Skip to main content

Zusammenfassung

Im ersten Kapitel dieses Buches werden allgemeine Aspekte zu Kurzschaftsystemen besprochen - von der Klassifikation von Kurzschaftsystemen über anatomische bis hin zu osteologischen Aspekten. Die Frage der Langzeitstandfestigkeit von Kurzschaftsysteme wird ebenso angesprochen wie die osteologische Kompetenz. In separaten Abschnitten werden die Planbarkeit sowie die Indikation für Kurzschaftprothesen, aber auch der Versagensmechanismus und die allgemeinen Ergebnisse in der Literatur besprochen.

Die Original-Version dieses Kapitels wurde korrigiert.

Ein Erratum finden Sie unter DOI10.1007/978-3-662-52744-3_3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschn. 1.1

  • Babisch J (2013) Möglichkeiten der patientenindividuellen Hüftgelenkrekonstruktion und Knochenresektion bei Kurzschaftprothesen. In: Jerosch J (Hrsg) Kurzschaftendoprothesen - Wo liegen die Unterschiede? Deutscher Ärzteverlag, Köln, S 193-227

    Google Scholar 

  • Basad E, Ishaque B, Stürz H, Jerosch J (2009) The anterolateral minimally invasive approach for total hip arthroplasty: Techique, pitfalls, and way out. Orthop Clin N Am 40: 473-478

    Article  Google Scholar 

  • Bieger R, Ignatius A, Decking R et al (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27: 158-64

    Article  Google Scholar 

  • Bishop NE, Burton A, Maheson M, Morlock MM (2010) Biomechanics of short hip endoprotheses - the risk of bone failure increases with decreasing implant size. Clin Biomech (Bristol, Avon) 25 (7): 666-74. doi: 10.1016/j.clinbiomech.2010.04.013

    Article  Google Scholar 

  • Budde S, Seehaus F et al (2016) Analysis of migration of the Nanos short-stem hip implant within two years after surgery. Int Orthop 40 (8): 1607-14

    Article  PubMed  Google Scholar 

  • Edeen J, Sharkey PF, Alexander AH (1995) Clinical significance of leg-length inequality after total hip arthroplasty. Am J Orthop 24: 347-51

    CAS  PubMed  Google Scholar 

  • Ettinger M, Ettinger P, Ezechieli M et al (2013) CCD and offset after Nanos short stem in total hip arthroplasty. Technol Health Care 21: 149-155

    CAS  PubMed  Google Scholar 

  • Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38: 6-13

    Article  Google Scholar 

  • Feyen H, Shimmin AJ (2014) Is the length of the femoral component important in primary total hip replacement? Bone Joint J 96-B: 442-448

    Article  CAS  PubMed  Google Scholar 

  • Freitag T, Kappe T, Fuchs M et al (2014) Migration pattern of a femoral short-stem prothesis: a 2-year EBRA-FCA-study. Arch Orthop Trauma Surg 134: 1003-1008

    Article  PubMed  Google Scholar 

  • Jerosch J (2011) Ist kürzer wirklich besser? Philosophie der Kurzschaftendoporthesen. Orthopäde 40: 1075-1083

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J (2012) Kurzschaft ist nicht gleich Kurzschaft - Eine Klassifikation der Kurzschaftprothesen. OUP 1(7/8): 304-312

    Google Scholar 

  • Jerosch J (2013) Kurzschaftendoprothesen: Wo liegen die Unterschiede? Deutscher Ärzteverlag, Köln

    Google Scholar 

  • Jerosch J (2014) Differences between short stem prostheses. Orthopäde 43(8): 783-95; quiz 796. doi: 10.1007/s00132-014-2308-0

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Funken S (2004) Change of offset after implantation of hip alloarthroplasties. Unfallchirurg 107: 475-82

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Grasselli C, Kothny PC, Litzkow D, Hennecke T (2011) Reproduction of the anatomy (offset, CCD, leg length) with a modern short stem hip design - a radiological study. Z Orthop Unfal 150 (1): 206

    Article  Google Scholar 

  • Jerosch J, Stobbe S, Schmid G, Schunck J, Filler T (2012) Prospektive, randomisierte Studie zwischen Bauer- und ALMI-Zugang unter Berücksichtigung von MRI-Befunden und muskelspezifischen Blutparametern. Z Orthop Unfall 150: 615-623

    CAS  PubMed  Google Scholar 

  • Jerosch J, Wetzel R, Aldinger G, Weipert A, Hanusek S, Filler TJ, Peuker ET (2000) Virtuelle Simulation zur Optimierung des Bewegungsspiels einer Hüftalloarthroplastik am Beispiel der adaptierten Druckscheibenprothese. Orthopäde 29: 605-613

    CAS  PubMed  Google Scholar 

  • Khanuja HS, Banerjee S, Jain D et al (2014) Short bone-conserving stems in cementless hip arthroplasty. J Bone Joint Surg Am 96: 1742-1752

    Article  PubMed  Google Scholar 

  • Kutzner KP, Kovacevic MP, Freitag T et al (2016) Influence of patient-related characteristics on early migration in calcar-guided short-stem total hip arthroplasty: a 2-year migration analysis using EBRA-FCA. J Orthop Surg Res 11: 29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutzner KP, Kovacevic MP, Roeder C et al (2015) Reconstruction of femoro-acetabular offsets using a short-stem. Int Orthop 39 (7): 1269-75

    Article  PubMed  Google Scholar 

  • Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370: 1508-19

    Article  PubMed  Google Scholar 

  • Pfeil J (2014) Comment je pose la prothèse optimys. Maitrise Orthop 10: 112-116

    Google Scholar 

  • Pfeil J, Siebert W (2010) Minimally invasive surgery in total hip arthroplasty. Springer, Heidelberg

    Book  Google Scholar 

  • Salemyr M, Muren O, Ahl T et al (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional sten im uncemented total hip arthroplasty. Acta Orthop 86: 659-66

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber M, Woerner M, Springorum R et al (2014) Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA. Clin Orthop Relat Res 472: 3150-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Windhagen H, Chincisan A, Choi HF, Thorey F (2015) Soft-tissue balance in short and straight stem total hip arthroplasty. Orthopedics 38: 14-20

    Article  Google Scholar 

  • Yamako G, Chosa E, Totoribe K et al (2015) Trade-off between stress shielding and initial stability on an anatomical cementless stem shortening; in-vitro biomechanical study. Med Eng Phys 37: 820-5

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 1.2

  • Ekdahl C, Andersson SI, Svensson B (1989) Muscle function of the lower extremities in rheumatoid arthritis and osteoarthrosis. A descriptive study of patients in a primary health care district. J Clin Epidemiol 42: 947-954

    Article  CAS  PubMed  Google Scholar 

  • Gkretsi V, Simopoulou T, Tsezou A (2011) Lipid metabolism and osteoarthritis: lessons from atherosclerosis. Prog Lipid Res 50 (2): 133-40

    Article  CAS  PubMed  Google Scholar 

  • Herzog W, Longino D, Clark A (2003) The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 288: 305-315

    Article  Google Scholar 

  • Masuko K, Murata M, Suematsu N, Okamoto K, Yudoh K, Nakamura H, Kato T (2009) A metabolic aspect of osteoarthritis: lipid as a possible contributor to the pathogenesis of cartilage degradation. Clin Exp Rheumatol 27 (2): 347-53

    CAS  PubMed  Google Scholar 

  • Moraes MR, Cavalcante ML, Leite JA, Macedo JN, Sampaio ML, Jamacaru VF, Santana MG (2011) The characteristics of the mechanoreceptors of the hip with arthrosis. J Orthop Surg Res 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Keefe JH, Gheewala NM, O’Keefe JO (2008) Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 51: 249-255

    Article  PubMed  CAS  Google Scholar 

  • Zimny ML (1988) Mechanoreceptors in articular tissues. Am J Anat 182 (1):16-32

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschn. 1.3

  • Ahmad M, Gawronski D, Blum J, Goldberg J, Gronowicz G (1999) Differential response of human osteoblast-like cells to commercially pure (cp) titanium grades 1 and 4. J Biomed Mater Res 46: 121-131

    Article  CAS  PubMed  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10: 96-101

    Article  Google Scholar 

  • Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49: 155-166

    Article  CAS  PubMed  Google Scholar 

  • Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Dürselen L (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27: 158-164

    Article  Google Scholar 

  • Bishop NE, Burton A, Maheson M, Morlock MM (2010) Biomechanics of short hip endoprostheses - the risk of bone failure increases with decreasing implant size. Clin Biomech 25 (7): 666-74

    Article  Google Scholar 

  • Burt CF, Garvin KL, Otterberg ET, Jardon OM (1998) A femoral component inserted without cement in total hip arthroplasty. A Study of the Tri-Lock component with an average ten year duration of follow-up. J Bone Joint Surg 80-A: 952-60

    Article  Google Scholar 

  • Cameron H (1994) The implant-bone interface. In: Cameron H (ed) Bone implant interface - Mosby Year Book 1994. Mosby, St. Louis, p 145-168

    Google Scholar 

  • Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty 24: 945-950

    Article  CAS  PubMed  Google Scholar 

  • Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surface predict the course and type of fracture healing. J Biomech 32 (3): 255-266

    Article  CAS  PubMed  Google Scholar 

  • Cowin SC (2007) The significance of bone microstructure in mechanotransduction. J Biomech 40:105-109

    Article  Google Scholar 

  • Davies JE (2005) Understanding Peri-Implant Endosseous Healing. J Dent Educ 67 (8): 932-949

    Google Scholar 

  • Ducheyne P, Hench LL, Kagan A 2nd, Martens M, Bursens A, Mulier JC (1980) Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res 14 (3): 225-37

