-wichplatten zur Entwicklung einer mechanischen Verbindungstechnik. Diss., Institut für Allgemeine Konstruktionstechnik des Maschinenbaus, RWTH Aachen, Aachen, 2007.

    Google Scholar 

  • C. Truesdell. Die Entwicklung des Drallsatzes. ZAMM, 44(4/5): 149–158, 1964.

    MATH  MathSciNet  Google Scholar 

  • C. T ruesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flügge, editor, Handbuch der Physik, Vol. HI/3, pages 1–602. Springer, Berlin, 1965.

    Google Scholar 

  • J. Wang, H. L. Duan, Z. P. Huang, and B. L. Karihaloo. A scaling law for properties of nano-structured materials. Proceedings of the Royal Society of London A, 462(2069): 1355–1363, 2006.

    Article  MATH  Google Scholar 

  • Q. Zhang and X. He. Microstructural evolution and mechanical properties of a nickel-based honeycomb sandwich. Materials Characterization, 60 (3):178–182, 2009.

    Article  Google Scholar 

  • P.A. Zhilin. Mechanics of deformable directed surfaces. Int. J. Solids Struct., 12:635–648, 1976.

    Article  MathSciNet  Google Scholar 

  • P.A. Zhilin. Applied Mechanics. Foundations of the Theory of Shells (in Russian). St. Petersburg State Polytechnical University, 2006.

    Google Scholar 

  • F. Zhu, G. Lu, D. Ruan, and D. Shu. Tearing of metallic sandwich panels subjected to air shock loading. Structural Engineering and Mechanics, 32(2, Sp. Iss. SI): 351–370, 2009.

    Google Scholar 

  • H. Zhu, B.V. Sankar, R.T. Haftka, S. Venkataraman, and M. Blosser. Optimization of functionally graded metallic foam insulation under transient heat transfer conditions. Struct. Multidisc. Optim., 28:349–355, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Altenbach, H., Eremeyev, V.A. (2010). Thin-walled Structures Made of Foams. In: Altenbach, H., Öchsner, A. (eds) Cellular and Porous Materials in Structures and Processes. CISM International Centre for Mechanical Sciences, vol 521. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0297-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0297-8_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0296-1

  • Online ISBN: 978-3-7091-0297-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics