Skip to main content
Log in

On the bending of viscoelastic plates made of polymer foams

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Considering the viscoelastic behavior of polymer foams a new plate theory based on the direct approach is introduced and applied to plates composed of functionally graded materials (FGM). The governing two-dimensional equations are formulated for a deformable surface, the viscoelastic stiffness parameters are identified assuming linear-viscoelastic material behavior. The material properties are changing in the thickness direction. Solving some problems of the global structural analysis it will be demonstrated that in some cases the results significantly differ from the results based on the Kirchhoff-type theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach H., Zhilin P.: A general theory of elastic simple shells (in Russian). Usp. Mek. 11, 107–14 (1988)

    MathSciNet  Google Scholar 

  2. Altenbach H.: Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ing. Arch. 58, 215–228 (1988)

    Article  MATH  Google Scholar 

  3. Altenbach H., Zhilin P.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I.(eds) Critical Review of the Theories of Plates and Shells and New Applications. Lect. Notes. Appl. Comp. Mech., vol. 16., pp. 1–12. Springer, Berlin (2004)

    Google Scholar 

  4. Altenbach H.: Determination of elastic moduli of anisotropic plates with nonhomogeneous material in thickness direction (in Russian). Mech. Solids 22, 135–141 (1987)

    Google Scholar 

  5. Altenbach H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 37, 3503–3520 (2000)

    Article  MATH  Google Scholar 

  6. Altenbach H.: On the determination of transverse shear stiffnesses of orthotropic plates. ZAMP 51, 629–649 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Altenbach, H., Eremeyev, V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. doi:10.1007/s00419-007-0192-3

  8. Altenbach H., Eremeyev V.A.: Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM 88, 332–341 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G.: Metal Foams: a Design Guide. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  10. Banhart J., Ashby M.F., Fleck N.A. (eds): Metal Foams and Porous Metal Structures. Verlag MIT Publishing, Bremen (1999)

    Google Scholar 

  11. Brinson H.F., Brinson C.L.: Polymer Engineering Science and Viscoelasticity. An Introduction. Springer, New York (2008)

    Google Scholar 

  12. Christensen R.M.: Theory of Viscoelasticity. An Introduction. Academic Press, New York (1971)

    Google Scholar 

  13. Collatz L.: Eigenwertaufgaben mit Technischen Anwendungen. Akademische Verlagsgesellschaft, Leipzig (1963)

    Google Scholar 

  14. Degischer, H.P., Kriszt B. (eds): Handbook of Cellular Metals. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  15. Drozdov A.D.: Finite Elasticity and Viscoelasticity. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  16. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Hartman Ph.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  18. Haupt P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Kraatz, A.: Berechnung des mechanischen Verhaltens von geschlossenzelligen Schaumstoffen unter Einbeziehung der Mikrostruktur. Diss., Zentrum für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg (2007)

  20. Lakes R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  Google Scholar 

  21. Lakes R.S.: The time-dependent Poisson’s ratio of viscoelastic materials can increase or decrease. Cell. Polym. 11, 466–469 (1992)

    Google Scholar 

  22. Lakes R.S., Wineman A.: On Poisson’s ratio in linearly viscoelastic solids. J. Elast. 85, 45–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Landrock, A.H. (eds): Handbook of Plastic Foams. Types, Properties, Manufacture and Applications. Noes Publications,Park Ridge (1995)

    Google Scholar 

  24. Lee S.T., Ramesh N.S. (eds): Polymeric Foams. Mechanisms and Materials. CRC Press, Boca Raton (2004)

    Google Scholar 

  25. Mills N.: Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide. Butterworth-Heinemann, Amsterdam (2007)

    Google Scholar 

  26. Mindlin R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Trans. ASME J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  27. Naghdi P.M.: The theory of plates and shells. In: Flügge, S.(eds) Handbuch der Physik, Bd. VIa/2, pp. 425–640. Springer, Berlin (1972)

    Google Scholar 

  28. Rabotnov Yu N.: Elements of Hereditary Solid Mechanics. Mir Publishers, Moscow (1980)

    MATH  Google Scholar 

  29. Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–194 (1944)

    MATH  MathSciNet  Google Scholar 

  30. Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, A69–A77 (1945)

    MathSciNet  Google Scholar 

  31. Reissner E.: Reflection on the theory of elastic plates. Appl. Mech. Rev. 38, 1453–1464 (1985)

    Article  Google Scholar 

  32. Riande, E. (eds) et al.: Polymer Viscoelasticity: Stress and Strain in Practice. Marcel Dekker, New York (2000)

    Google Scholar 

  33. Rothert, H.: Direkte Theorie von Linien- und Flächentragwerken bei viskoelastischem Werkstoffverhalten. Techn.-Wiss. Mitteilungen des Instituts für Konstruktiven Ingenieurbau 73-2. Ruhr-Universität, Bochum (1973)

  34. Shaw M.T., MacKnight W.J.: Introduction to Polymer Viscoelasticity, 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

  35. Stoer J., Bulirsch R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Google Scholar 

  36. Timoshenko S.P.: On the correnction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6(41), 744–746 (1921)

    Google Scholar 

  37. Tschoegl N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction. Springer, Berlin (1989)

    MATH  Google Scholar 

  38. Zhilin P.A.: Applied Mechanics. Foundations of the Theory of Shells (in Russian). Petersburg State Polytechnical University, Saint Petersburg (2006)

    Google Scholar 

  39. Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Eremeyev, V.A. On the bending of viscoelastic plates made of polymer foams. Acta Mech 204, 137–154 (2009). https://doi.org/10.1007/s00707-008-0053-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0053-3

Keywords

Navigation