    Article  CAS  PubMed  Google Scholar 

  • Dumbleton J, Manley MT (2004) Hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J Bone Joint Surg Am 86: 2526-2540

    Article  PubMed  Google Scholar 

  • Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69 (1): 45-55

    CAS  PubMed  Google Scholar 

  • Engh CA, O’Connor D, Jasty M, Mcgovern TF, Bobyn JD, Harris WH (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res 285: 13-29

    Google Scholar 

  • Frost HM (2004) A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthodontist 74 (1): 3-15

    PubMed  Google Scholar 

  • Galante J, Rostoker W, Lueck R, Ray RD (1971) Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53 (1): 101-14

    Article  CAS  PubMed  Google Scholar 

  • Green JR, Nemzek JA, Arnoczky SP, Johnson LL, Balas MS (1999) The effect of bone compaction on early fixation of porous-coated implants. J Arthroplasty 14 (1): 91-7

    Article  CAS  PubMed  Google Scholar 

  • Gustke K (2012) Short stems for total hip arthroplasty:initial experience with the fitmore stem J Bone Joint Surg Br 94 (11 Suppl A): 47-51

    Article  CAS  PubMed  Google Scholar 

  • Jaffe WL, Scott DF (1996) Current concepts review - total hip arthroplasty with hydroxyapatite-coated prostheses. J Bone Joint Surg Am 78 (12): 1918-1934

    Article  CAS  PubMed  Google Scholar 

  • Jasty M, Bragdon C, Burke D, O’Connor D, Lowenstein J, Harris WH (1997) In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg Am 79: 707-714

    Article  CAS  PubMed  Google Scholar 

  • Karrholm J, Borssen B, Lowenhielm G, Snorrason F (1994) Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br 76: 912-917

    Article  CAS  PubMed  Google Scholar 

  • Koch FW, Becker A, Kälicke T (2015a) 20-Jahresergebnisse der Verbundfestigkeit der 3D-Titannetz-Beschichtung der Harris Galante I, II und Trilogy-Hüftpfanne in der diffusion bonding-Technik. Eine retrospektive Studie an 31 Hüftpfannen-Explantaten. Vortrag, Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin 20.-23.10.2015

    Google Scholar 

  • Koch FW, Hahn M, Fink B, Amling M (2015b) Die Reaktion des Femurknochens auf den Oktaederquerschnitt der Revitan-Revisionsprothese. Histologische Befunde an einem Femur-Revitan-Explantat vier Monate postoperativ. Osteologie 2: 120-124

    Google Scholar 

  • Koch FW, Messler HH, von Deimling U, Kaden B, Rüther W (1994) Die in vivo-Transformation der induzierbaren Osteoprogenitorzelle zum Osteoblasten in alkalischer Biokeramik. In: Reiser M, Heuck A, Münzenberg KJ, Kummer B (Hrsg) Osteologie aktuell Band VIII. Springer, Heidelberg, S 457-464

    Chapter  Google Scholar 

  • Koch FW, Messler HH, Wagner U, Meyer HJ (1993a) Kurzfristige Ergebnisse (2 bis 5 Jahre) der Hydroxylapatit-beschichteten Hüftendoprothesen vom Typ Furlong. Z Orthop131: 562-567

    Article  CAS  PubMed  Google Scholar 

  • Koch FW, Naegele M, von Deimling U, Messler HH, Wagner U (1993b) Das Verhalten des Knochens auf künstlicher Matrix ohne biomechanischen Einfluss. In: Pesch HJ, Stöß H, Kummer B (Hrsg) Osteologie aktuell Band VII. Springer, Heidelberg, S 363-367

    Chapter  Google Scholar 

  • Kold S, Rahbek O, Vestermark M, Overgaard S, Søballe K (2005) Bone compaction enhances fixation of weightbearing titanium implants Clin Orthop Relat Res (431): 138-44

    Article  Google Scholar 

  • Luedemann RE (1996) Mechanical Characterization of the Interaction between a plasma sprayed Ti alloy coating and Ti alloy and Co-Cr Substrates. Vortrag im Rahmen des 42nd Annual Meeting der Orthopaedic Research Society in Atlanta, Georgia, 19.-22.2.1996

    Google Scholar 

  • McKellop H, Ebramzadeh E, Niederer PG, Sarmiento A (1991). Comparison of the stability of press-fit hip prosthesis femoral stems using a synthetic model femur. J Orthop Res 9: 297-305

    Article  CAS  PubMed  Google Scholar 

  • Meldrum D, Willie BM, Bloebaum, RD (2003) An assessment of the biological fixation of a retrieved Mayo femoral component. Iowa Orthop J 23:103-107

    PubMed  PubMed Central  Google Scholar 

  • Mittelmeier W, Grunwald I, Schäfer R, Grundei H, Gradinger R (1997) Zementlose Endoprothesenverankerung mittels trabekulären, dreidimensional interkonnektierenden Oberflächenstrukturen. Orthopäde 26: 117-124

    CAS  PubMed  Google Scholar 

  • Mommsen H (2002) Einfluss von Länge und Material intramedullärer Implantatstiele von Tumorspezialprothesen auf die Krafteinleitung in das Knochenlager beim proximalen Femurersatz. Dissertation, vorgelegt an der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie rechts der Isar

    Google Scholar 

  • Morgan EF, Lee JJ, Keaveny TM (2005) Sensitivity of multiple damage parameters to compressive overload in cortical bone. Journal of Biomechanical Engineering 127 (4): 557-562

    Article  PubMed  Google Scholar 

  • Morscher EW (1998) Implant stiffness and its effects on bone and prosthesis fixation. In: Sedel, Cabanela (eds) Hip surgery: materials and developments. Mosby, St. Louis

    Google Scholar 

  • Osborne JF (1985) Die physiologische Integration von Hydroxylapatitkeramik in das Knochengewebe. Hefte zur Unfallheilkunde 174: 101-105

    Google Scholar 

  • Osborne JF(1987) Die biologische Leistung der Hydroxylapatit-Beschichtung auf dem Femurschaft einer Titanendoprothese- erste biologische Auswertung eines Humanexplantates. Biomedizinische Technik 32: 177-183, Sonderdruck

    Article  Google Scholar 

  • Pepke W, Nadorf J, Ewerbeck V, Streit MR, Kinkel S, Gotterbarm T, Maier W, Kretzer JP (2013) Primary stability of the Fitmore stem: biomechanical comparision. International Orthopaedics Int Orthop 38 (3): 483-8

    Article  PubMed  Google Scholar 

  • Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208: 108-113

    Google Scholar 

  • Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23:551-560

    Article  CAS  Google Scholar 

  • Rohlmann A, Cheal EJ, Hayes WC, Bergmann G (1988) A nonlinear finite element analysis of interface conditions in porous coated hip endoprotheses. J Biomech 21 (7): 605-611

    Article  CAS  PubMed  Google Scholar 

  • Schlegel P (2004) In vivo biocompatibility study of different calciumphosphate surfaces for implant bone integration. Inaugural-Dissertation, vorgelegt an der Vetsuisse-Fakultät Universität Zürich

    Google Scholar 

  • Schenk RK, Wehrli U (1989) Zur Reaktion des Knochensauf eine zementfreie SL-Femur-Revisionsprothese. Histologische Befunde an einem fünfeinhalb Monate post operationem gewonnenen Autopsiepräparat. Orthopäde 18: 454-462

    CAS  PubMed  Google Scholar 

  • Schmidmaier G, Wildemann B, Schwabe P, Stange R, Hoffmann J, Südkamp NP, Haas NP, Raschke M (2002) A new electrochemically graded hydroxyapatite coating for osteosynthetic implants promotes implant osteointegration in a rat model. J Biomed Mater Res 63 (2): 168-72

    Article  CAS  PubMed  Google Scholar 

  • Shah NN, Edge AJ, Clark DW (2009) 100 % survival after 16 years with revision (aseptic solution) as end point. Hydroxyapatite-ceramic-coated femoral components in young patients followed-up for 16 to 19 years. J Bone Joint Surg [Br] 91-B: 865-9

    Article  Google Scholar 

  • Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24 (24): 4353-64

    Article  CAS  PubMed  Google Scholar 

  • Søballe S, Hansen ES, Rasmussen HB, Bunger C (1993) Hydroxyapatite coating converts fibrous tissue to bone around loaded implant. J Bone Joint Surg [Br] 75-B: 270-8

    Google Scholar 

  • Stanford CM (1999) Biomechanical and functional behavior of implants. Advanced Dental Research 13: 88-92

    Article  CAS  Google Scholar 

  • Szmuckler-Moncler S, Ahossi V, Pointaire Ph (2000) Evaluation of BONIT, a fully resorbable cap coating obteained by electrochemical deposition, 6 weeks of healing: A pilot study in the pig maxilla. Key Engeneering Materials 162-165: 395-389

    Google Scholar 

  • Thalmann C, Stoelzle T, Bereiter H, Stoffel K (2012) Distal femoral cortical hypertrophy using the Fitmore Stem©: A two year follow up regarding incidence, development and clinical implications. 72. Jahrestagung der Schweizerischen Gesellschaft für Orthopädie und Traumatologie, Poster 13

    Google Scholar 

  • Thomsen P, Ericson LE (1991) Inflammatory cell response to bone implant surface. In: Davies JE (ed) The bone-biomaterial interface. University of Toronto Press, Toronto, p 153-164

    Google Scholar 

  • Westphal FM, Bishop N, Honl M, Hille E, Püschel K, Morlock MM (2006) Migration and cyclic motion of a new short-stemmed hip prosthesis - a biomechanical in vitro study. Clin Biomech (Bristol, Avon) 21 (8): 834-40

