Skip to main content
Log in

Local Symmetry Group in the General Theory of Elastic Shells

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We establish the local symmetry group of the dynamically and kinematically exact theory of elastic shells. The group consists of an ordered triple of tensors which make the shell strain energy density invariant under change of the reference placement. Definitions of the fluid shell, the solid shell, and the membrane shell are introduced in terms of members of the symmetry group. Within solid shells we discuss in more detail the isotropic, hemitropic, and orthotropic shells and corresponding invariant properties of the strain energy density. For the physically linear shells, when the density becomes a quadratic function of the shell strain and bending tensors, reduced representations of the density are established for orthotropic, cubic-symmetric, and isotropic shells. The reduced representations contain much less independent material constants to be found from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adeleke, S.A.: On possible symmetry of shells. In: Dafermos, C.M., Joseph D.D., Leslie, F.M. (eds.) The Breadth and Depth of Continuum Mechanics. A Collection of Papers Dedicated to J.L. Ericksen on his 60th Birthday, pp. 745–757. Springer, Berlin Heidelberg New York (1986)

    Google Scholar 

  2. Altenbach, H., Zhilin, P.A.: The theory of elastic thin shells (in Russian). Adv. Mech. 11, 107–148 (1988)

    MathSciNet  Google Scholar 

  3. Altenbach, H., Zhilin, P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Theories of Plates and Shells: Critical Review and New Applications, pp. 1–12. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  4. Altenbach, H., Naumenko, K., Zhilin, P.A.: A direct approach to the formulation of constitutive equations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 87–90. Taylor & Francis, London (2005)

    Google Scholar 

  5. Arfken G.B., Weber, H.J.: Mathematical Methods for Physicists. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  6. Carrol, M.M., Naghdi, P.M.: The influence of the reference geometry on the response of elastic shells. Arch. Ration. Mech. Anal. 48, 302–318 (1972)

    Article  Google Scholar 

  7. Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely Resultant Shell Finite Elements Accounting For Geometric And Material Non-Linearity. Int. J. Numer. Methods Eng. 35 (1992) 63–94

    Article  MATH  Google Scholar 

  8. Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method (in Polish). Wydawnictwo IPPT PAN, Warszawa (2004)

  9. Cohen, H., Wang, C.-C.: A mathematical analysis of the simplest direct models for rods and shells. Arch. Rational Mech. Anal. 108, 35–81 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cosserat, E., Cosserat, F.: Théorie des corps deformables. Herman et Flis, Paris (1909); English translation: NASA TT F-11, 561, NASA, Washington, District of Columbia (1968)

  11. de Gennes, P.G.: The Physics of Liquid Crystals. Clarendon, Oxford (1974)

    Google Scholar 

  12. Eremeyev, V.A.: Nonlinear micropolar shells: Theory and applications. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 11–18. Taylor & Francis, London (2005)

    Google Scholar 

  13. Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elasticity 74, 67–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eremeyev, V.A., Zubov, L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755–767 (1999)

    Article  MathSciNet  Google Scholar 

  15. Eremeyev, V.A., Zubov, L.M.: The general nonlinear theory of elastic micropolar shells (in Russian). Izvestiya VUZov, Sev.-Kakavk. Region, Estestv. Nauki, Special issue: Nonlinear Problems of Continuum Mechanics, pp. 124–169 (2003)

  16. Ericksen, J.L.: Symmetry transformations for thin elastic shells. Arch. Ration. Mech. Anal. 47, 1–14 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ericksen, J.L.: Apparent symmetry of certain thin elastic shells. J. Meć. 12, 12–18 (1973)

    MathSciNet  Google Scholar 

  18. Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1957)

    Article  MathSciNet  Google Scholar 

  19. Eringen, A.C., Kafadar, C.B.: Polar field theories. In. Eringen A.C. (ed.) Continuum Physics, vol. 4, pp. 1–75. Academic, New York (1976)