    Article  CAS  Google Scholar 

  • White CA, Carsen S, Rasuli K, Feibel RJ Kim PR, Beaulé PE (2012) High incidence of migration with poor initial fixation of the Accolade stem. Clin Orthop Relat Res 470 (2): 410-7

    Article  PubMed  Google Scholar 

  • Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J (2004) Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25: 4087-103

    Article  CAS  PubMed  Google Scholar 

  • Zweymüller K, Semlitsch M (1982) Concept and material properties of a cementless hip prosthesis system with Al2 O3 ceramic ball heads and wrought Ti-6Al-4 V stems. Archives of Orthopaedic and Traumatic Surgery 100 (4): 229-236

    Article  Google Scholar 

Literatur zu Abschn. 1.4

  • Babisch J, Layher f, Venbrocks RA, Rose I (2002) Biomechanically based surgical planning with the help of the EndoMap software module. Electromedica 70 (Suppl): 9-16. www.management-krankenhaus.de/file/track/5028/1

    Google Scholar 

  • Babisch J (2011) Kurzschaftprothesen - ein neuer Trend in der Hüftendoprothetik. Orthopädie im Profil 7: 6-8

    Google Scholar 

  • Babisch J (2013) Möglichkeiten der patientenindividuellen Hüftgelenkrekonstruktion und Knochenresektion bei Kurzschaftprothesen. In: Jerosch J (Hrsg.) Kurzschaftendoprothesen. Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln, S 193-227

    Google Scholar 

  • Bishop NE, Burton A, Maheson M, Morlock MM (2010) Biomechanics of short hip endoprostheses - the risk of bone failure increases with decreasing implant size. Clin Biomech 25 (7): 666-674

    Article  Google Scholar 

  • Bonnin MP, Archbold PH, Basiglini L, Selmi TA, Beverland DE (2011) Should the acetabular cup be medialised in total hip arthroplasty. Hip Int 21 (4): 428-435

    Article  PubMed  Google Scholar 

  • Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 4: 231-242

    Article  Google Scholar 

  • Ettinger M, Ettinger P, Lerch M, Radtke K, Budde S, Ezechieli M, Becher C, Thorey F (2011)The Nanos short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21 (5): 583-586

    Article  PubMed  Google Scholar 

  • Falez F, Casella F, Papalia M (2015) Current conceps, classification and results in short stem hip arthroplasty. Orthopedics 38 (Suppl): 6-13

    Article  Google Scholar 

  • Feyen H, Shimmin AJ (2014) Is the length of the femoral component important in primary total hip replacement ? Bone Joint J 96-B (4): 442-448

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J (2011) Ist kürzer wirklich besser? Philosophie der Kurzschaftendoprothesen. Orthopäde 12: 172-1082

    Google Scholar 

  • Jerosch J, Funken S (2004) Veränderung des Offsets nach Implantation von Hüftalloarthroplastiken. Unfallchirurg 107 (6): 475-82

    Article  CAS  PubMed  Google Scholar 

  • Kamada S, Naito M, Nakamura Y, Kiyama T (2011) Hip abductor muscle strength after total hip arthroplasty with short stems. Arch Orthop Trauma Surg 131 (12): 1723-1729

    Article  PubMed  Google Scholar 

  • Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, Flecher X, Girard, J, Mertl P, Marchetti E, Stindel E (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95(3): 210-219

    Article  CAS  PubMed  Google Scholar 

  • Massin P, Geais L, Astoin E, Simondi M, Lavaste F (2000) The anatomic basis for the concept of lateralized femoral stems. J Arthroplasty 15: 93-101

    Article  CAS  PubMed  Google Scholar 

  • McTighe T, Stulberg SD, Keppler L, Keggi J, Kennon R, Brazil D, Aram T, McPherson E (2012) JISRF classification for short stem uncemented THA. JISRF Publication, www.jisrf.org

  • McTighe T, Stulberg SD, Keppler L et al (2013) Classifikation system for short stem uncemented total hip arthroplasty. Bone Joint J 95B (Suppl): 260

    Google Scholar 

  • Mihalko WM, Saleh KJ, Heller MO, Mollard B, König C, Kammerzell S (2009) Femoral neck cut level affects positioning of modular short-stem implant. Orthopedics 32(Suppl):18-21

    Article  PubMed  Google Scholar 

  • Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg 82-B: 952-958

    Article  Google Scholar 

  • Noble PC, Alexander JW, Lindahl LJ et al (1988) The anatomic base of femoral component design. Clin Orthop 235: 148-165

    Google Scholar 

  • Nowak M, Nowak TE, Schmidt R, Forst R, Kress AM, Mueller LA (2011) Prospective study of a cementless total hip arthroplasty with a collum femoris preserving stem and a trabeculae oriented pressfit cup: minimun 6-year follow-up. Arch Orthop Trauma Surg 131 (4): 549-555

    Article  PubMed  Google Scholar 

  • Oldenrijk J, Molleman J, Klaver M, Poolman RW, Haverkamp D (2014) Revision rate after short-stem total hip arthroplasty. Acta Orthopeadica 85 (3): 250-258

    Article  Google Scholar 

  • Pagnano W, Hanssen AD, Lewallen DG, Shaughnessy WJ (1996) The effect of superior placement of the acetabular component on the rate of loosening after total hip arthroplasty. J Bone Joint Surg Am 78: 1004-1014

    Article  CAS  PubMed  Google Scholar 

  • Whiteside LA, White SE, McCarthy DS (1995) Effect of neck resection on torsional stability of cementless total hip replacement. Am J Orthop 24: 766-770

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 1.5

  • Basad E, Ishaque BA, Sturz H, Jerosch J (2009) The anterolateral minimally invasive approach for total hip arthroplasty: technique, pitfalls, and way out. Orthop Clin North Am 40: 473-478

    Article  PubMed  Google Scholar 

  • Bause L (2015) Short stem hip arthroplasty in patients with rheumatoid arthritis Orthopaedic 38 (3 Suppl): S46-50

    Article  Google Scholar 

  • Chammai Y, Brax M (2015) Medium-term comparison of results in obese patients and non-obese hip prostheses with Metha short stem. Eur J Orthop Surg Traumatol 25: 503-508

    Article  PubMed  Google Scholar 

  • Eskelinen A, Paavolainen P, Helenius I, Pulkkinen P, Remes V (2006) Total hip arthroplasty for rheumatoid arthritis in younger patients: 2,557 replacements in the Finnish Arthroplasty Register followed for 0-24 years. Acta Orthopaedica 77: 853-865

    Article  PubMed  Google Scholar 

  • Fink B, Rüther W (2000) Teil- und Totalgelenkersatz bei Hüftkopfnekrosen. Orthopäde 29: 449-456

    CAS  PubMed  Google Scholar 

  • Fink B, Schneider T, Conrad S, Jaeger M, Protzen M, Ruther W (2002) The thrust plate prosthesis in patients with aseptic osteonecrosis of the femoral head. Arch Orthop Trauma Surg 122: 499-505

    Article  PubMed  Google Scholar 

  • Fink B, Siegmüller C, Schneider T, Conrad S, Schmielau G, Rüther W (2000) Short- and medium-term results of the thrust plate prosthesis in patients with polyarthritis. Arch Orthop Trauma Surg 120: 294-298

    Article  CAS  PubMed  Google Scholar 

  • Floerkemeier T, Budde S, Gronewold J, Radtke K, Ettinger M, Windhagen H, von Lewinsky G (2012) Cementless short stem hip arthroplasty METHA as an encouriging option in adults with osteonecrosis oft he femoral head. Arch Orthop Trauma Surg 132: 1125-1131

    Article  PubMed  Google Scholar 

  • Gardeniers J (1992) A new international classification of osteonecrosis of the ARCO (Association Research Circulation Osseous) Comitte. ARCO-News 4: 41-46

    Google Scholar 

  • Gils J, Koblitz F, Seeger J, Ahmed G, Basad E, Ishaque B (2014) Die Metha-Prothese bei Patienten über 65 Jahre: Eine 1-Jahres-Kontrolle. Deutscher Kongress für Orthopädie und Unfallchirurgie, 28.-31.1 0.2014, Berlin. Abstract: doi: 10.3205/14dkou183

  • Iorio R, Healy WL, Presutti AH (2008) A prospective outcomes analysis of femoral component fixation in revision total hip arthroplasty. J Arthroplasty 23: 662-669

    Article  PubMed  Google Scholar 

  • Ishaque BA, Gils J, Wienbeck S, Donle E, Basad E, Stürz H (2009) Ergebnisse nach Wechsel von Schenkelhalsprothesen - Druckscheibenprothese versus ESKA-Cut-Prothese. Z Orthop Unfall 147: 79-88

    Article  CAS  PubMed  Google Scholar 

  • Ishaque BA, Wienbeck S, Basad E, Stürz H (2005) Klinische und radiologische Ergebnisse bei Patienten mit Druckscheibenprothese (DSP) bei Patienten mit Femurkopfnekrose. Orthopädie und Unfallchirurgie 143: 622-630

    CAS  Google Scholar 

  • Issa K, Pivec R, Wuestemann T, Tatevossian T, Nevelos J, Mont MA (2014) Radiographic fit and fill analysis of a new second- generation proximally coated cementless stem compared to its predicate design. J Arthroplasty 29 (1): 192-198

    Article  PubMed  Google Scholar 

  • Jahnke A, Engl S, Seeger JB, Basad E, Rickert M, Ishaque BA (2015) Influence of fit and fill following hip arthroplasty using a cementless short-stem prosthesis. Arch Orthop Trauma Surg (Epub ahead of print)

    Google Scholar 

  • Jakubowitz E, Seeger JB, Lee C, Heisel C, Kretzer JP, Thomsen MN (2008) Do short-stemmed-prostheses induce periprosthetic fractures earlier than standard hip stems? A biomechanical ex-vivo study of two diVerent stem designs Arch Orthop Trauma Surg 7: 653-659

    Google Scholar 

  • Jerosch J (2011) Ist kürzer wirklich besser? Philosophie der Kurzschaftendoprothesen Orthopäde 40: 1075-1083

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J (2013) MiniHip. In: Jerosch J (Hrsg) Kurzschaftendoprothesen. Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln, S 139-170

    Google Scholar 

  • Jerosch J (2015) Wieviel Stabilität kann man von Kurzschaftendoprothesen an der Hüfte erwarten? MOT 4: 16-18

    Google Scholar 

  • Jerosch J, Grasselli C Kothny C (2014) Is there an indication for a partial neck preserving short stem (MiniHip) in patients with an avascular necrosis oft he femoral head? OUP 4: 178-183

    Google Scholar 

  • Kim YH, Oh JH, Oh SH (1995) Cementless total hip arthroplasty in patients with osteonecrosis of the femoral head. Clin Orthop 320: 73-78

    Google Scholar 

  • Kim YH, Park JW, Kim JS (2013) Behaviour of the ultra-short anatomic cementless femoral stem in young and elderly patients. Int Orthop 37: 2323-2330

    Article  PubMed  PubMed Central  Google Scholar 

  • Loehr JF, Munzinger U, Tibesku C (1999) Uncemented total hip arthroplasty in patients with rheumatoid arthritis. Uncemented total hip arthroplasty in patients with rheumatoid arthritis. Clin Orthop Relat Res 366: 31-38

    Article  Google Scholar 

  • McAuley JP, Szuszczewicz ES, Young A et al (2004) Total hip arthroplasty in patients 50 years and younger. Clin Orthop Relat Res 418: 119-125

    Article  Google Scholar 

  • Mont MA, Pivec R, Issa K, Harwin SF (2013) Short stem option for total hip arthroplasty with retained hardware. Orthopedics 36: 770-772

    Article  PubMed  Google Scholar 

  • Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS (1988) The anatomic basis of femoral component design. Clin Orthop Relat Res 235: 148-165

    Google Scholar 

  • Schmidutz F, Steinbrück A, Wanke-Jellinek L, Pietschmann M, Jansson V, Fottner, A (2012) The accuracy of digital templating: a comparison of short-stem total hip arthroplasty and conventional total hip arthroplasty. International Orthopaedics 36 (9): 1767-1772

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider W, Knahr K (2004) Total hip replacement in younger patients - survival rate after avascular necrosis of the femoral head. Acta Orthop Scand 75 (2): 142-146

    Article  PubMed  Google Scholar 

  • Smith SW, Fehring TK, Griffin WL, Beaver WB (1995) Core decompression of the osteonecrotic femoral head. J Bone Joint Surg Am 77: 674-680

    Article  CAS  PubMed  Google Scholar 

  • Springer BD, Fehring TK, Griffin WL, Odum SM, Masonis JL (2009) Why Revision Total Hip Arthroplasty Fails. Clin Orthop 467: 166-173

    Article  PubMed  Google Scholar 

  • Thorey F, Lerch M, Kiel H, von Lewinski G, Stukenborg-Colsman C, Windhagen H (2008) Revision total hip arthroplasty with an uncemented primary stem in 79 patients. Arch Orthop Trauma Surg 128 (7): 673-678

    Article  PubMed  Google Scholar 

  • Tingart M, Beckmann J, Opolka A, Matsuura M, Schaumburger J, Grifka J, Grassel S (2009) Analysis of bone matrix composition and trabecular microarchitecture of the femoral metaphysis in patients with osteonecrosis of the femoral head. J Orthop Res 27 (9): 1175-1181

    Article  PubMed  Google Scholar 

  • Traina F, Bordini B, De Fine M, Toni A (2011) Patient weight more than body mass index influences total hip arthroplasty long term survival. Hip Int 21: 694-699

    Article  PubMed  Google Scholar 

  • Wengler A, Nimptsch U, Mansky T (2014) Hip and knee replacement in Germany and the USA - analysis of individual inpatient data from German and US hospitals fort he years 2005 to 2011. Dtsch Arztebl Int 111: 407-416

    PubMed  PubMed Central  Google Scholar 

  • Whiteside LA, White SE, McCarthy DS (1995) Effect of neck resection on torsional stability of cementless total hip replacement. Am J Orthop 24: 766-770

    CAS  PubMed  Google Scholar 

  • Wienbeck S, Osada H, Stürz H, Ishaque BA (2011) Langfristige Analyse der Druckscheibenprothese Vergleich von Patienten unter und über 50 Jahren. Orthopäde 40: 206-216

    Article  CAS  PubMed  Google Scholar 

  • Yasunaga Y, Goto T, Hisatome T, Tanaka R, Yamasaki T, Ochi M (2003) Bone-preserving prosthesis with a single axis for treating osteonecrosis of the femoral head: midterm results for the thrust plate hip prosthesis. J Orthop Sci 8: 818-22

    Article  PubMed  Google Scholar 

  • Zeh A, Weise A, Vasarhelyi A, Bach AG, Wohlrab D (2011) Medium-term results of the Mayo short-stem hip prosthesis after avascular necrosis oft he femoral head. Z Orthop Unfall 149: 200-205

    Article  CAS  PubMed  Google Scholar 

  • Zwartele R, Peters A, Brouwers J, Olsthoorn P, Brand R, Doets C (2008) Long-term results of cementless primary total hip arthroplasty with a threaded cup and a tapered, rectangular titanium stem in rheumatoid arthritis and osteoarthritis. Int Ortop 32: 581-587

    Article  Google Scholar 

Literatur zu Abschn. 1.6

  • Albanese CV, Santori FS et al (2009) Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop 80 (3): 291-297

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun A, Sabah A(2009) Two-year results of a modular short hip stem prosthesis-a prospective study. Z Orthop Unfall 147 (6): 700-706

    Article  CAS  PubMed  Google Scholar 

  • Budde S, Seehaus F et al (2016) Analysis of migration of the Nanos short-stem hip implant within two years after surgery. Int Orthop 40 (8): 1607-14

    Article  PubMed  Google Scholar 

  • Campbell D, Mercer G et al (2011) Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop 35 (4): 483-488

    Article  PubMed  Google Scholar 

  • Chen HH, Morrey BF et al (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty 24 (6): 945-950

    Article  CAS  PubMed  Google Scholar 

  • Decking R, Rokahr C et al (2008) Maintenance of bone mineral density after implantation of a femoral neck hip prosthesis. BMC Musculoskelet Disord 9: 17

    Article  PubMed  PubMed Central  Google Scholar 

  • Epasto G, Foti A et al (2013) Total hip arthroplasty by using a cementless ultrashort stem: a subject-specific finite element analysis for a young patient clinical case. Proc Inst Mech Eng H 227 (7): 757-766

    Article  PubMed  Google Scholar 

  • Ettinger M, Ettinger P et al (2011) The Nanos short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21 (5): 583-586

    Article  PubMed  Google Scholar 

  • Falez F, Casella F et al (2008) Perspectives on metaphyseal conservative stems. J Orthop Traumatol 9 (1): 49-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falez F, Casella F et al (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38 (3 Suppl): S6-13

    Article  PubMed  Google Scholar 

  • Floerkemeier T (2013) Analyse der Migration der METHA-Kurzschaftprothese mittels Radiostereometrie - vorläufige Ergebnisse einer klinischen Studie über 2 Jahre. Vortrag, Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin 2013

    Google Scholar 

  • Floerkemeier T, Gronewold J et al (2013) The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora. Int Orthop 37 (3): 369-377

    Article  PubMed  Google Scholar 

  • Freitag T, Kappe T et al (2014) Migration pattern of a femoral short-stem prosthesis: a 2-year EBRA-FCA-study. Arch Orthop Trauma Surg 134 (7): 1003-1008

    Article  PubMed  Google Scholar 

  • Gotze C, Ehrenbrink J et al (2010) Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall 148 (4): 398-405

    Article  CAS  PubMed  Google Scholar 

  • Grupp TM, Weik T et al (2010) Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material. BMC Musculoskelet Disord 11: 3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gustke K (2012) Short stems for total hip arthroplasty: initial experience with the Fitmore stem. J Bone Joint Surg Br 94 (11 Suppl A): 47-51

    Article  CAS  PubMed  Google Scholar 

  • Ishaque BA, Donle E et al (2009) Eight-year results of the femoral neck prosthesis ESKA-CUT. Z Orthop Unfall 147 (2): 158-165

    Article  CAS  PubMed  Google Scholar 

  • Jahnke A, Engl S et al (2014) Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis. Int Orthop 38 (10): 2045-2050

    Article  PubMed  Google Scholar 

  • Jahnke A, Engl S et al (2015) Influences of fit and fill following hip arthroplasty using a cementless short-stem prosthesis. Arch Orthop Trauma Surg 135 (11): 1609-14

    Article  PubMed  Google Scholar 

  • Jerosch J, Grasselli C et al (2012) Reproduction of the anatomy (offset, CCD, leg length) with a modern short stem hip design-a radiological study. Z Orthop Unfall 150 (1): 20-26

    Article  CAS  PubMed  Google Scholar 

  • Kaipel M, Grabowiecki P et al (2015) Migration characteristics and early clinical results of the Nanos(R) short-stem hip arthroplasty. Wien Klin Wochenschr 127 (9-10): 375-378

    Article  PubMed  Google Scholar 

  • Karrholm J (2012) Radiostereometric analysis of early implant migration - a valuable tool to ensure proper introduction of new implants. Acta Orthop 83 (6): 551-552

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanuja HS, Banerjee S et al (2014) Short bone-conserving stems in cementless hip arthroplasty. J Bone Joint Surg Am 96 (20): 1742-1752