    Google Scholar 

  20. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  21. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Konopińska, V., Pietraszkiewicz, W.: Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells. Int. J. Solids Struct. (2006) (in press). Available online 29 April 2006. DOI: 10.1016/j.ijsolstr.2006.04.030

  23. Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271–371 (1983)

    Article  MATH  Google Scholar 

  24. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd ed. Cambridge, UK (1998)

  25. Makowski, J., Pietraszkiewicz, W., Stumpf, H.: Jump conditions in the nonlinear theory of thin irregular shells. J. Elast. 54, 1–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Makowski, J., Stumpf, H.: Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct. 26, 353–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Man, C.-S., Cohen, H.: A coordinate-free approach to the kinematics of membranes. J. Elast. 16, 97–104 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murdoch, A.I.: A coordinate free approach to surface kinematics. Glasg. Mat. J. 32, 299–307 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Murdoch, A.I.: A thermodynamical theory of elastic material interfaces. Q. J. Mech. Appl. Math. XXIX, 245–274 (1976)

    Article  MathSciNet  Google Scholar 

  30. Murdoch, A.I., Cohen, H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72, 61–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murdoch, A.I., Cohen, H.: Symmetry considerations for material surfaces. Addendum. Arch. Ration. Mech. Anal. 76, 393–400 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Naghdi, P.M.: The theory of plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Berlin Heidelberg New York (1972)

    Google Scholar 

  33. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon, Oxford (1986)

    MATH  Google Scholar 

  34. Pietraszkiewicz, W.: Nonlinear theories of shells (in Polish). In: Woźniak, C. (ed.) Mechanics of Elastic Plates and Shells (in Polish), pp. 424–497. Wydawnictwo Naukowe PWN, Warszawa (2001)

    Google Scholar 

  35. Pietraszkiewicz, W., Chróścielewski, J., Makowski, J.: On dynamically and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 163–167. Taylor & Francis, London (2005)

    Google Scholar 

  36. Reissner, E.: Linear and nonlinear theory of shells. In: Fung, Y.C., Sechler, E.E. (eds.) Thin Shell Structures, pp. 29–44. Prentice-Hall, Englewood Cliffs, NJ (1974)

  37. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  38. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin Heidelberg New York (1997)

    MATH  Google Scholar 

  39. Spencer, A.J.M.: Theory of Invariants. In: Eringen A.C. (ed.) Continuum Physics, vol. 1, pp. 292–307. Academic, New York (1971)

    Google Scholar 

  40. Steigmann, D.J.: Elements of the theory of elastic surfaces. In: Fu, I.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications, pp. 268–304. Cambridge University Press, UK (2001)

    Google Scholar 

  41. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interaction. Proc. R. Soc. Lond. A 455, 437–474 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3, pp. 1–602. Springer, Berlin Heidelberg New York (1965)

    Google Scholar 

  43. Truesdell, C.: Rational Thermodynamics. Springer, Berlin Heidelberg New York (1984)

    MATH  Google Scholar 

  44. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic, New York (1977)

    MATH  Google Scholar 

  45. Wang, C.-C.: On the response functions of isotropic elastic shells. Arch. Ration. Mech. Anal. 50, 81–98 (1973)

    Article  MATH  Google Scholar 

  46. Wang C.-C., Truesdell, C.: Introduction to Rational Elasticity. Noordhoff, Leyden (1973)

    MATH  Google Scholar 

  47. Zhilin, P.A.: Basic equations of the non-classical shell theory (in Russian). Tr. LPI 386, 29–46 (1982)

    Google Scholar 

  48. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin Heidelberg New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Pietraszkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeyev, V.A., Pietraszkiewicz, W. Local Symmetry Group in the General Theory of Elastic Shells. J Elasticity 85, 125–152 (2006). https://doi.org/10.1007/s10659-006-9075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9075-z

Key words

Navigation