    Article  PubMed  Google Scholar 

  • Krismer M, Biedermann R et al (1999) The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J Bone Joint Surg Br 81 (2): 273-280

    Article  CAS  PubMed  Google Scholar 

  • Lazarinis S, Mattsson P et al (2013) A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84(1): 32-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerch M, von der Haar-Tran A \ (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36 (3): 533-538

    Article  PubMed  Google Scholar 

  • McCalden RW, Korczak A et al (2015) A randomised trial comparing a short and a standard-length metaphyseal engaging cementless femoral stem using radiostereometric analysis. Bone Joint J 97-B (5): 595-602

    Article  CAS  PubMed  Google Scholar 

  • Mihalko WM, Saleh KJ et al (2009) Femoral neck cut level affects positioning of modular short-stem implant. Orthopedics 32 (10 Suppl): 18-21

    Article  PubMed  Google Scholar 

  • Morrey BF (1989) Short-stemmed uncemented femoral component for primary hip arthroplasty. Clin Orthop Relat Res (249): 169-175

    Google Scholar 

  • Pepke W, Nadorf J et al (2014) Primary stability of the Fitmore stem: biomechanical comparison. Int Orthop 38 (3): 483-488

    Article  PubMed  Google Scholar 

  • Rohrl SM, Li MG et al (2006) Migration pattern of a short femoral neck preserving stem. Clin Orthop Relat Res 448: 73-78

    Article  CAS  PubMed  Google Scholar 

  • Salemyr M, Muren O et al (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop: 1-8

    Google Scholar 

  • Schmidutz F, Graf T et al (2012) Migration analysis of a metaphyseal anchored short-stem hip prosthesis. Acta Orthop 83 (4): 360-365

    Article  PubMed  PubMed Central  Google Scholar 

  • Synder M, Krajewski K et al (2015) Periprosthetic bone remodeling around short stem. Orthopedics 38 (3 Suppl): S40-45

    Article  PubMed  Google Scholar 

  • van Oldenrijk J, Molleman J et al (2014) Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies. Acta Orthop 85 (3): 250-258

    Article  PubMed  PubMed Central  Google Scholar 

  • von Lewinski G, Floerkemeier T (2015) 10-year experience with short stem total hip arthroplasty. Orthopedics 38 (3 Suppl): S51-56

    Article  Google Scholar 

  • Windhagen H, Chincisan A et al (2015) Soft-tissue balance in short and straight stem total hip arthroplasty. Orthopedics 38 (3 Suppl): S14-20

    Article  PubMed  Google Scholar 

  • Zeh A, Pankow F et al (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg 79 (2): 174-180

    PubMed  Google Scholar 

Literatur zu Abschn. 1.7

  • Banerjee S, Pivec R, Issa K, Harwin SF, Mont MA, Khanuja HS (2013) Outcomes of short stems in total hip arthroplasty. Orthopedics 36 (9): 700-7

    Article  PubMed  Google Scholar 

  • Barreca S, Ciriaco L, Ferlazzo M, Rosa MA (2015) Mechanical and biological results of short-stem hip implants: consideration on a series of 74 cases. Musculoskelet Surg 99 (1): 55-9

    Article  CAS  PubMed  Google Scholar 

  • Bause L (2015) Short stem total hip arthroplasty in patients with rheumatoid arthritis. Orthopedics 38 (3 Suppl): S46-50

    Article  PubMed  Google Scholar 

  • Briem D, Schneider M, Bogner N, Botha N, Gebauer M, Gehrke T, Schwantes B (2011) Mid-term results of 155 patients treated with a collum femoris preserving (CFP) short stem prosthesis. Int Orthop 35 (5): 655-60

    Article  PubMed  Google Scholar 

  • Budde S, Windhagen H, Lerch M, Broese M, Götze P, Thorey F (2012) Clinical andradiological results after implantation of the femoral neck preserving Delfi M hip prosthesis: a case series. Technol Health Care 20 (2): 85-93

    PubMed  Google Scholar 

  • Castelli CC, Rizzi L (2014) Short stems in total hip replacement: current status and future. Hip Int 24 (Suppl 10): S25-8

    Article  PubMed  Google Scholar 

  • Chammaï Y, Brax M (2015) Medium-term comparison of results in obese patients and non-obese hip prostheses with Metha short stem. Eur J Orthop Surg Traumatol 25 (3): 503-8

    Article  PubMed  Google Scholar 

  • Chow I, Patel RM, Stulberg SD (2015) Short stem metaphyseal-engaging femoral implants: a case-controlled radiographic and clinical evaluation with eight year follow-up. J Arthroplasty 30 (4): 600-6

    Article  PubMed  Google Scholar 

  • Dillon A (2013) Hip disease - replacement prostheses (TA2). Technology appraisal Manchester: National Institute for Health and Clinical, http://guidance.nice.org.uk/TA2/Guidance/pdf/English

  • Ender SA, Machner A, Pap G, Hubbe J, Grashoff H, Neumann HW (2007) Cementless CUTfemoral neck prosthesis: increased rate of aseptic loosening after 5 years. Acta Orthop 78 (5): 616-21

    Article  PubMed  Google Scholar 

  • Engelmann L (2010) Results after Implantation of the NANOS neck preserving stem. Presentation at the 58th Annual VSO Meeting, Baden-Baden, Germany, 2010

    Google Scholar 

  • Ettinger M, Ettinger P, Lerch M, Radtke K, Budde S, Ezechieli M, Becher C, Thorey F (2011) The Nanos short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21 (5): 583-6

    Article  PubMed  Google Scholar 

  • Falez F, Casella F, Panegrossi G, Favetti F, Barresi C (2008) Perspectives on metaphyseal conservative stems. J Orthop Traumatol 9 (1): 49-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38 (3 Suppl): S6-13

    Article  PubMed  Google Scholar 

  • Feyen H, Shimmin AJ (2014) Is the length of the femoral component important in primary total hip replacement? Bone Joint J 96-B (4): 442-8

    Article  CAS  PubMed  Google Scholar 

  • Floerkemeier T, Tscheuschner N, Calliess T, Ezechieli M, Floerkemeier S, Budde S, Windhagen H, von Lewinski G (2012) Cementless short stem hip arthroplasty METHA as an encouraging option in adults with osteonecrosis of the femoral head. Arch Orthop Trauma Surg 132 (8): 1125-31

    Article  PubMed  Google Scholar 

  • Floerkemeier T, Budde S, Gronewold J, Radtke K, Ettinger M, Windhagen H, von Lewinski G (2015) Short-stem hip arthroplasty in osteonecrosis of the femoral head. Arch Orthop Trauma Surg 135 (5): 715-22

    Article  PubMed  Google Scholar 

  • Gill IR, Gill K, Jayasekera N, Miller J (2008) Medium term results of the collum femoris preserving hydroxyapatite coated total hip replacement. Hip Int 18 (2): 75-80

    Article  CAS  PubMed  Google Scholar 

  • Goebel D, Schultz W (2009) The Mayo cementless femoral component in active patients with osteoarthritis. Hip Int 19 (3): 206-10

    PubMed  Google Scholar 

  • Gruner A, Heller KD (2015) Patient selection for shorter femoral stems. Orthopedics 38 (3 Suppl): S27-32

    Article  PubMed  Google Scholar 

  • Hagel A, Hein W, Wohlrab D (2008) Experience with the Mayo conservative hip system. Acta Chir Orthop Traumatol Cech 75 (4): 288-92

    CAS  PubMed  Google Scholar 

  • Hailer NP, Garellick G, Kärrholm J (2010) Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop 81 (1): 34-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper GJ, Rothwell AG, Stringer M, Frampton C (2009) Revision following cemented and uncemented primary total hip replacement: a seven-year analysis from the New Zealand Joint Registry. J Bone Joint Surg Br 91 (4): 451-8

    Article  CAS  PubMed  Google Scholar 

  • Hutt J, Harb Z, Gill I, Kashif F, Miller J, Dodd M (2014) Ten year results of the collum femoris preserving total hip replacement: a prospective cohort study of seventy five patients. Int Orthop 38 (5): 917-22

    Article  PubMed  Google Scholar 

  • Ishaque BA, Gils J, Wienbeck S, Donle E, Basad E, Stürz H (2009) Results after replacement of femoral neck prostheses - thrust plate prosthesis (TPP) versus ESKA cut prosthesis. Z Orthop Unfall 147 (1): 79-88

    Article  CAS  PubMed  Google Scholar 

  • Jakubowitz E, Seeger JB, Lee C, Heisel C, Kretzer JP, Thomsen MN (2009) Do short-stemmed-prostheses induce periprosthetic fractures earlier than standard hip stems? A biomechanical ex-vivo study of two different stem designs. Arch Orthop Trauma Surg 129 (6): 849-55

    Article  PubMed  Google Scholar 

  • Jerosch J (2011) Ist kürzer wirklich besser? Philosophie der Kurzschaftendoprothesen. Orthopäde 40: 1075-1083

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J (2012) Kurzschaft ist nicht gleich Kurzschaft - Eine Klassifikation der Kurzschaftprothesen. OUP 07-08: 304-312

    Google Scholar 

  • Jerosch J (2013) Kurzschaftendoprothesen - Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Jerosch J (2014) Gibt es eine Indikation für ein schenkelhalsteilerhaltendes Kurzschaftsystem (MiniHip) bei Patienten mit avaskulärer Femurkopfnekrose? OUP 4: 178-183

    Google Scholar 

  • Kendoff DO, Citak M, Egidy CC, O’Loughlin PF, Gehrke T (2013) Eleven-year results of the anatomic coated CFP stem in primary total hip arthroplasty. J Arthroplasty 28 (6): 1047-51

    Article  PubMed  Google Scholar 

  • Kim YH, Oh JH (2012) A comparison of a conventional versus a short, anatomical metaphyseal-fitting cementless femoral stem in the treatment of patients with a fracture of the femoral neck. J Bone Joint Surg Br 94 (6): 774-81

    Article  PubMed  Google Scholar 

  • Kress AM, Schmidt R, Nowak TE, Nowak M, Haeberle L, Forst R, Mueller LA (2012) Stress-related femoral cortical and cancellous bone density loss after collum femoris preserving uncemented total hip arthroplasty: a prospective 7-year follow-up with quantitative computed tomography. Arch Orthop Trauma Surg 132 (8): 1111-9

    Article  PubMed  Google Scholar 

  • Kuhn H (2010) NANOS: protesi a stelo corto, a conservazione del collo. In: Falez F (ed) La protesi d’anca nel paziente giovane attivo. CIC Edizioni Internazionali, Roma, p 123-134

    Google Scholar 

  • Kuhn H (2013) Nanos. In: Jerosch J (Hrsg) Kurzschaftendoprothesen - Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Labek G, Thaler M, Janda W, Agreiter M, Stöckl B (2011) Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J Bone Joint Surg Br 93 (3): 293-7

    Article  CAS  PubMed  Google Scholar 

  • Lacko M, Filip V, Cellár R, Vaško G (2014) Our experience with the metha short hip stem. Acta Chir Orthop Traumatol Cech 81 (1): 70-6. Slovak

    CAS  PubMed  Google Scholar 

  • Li M, Hu Y, Xie J (2014) Analysis of the complications of the collum femoris preserving (CFP) prostheses. Acta Orthop Traumatol Turc 48 (6): 623-7

    Article  PubMed  Google Scholar 

  • Martins LG, Garcia FL, Picado CH (2014) Aseptic loosening rate of the Mayo femoral stem with medium-term follow up. J Arthroplasty 29 (11): 2122-6

    Article  PubMed  Google Scholar 

  • McTighe T, Stulberg SD, Keppler L, Keggi J, Kennon R, Brazil D, Aram T, McPherson E (2012) A Classification System For Short Stem Uncemented THA. CME ICJR Poster 4 April 27-29, 2012, Coronado, CA

    Google Scholar 

  • Moga M, Pogarasteanu ME (2014) Technical considerations and functional results in primary uncemented hip arthroplasty using short femoral stems through mini-invasive techniques. J Med Life 7 (3): 403-7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molfetta L, Capozzi M, Caldo D (2011) Medium term follow up of the Biodynamic neck sparing prosthesis. Hip Int 21 (1): 76-80

    Article  PubMed  Google Scholar 

  • Molli RG, Lombardi AV Jr, Berend KR, Adams JB, Sneller MA (2012) A short tapered stem reduces intraoperative complications in primary total hip arthroplasty. Clin Orthop Relat Res 470 (2): 450-61

    Article  PubMed  Google Scholar 

  • Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82 (7): 952-8

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuijse MJ, Valstar ER, Nelissen RG (2012) 5-year clinical and radiostereometric analysis (RSA) follow-up of 39 CUT femoral neck total hip prostheses in young osteoarthritis patients. Acta Orthop 83 (4): 334-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak M, Nowak TE, Schmidt R, Forst R, Kress AM, Mueller LA (2011) Prospective study of a cementless total hip arthroplasty with a collum femoris preserving stem and a trabeculae oriented pressfit cup: minimun 6-year follow-up. Arch Orthop Trauma Surg 131 (4): 549-55

    Article  PubMed  Google Scholar 

  • Oehme S (2013) Mayo. In: Jerosch J (Hrsg) Kurzschaftendoprothesen - Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Parente F (2010) 5 years clinical experiences of a neck preserving stem. Mediterranean Hip Meeting, Athens, Greece

    Google Scholar 

  • Patel RM, Smith MC, Woodward CC, Stulberg SD (2012) Stable fixation of short-stem femoral implants in patients 70 years and older. Clin Orthop Relat Res 470 (2): 442-9

    Article  PubMed  Google Scholar 

  • Patel RM, Lo WM, Cayo MA, Dolan MM, Stulberg SD (2013) Stable, dependable fixation of short-stem femoral implants at 5 years. Orthopedics 36 (3): e301-7

    Article  PubMed  Google Scholar 

  • Pipino F (2004) CFP prosthetic stem in mini-invasive total hip arthroplasty. J Orthop Traumatol 5 (3): 165-71

    Article  Google Scholar 

  • Pons M (2010) Learning curve and short-term results with a short-stem CFP system. Hip Int 20 Suppl 7: S52-7

    Article  PubMed  Google Scholar 

  • Rometsch E, Bos PK, Koes BW (2012) Survival of short hip stems with a „modern“, trochanter-sparing design - a systematic literature review. Hip Int 22 (4): 344-54

    Article  PubMed  Google Scholar 

  • Santori FS, Santori N (2010) Mid-term results of a custom-made short proximal loading femoral component. J Bone Joint Surg Br 92 (9): 1231-7

    Article  CAS  PubMed  Google Scholar 

  • Steens W, Skripitz R, Schneeberger AG, Petzing I, Simon U, Goetze C (2010) Cementless femoral neck prosthesis CUT - clinical and radiological results after 5 years. Z Orthop Unfall 148 (4): 413-9

    Article  CAS  PubMed  Google Scholar 

  • Thomas W, Lucente L, Mantegna N, Grundei H (2004) ESKA (CUT) endoprosthesis. Orthopäde 33: 11, 1243-8

    Article  CAS  PubMed  Google Scholar 

  • Thorey F, Hoefer C, Abdi-Tabari N, Lerch M, Budde S, Windhagen H (2013) Clinical results of the metha short hip stem: a perspective for younger patients? Orthop Rev (Pavia) 5 (4): e34

    Article  Google Scholar 

  • Tomaszewski W, Kotela I, Kawik L, Bednarenko M, Lorkowski J, Kotela A (2013) Quality of live of patients in the evaluation of outcomes of short stem hip arthroplasty for hip osteoarthritis. Ortop Traumatol Rehabil 15 (5): 439-57

    Article  PubMed  Google Scholar 

  • Troelsen A, Malchau E, Sillesen N, Malchau H 2013 () A review of current fixation use and registry outcomes in total hip arthroplasty: the uncemented paradox. Clin Orthop Relat Res 471 (7): 2052-9

    Article  PubMed  PubMed Central  Google Scholar 

  • van Oldenrijk J, Molleman J, Klaver M, Poolman RW, Haverkamp D (2014) Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies. Acta Orthop 85 (3): 250-8

    Article  PubMed  PubMed Central  Google Scholar 

  • von Lewinski G, Floerkemeier T (2015) 10-year experience with short stem total hip arthroplasty. Orthopedics 38 (3 Suppl): S51-6

    Article  Google Scholar 

  • Wechter J, Comfort TK, Tatman P, Mehle S, Gioe TJ (2013) Improved survival of uncemented versus cemented femoral stems in patients aged < 70 years in a community total joint registry. Clin Orthop Relat Res 471 (11): 3588-95

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittenberg RH, Steffen R, Windhagen H, Bücking P, Wilcke A (2013) Five-year results of a cementless short-hip-stem prosthesis. Orthop Rev (Pavia) 5 (1): e4

    Article  Google Scholar 

  • Wittenberg RH, Steffen R (2015) Comparative 5-year results of short hip total hip arthroplasty with Ti- or CoCr-neck adapters. Orthopedics. Mar;38 (3 Suppl): S33-9

    Article  PubMed  Google Scholar 

  • Wyatt M, Hooper G, Frampton C, Rothwell A (2014) Survival outcomes of cemented compared to uncemented stems in primary total hip replacement. World J Orthop 5 (5): 591-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeh A, Weise A, Vasarhelyi A, Bach AG, Wohlrab D (2011) Medium-term results of the Mayo short-stem hip prosthesis after avascular necrosis of the femoral head. Z Orthop Unfall 149 (2): 200-5

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschn. 1.8

  • Aldinger PR, Sabo D, Pritsch M, Thomsen M, Mau H, Ewerbeck V, Breusch SJ (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: A prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73 (2): 115-121

    Article  CAS  PubMed  Google Scholar 

  • Alm JJ, Mäkinen TJ, Lankinen P, Moritz N, Vahlberg T, Aro HT (2009) Female patients with low systemic BMD are prone to bone loss in Gruen zone 7 after cementless total hip arthroplasty: A 2-year DXA follow-up of 39 patients. Acta Orthopaedica 80 (5): 531-537

    Article  PubMed  PubMed Central  Google Scholar 

  • Arabmotlagh M, Hennigs T, Rittmeister M (2003) Periprothetischer Knochenumbau am proximalen Femur nach Implantation von Individual- und Standard-Hüftendoprothesen. Z Orthop 141 (05): 519-525

    Article  CAS  PubMed  Google Scholar 

  • Arno S, Fetto J, Nguyen NQ, Kinariwala N, Takemoto R, Oh C, Walker PS (2012) Evaluation of femoral strains with cementless proximal-fill femoral implants of varied stem length. Clinical Biomechanics 27 (7): 680-685

    Article  PubMed  Google Scholar 

  • Banerjee S, Pivec R, Issa K, Harwin SF, Mont MA, Khanuja HS (2013) Outcomes of short stems in total hip arthroplasty. Orthopedics 36 (9): 700-707

    Article  PubMed  Google Scholar 

  • Brinkmann V, Radetzki F, Delank K, Wohlrab D, Zeh A (2015) A prospective randomized radiographic and dual-energy X-ray absorptiometric study of migration and bone remodeling after implantation of two modern short-stemmed femoral prostheses. J Orthop Traumatol 16 (3): 237-43

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryan JM, Sumner DR, Hurwitz DE, Tompkins GS, Andriacchi TP, Galante JO (1996) Altered load history affects periprosthetic bone loss following cementless total hip arthroplasty. J Orthop Res 14 (5): 762-768

    Article  CAS  PubMed  Google Scholar 

  • Bugbee WD, Culpepper WJ, Engh CA, Engh CA (1997) Long-Term Clinical Consequences of „stress shielding“ after Total Hip Arthroplasty without Cement. J Bone Joint Surg 79 (7): 1007-1012

    Article  CAS  PubMed  Google Scholar 

  • Castelli CC, Rizzi L (2014) Short stems in total hip replacement: current status and future. Hip Int 24 (Suppl 10): S25-28

    Article  PubMed  Google Scholar 

  • Cavalli L, Brandi M (2014) Periprosthetic bone loss: diagnostic and therapeutic approaches. F1000Res 17 (2): 266

    Google Scholar 

  • Chen H-H, Morrey BF, An K-N, Luo Z-P (2009) Bone Remodeling Characteristics of a Short-Stemmed Total Hip Replacement. J Arthroplasty 24 (6): 945-950

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Rushton N (1995) Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg Br 77-B (3): 479-483

    Google Scholar 

  • Decking R, Rokahr C, Zurstegge M, Simon U, Decking J (2008) Maintenance of bone mineral density after implantation of a femoral neck hip prosthesis. BMC Musculoskelet Disord 9 (1): 17

    Article  PubMed  PubMed Central  Google Scholar 

  • Engh CA, Bobyn JD (1984) Biologic fixation of a modified Moore prosthesis. Part II. Evaluation of adaptive femoral bone modeling. Hip: 110-132

    Google Scholar 

  • Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69-B (1): 45-55

    Google Scholar 

  • Engh CA, Bobyn JD (1988) The Influence of Stem Size and Extent of Porous Coating on Femoral Bone Resorption after Primary Cementless Hip Arthroplasty. Clinical Orthopaedics and Related Research 231: 7-28

    Google Scholar 

  • Ercan A, Filler TJ, Jerosch J (2015) Postoperative Knochendichteveränderung um die implantierte zementfreie Kurzschaftprothese MiniHip (Corin). OUP 2015; 02: 106-112 DOI 10.3238/oup.2015.0106-0112

    Google Scholar 

  • Ercan A (2017) Postoperative Knochendichteveränderung bei einer schenkelhalsteilerhaltenden Kurzschaftprothese MiniHipTM. Dissertation, Heinrich Heine Universität Düsseldorf

    Google Scholar 

  • Fischer W, Kempers B, Spitz J (1990) Knochendensitometrie - Wertigkeit und Grenzen der Methode. Der Nuklearmediziner 2: 77-82

    Google Scholar 

  • Götze C, Ehrenbrink J, Ehrenbrink H (2010) Bleibt der Krafteinfluss der Kurzschaftprothese auf den methaphysären proximalen Femur begrenzt? Osteodensitometrische Analysen der Nanos-Schaftendoprothese. Z Orthop Unfall 148 (04): 398-405

    Article  PubMed  Google Scholar 

  • Green JR, Nemzek JA, Arnoczky SP, Johnson LL, Balas MS (1999) The effect of bone compaction on early fixation of porous-coated implants. J Arthroplasty 14(1): 91-97

    Article  CAS  PubMed  Google Scholar 

  • Gruen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res (141): 17-27

    Google Scholar 

  • Hennigs T, Arabmotlagh M, Schwarz A, Zichner L (2002) Dosisabhängige Prophylaxe des frühen periprothetischen Knochenschwundes durch Alendronat. Z Orthop Ihre Grenzgeb 140 (01): 42-47

    Article  CAS  PubMed  Google Scholar 

  • Huiskes R, Weinans HH, Rietbergen Bv (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res: 124-134

    Google Scholar 

  • Jerosch J (2012) Kurzschaft ist nicht gleich Kurzschaft - Eine Klassifikation der Kurzschaftprothesen. OUP 1 (7-8): 304-312

    Google Scholar 

  • Jerosch J (2014) Unterschiede zwischen verschiedenen Kurzschaftendoprothesen. Der Orthopäde 43 (8): 783-796

    Article  CAS  PubMed  Google Scholar 

  • Kerner J, Huiskes R, van Lenthe GH, Weinans H, van Rietbergen B, Engh CA, Amis AA (1999) Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. J Biomech 32 (7): 695-703

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Choi Y, Kim J-S (2011) Comparison of Bone mineral density changes around short, metaphyseal-fitting, and conventional cementless anatomical femoral components. J Arthroplasty 26 (6): 931-940

    Article  PubMed  Google Scholar 

  • Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10 (6): 836-844

    Article  CAS  PubMed  Google Scholar 

  • Kröger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O (1996) Evaluation of periprosthetic bone using dual-energy X-ray absorptiometry: Precision of the method and effect of operation on bone mineral density. J Bone Miner Res 11 (10): 1526-1530

    Article  PubMed  Google Scholar 

  • Lazarinis S, Mattsson P, Milbrink J, Mallmin H, Hailer NP (2013) A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84 (1): 32-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerch M, Kurtz A, Stukenborg-Colsman C, Nolte I, Weigel N, Bouguecha A, Behrens BA (2012) Bone remodeling after total hip arthroplasty with a short stemmed metaphyseal loading implant: Finite element analysis validated by a prospective DEXA investigation. Journal of Orthopaedic Research 30(11): 1822-1829

    Article  PubMed  Google Scholar 

  • Lerch M, Kurtz A, Windhagen H, Bouguecha A, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) The cementless Bicontact stem in a prospective dual-energy X-ray absorptiometry study. Int Orthop 36 (11): 2211-2217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36 (3): 533-538

    Article  PubMed  Google Scholar 

  • Martini F, Sell S, Kremling E, Küsswetter W (1996) Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stems. Int Orthop 20 (4): 218-221

    Article  CAS  PubMed  Google Scholar 

  • Martini F, Schmidt B, Sell S (1997) Wertigkeit und Reproduzierbarkeit osteodensitometrischer DEXA-Messungen nach Hüfttotalendoprothesenimplantation. Z Orthop Unfall 135 (01): 35-39

    Article  CAS  Google Scholar 

  • Martini F, Lebherz C, Mayer F, Leichtle U, Kremling E, Sell S (2000) Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J Bone Joint Surg Br 82-B (7): 1065-1071

    Article  Google Scholar 

  • Merle C, Sommer J, Streit MR, Waldstein W, Bruckner T, Parsch D, Aldinger PR and Gotterbarm T (2012) Influence of surgical approach on postoperative femoral bone remodelling after cementless total hip arthroplasty. Hip Int 22 (5): 545-554

    Article  PubMed  Google Scholar 

  • Mirsky EC, Einhorn TA (1998). Current Concepts Review - Bone Densitometry in Orthopaedic Practice. J Bone Joint Surg 80 (11): 1687-98

    Article  CAS  PubMed  Google Scholar 

  • Muratore M, Quarta E, Quarta L, Calcagnile F, Grimaldi A, Orgiani MA, Marsilio A, Rollo G (2012) Ibandronate and cementless total hip arthroplasty: densitometric measurement of periprosthetic bone mass and new therapeutic approach to the prevention of aseptic loosening. Clin Cases Miner Bone Metab 9 (1): 50-55

    PubMed  PubMed Central  Google Scholar 

  • Nishii T, Sugano N, Masuhara K, Shibuya T, Ochi T, Tamura S (1997) Longitudinal Evaluation of Time Related Bone Remodeling After Cementless Total Hip Arthroplasty. Clin Orthop Rel Res 339: 121-131

    Article  Google Scholar 

  • Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK (1999) Radiation exposure in bone mineral density assessment. Applied Radiat Isotop 50 (1): 215-236

    Article  CAS  Google Scholar 

  • Nowak M, Nowak TE, Schmidt R, Forst R, Kress AM, Mueller LA (2011) Prospective study of a cementless total hip arthroplasty with a collum femoris preserving stem and a trabeculae oriented pressfit cup: minimun 6-year follow-up. Arch Orthop Trauma Surg 131 (4): 549-555

    Article  PubMed  Google Scholar 

  • Nysted M, Benum P, Klaksvik J, Foss O, Aamodt A (2011) Periprosthetic bone loss after insertion of an uncemented, customized femoral stem and an uncemented anatomical stem. Acta Orthop 82 (4): 410-416

    Article  PubMed  PubMed Central  Google Scholar 

  • Okano T, Hagino H, Otsuka T, Teshima R, Yamamoto K, Hirano Y, Nakamura K (2002) Measurement of periprosthetic bone mineral density by dual-energy x-ray absorptiometry is useful for estimating fixation between the bone and the prosthesis in an early stage. J Arthroplasty 17 (1): 49-55

    Article  CAS  PubMed  Google Scholar 

  • Panisello JJ, Herrero L, Herrera A, Canales V, Martinez A, Cuenca J (2006) Bone remodelling after total hip arthroplasty using an uncemented anatomic femoral stem: a three-year prospective study using bone densitometry. J Orthop Surg (Hong Kong) 14 (1): 32-37

    Article  CAS  Google Scholar 

  • Parchi PD, Cervi V, Piolanti N, Ciapini G, Andreani L, Castellini I, Poggetti A, Lisanti M (2014) Densitometric evaluation of periprosthetic bone remodeling. Clin Cases Miner Bone Metab 11 (3): 226-231

    PubMed  PubMed Central  Google Scholar 

  • Pauwels F (1973) Auswirkung der mechanischen Beanspruchung auf die Stützgewebe. In: Pauwels F (Hrsg) Atlas zur Biomechanik der gesunden und kranken Hüfte: Prinzipien, Technik und Resultate einer kausalen Therapie. Springer, Heidelberg, S 3-7

    Chapter  Google Scholar 

  • Perka C, Heller M, Wilke K (2005) Surgical approach influences periprosthetic femoral bone density. Clin Orthop Relat Res 432: 153-159

    Article  Google Scholar 

  • Rajakulendran K, Field RE (2012) Neck-Preserving Femoral Stems. HSS Journal 8 (3): 295-303

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter A, Sabo D, Simank HG, Büchner T, Seidel M, Lukoschek M (1997) Periprothetische Mineralisationsdichte zementfreier Hüftendoprothetik. Z Orthop Unfall 135 (06): 499-504

    Article  CAS  Google Scholar 

  • Roth A, Richartz G, Sander K, Sachse A, Fuhrmann R, Wagner A, Venbrocks RA (2005) Verlauf der periprothetischen Knochendichte nach Hüfttotalendoprothesenimplantation. Orthopäde 34 (4): 334-344

    Article  CAS  PubMed  Google Scholar 

  • Rubash HE, Sinha RK, Shanbhag AS, Kim SY (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29 (2): 173-186

    Article  CAS  PubMed  Google Scholar 

  • Skoldenberg OG, Boden HS, Salemyr MO, Ahl TE, Adolphson PY (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2-7 years. Acta Orthop 77 (3): 386-392

    Article  PubMed  Google Scholar 

  • Stulberg SD, Patel RM (2013) The short stem: promises, pitfalls. Bone & Joint J 95-B (11 Supple A): 57-62

    Article  CAS  Google Scholar 

  • Trevisan C, Bigoni M, Cherubini R, Steiger P, Randelli G, Ortolani S (1993) Dual X-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int 53 (3): 158-161

    Article  CAS  PubMed  Google Scholar 

  • Trevisan C, Ortolani S, Romano P, Isaia G, Agnese L, Dallari D, Grappiolo G, Cherubini R, Massari L, Bianchi G (2010) Decreased periprosthetic bone loss in patients treated with clodronate: a 1-year randomized controlled study. Calcified Tissue International 86 (6): 436-446

    Article  CAS  PubMed  Google Scholar 

  • van Oldenrijk J, Molleman J, Klaver M, Poolman RW, Haverkamp D (2014) Revision rate after short-stem total hip arthroplasty: A systematic review of 49 clinical studies. Acta Orthopaedica 85 (3): 250-258

    Article  PubMed  PubMed Central  Google Scholar 

  • Venesmaa PK, Kroger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM (2001) Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry-a 3-year follow-up study. J Bone Miner Res 16 (6): 1056-1061

    Article  CAS  PubMed  Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  • Yamaguchi K, Masuhara K, Ohzono K, Sugano N, Nishii T, Ochi T (2000) Evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty: the influence of the extent of porous coating. J Bone Joint Surg Am 82 (10): 1426-1431

    Article  PubMed  Google Scholar 

  • Zeh A, Pankow F, Rollinhoff M, Delank S, Wohlrab D (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg 79 (2): 174-180

    PubMed  Google Scholar 

Literatur zu Abschn. 1.9

  • Bettin D, Katthagen BD (1997) The German Society of Orthopedics and Traumatology classification of bone defects in total hip endoprostheses revision operations. Z Orthop Ihre Grenzgeb 135 (4): 281-4

    Article  CAS  PubMed  Google Scholar 

  • Elke R, Schwaller EC (2004) Schaftrevision. In: Tschauner C (Hrsg) Orthopädie & Orthopädische Chirurgie. Thieme, Stuttgart, S 391-401

    Google Scholar 

  • Käfer W, Fraitzl CR, Kinkel S, Puhl W, Kessler S (2004) Analysis of validity and reliability of three radiographic classification systems for preoperative assessment of bone stock loss in revision total hip arthroplasty. Z Orthop Ihre Grenzgeb 142 (1): 33-9

    Article  PubMed  Google Scholar 

  • Meek RM, Garbuz DS, Masri BA, Greidanus NV, Duncan CP (2004) Intraoperative fracture of the femur in revision total hip arthroplasty with a diaphyseal fitting stem. J Bone Joint Surg Am 86-A (3): 480-5

    Article  PubMed  Google Scholar 

  • Pfeil J, Siebert W, Grieshaber HM (2003) Optimys. Rationale, Prinzip, Grundlagen. In: Jerosch J. (Hgb.)Kurzschaftendoprothesen. Deutscher Ärzte-Verlag, Köln, S 23-40

    Google Scholar 

  • Sheth NP, Nelson CL, Paprosky WG (2013) Femoral bone loss in revision total hip arthroplasty: evaluation and management. J Am Acad Orthop Surg 21 (10): 601-12

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 1.10

  • Australian Orthopaedic Association National Joint Replacement Registry (2011) Annual Report 2011. AOA, Adelaide, https://aoanjrr.dmac.adelaide.edu.au/

  • Babisch J (2011) Kurzschaftprothesen - ein neuer Trend in der Hüftendoprothetik. Orthopädie im Profil 7: 6-8

    Google Scholar 

  • Beaulé PE, Krismer M, Mayrhofer P et al (2005) EBRA-FCA for measurement of migration of the femoral component in surface arthroplasty of the hip. J Bone Joint Surg (Br) 87-B: 741-744

    Article  Google Scholar 

  • Biedermann R, Krismer M, Stöckl B et al (1999) Accuracy of EBRA-FCA in the measurement of migration of femoral components of total hip replacement. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J Bone Joint Surg (Br) 81-B: 266-272

    Article  Google Scholar 

  • Bieger R, Ignatius A, Dürselen L, Reichel H (2011) In-vitro Primärstabilitätstestung einer neuen Kurzschaftprothese im Vergleich zum Standardschaft. Jahreskongress der Vereinigung Süddeutscher Orthopäden und Unfallchirurgen, Baden-Baden, 2011

    Google Scholar 

  • Bøe BG, Röhrl SM, Heier T, Snorrason F, Nordsletten L (2011) A prospective randomized study comparing electrochemically deposited hydroxiapatite and plasmasprayed hydroxyapatite on titanium stems. Acta Orthop 82: 13-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottner F, Zawadsky M, Su EP et al (2005) Implant migration after early weightbearing in cementless hip replacement. Clin Orthop Relat Res 436: 132-137

    Article  Google Scholar 

  • Braun A, Sabah A (2009) Two-year results of a modular short hip stem prosthesis-a prospective study. Z Orthop Unfall 147: 700-6

    Article  CAS  PubMed  Google Scholar 

  • Briem D, Schneider M, Bogner N et al (2011) Mid-term results of 155 patients treated with a collum femoris preserving (CFP) short-stem prosthesis. Int Orthop 35: 655-60

    Article  PubMed  Google Scholar 

  • Bücking PK, Feldmann PH, Wittenberg RH (2006) Metha modular short stem prosthesis. Orthopädische Praxis 42 (8): 474-478

    Google Scholar 

  • Callary SA, Campbell DG, Mercer GE, Nilsson KG, Field JR (2012) The 6-year-migration characteristics of a hydroxyapatite-coated femoral stem; a radiostereometric analysis study. J Arthroplasty 27: 1344-1348

    Article  PubMed  Google Scholar 

  • Campbell D, Mercer G, Nilsson KG et al (2011) Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop 35: 483-488

    Article  PubMed  Google Scholar 

  • Carlsson LV, Albrektsson T, Albrektsson BE et al (2006) Stepwise introduction of a bone-conserving osseointegrated hip arthroplasty using RSA and a randomized study: II. Clinical proof of concept - 40 patients followed for 2 years. Acta Orthop 77: 559-566

    Article  PubMed  Google Scholar 

  • Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of short-stemmed total hip replacement. J Arthroplasty 24 (6): 945-50

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri N, Manzotti A, Montironi F, Pullen C (2008) Leg length discrepancy, dislocation rate, and offset in total hip replacement using a short modular stem: navigation vs conventional feehand. Orthopedics 31 (10 Suppl 1)

    Google Scholar 

  • Edeen J, Sharkey PF, Alexander AH (1995) Clinical significance of leg-length inequality after total hip arthroplasty. Am J Orthop (Belle Mead NJ) 24: 347-51

    CAS  Google Scholar 

  • Ercan A (2015) Postoperative Knochendichteveränderung bei einer schenkelhalsteilerhaltenden Kurzschaftprothese MiniHip. Dissertation, Universität Düsseldorf

    Google Scholar 

  • Ettinger M, Ettinger P, Lerch M et al (2011) The Nanos short-stem in total hip arthroplasty: a mid term follow-up. Hip Int 21: 583-6

    Article  PubMed  Google Scholar 

  • Gheduzzi S, Miles AW (2007) A review of pre-clinical testing of femoral stem subsidence and comparison with clinical data. Proc Inst Mech Eng H 221: 39-46

    Article  CAS  PubMed  Google Scholar 

  • Gill IR, Gill K, Jayasekera N, Miller J (2008) Medium term results of the collum femoris preserving hydroxyapatite coated total hip replacement. Hip Int 18: 75-80

    Article  CAS  PubMed  Google Scholar 

  • Götze C, Ehrenbrink J, Ehrenbrink H (2010) Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall 148: 398-405

    Article  PubMed  Google Scholar 

  • Grasselli Ch, Jerosch J (2011) Die Rekonstrierbarkeit der individuellen Hüftanatomie mit unterschiedlichen Kurzschaftsystemen - eine radiologische Analyse. 59. Jahrestagung der Vereinigung Süddeutscher Orthopäden und Unfallchirurgen, 28. April - 1.Mai 2011, Baden-Baden

    Google Scholar 

  • Grupp T, Weik T, Bloemer W, Knaebel HP (2010) Modular titanium alloy neck adapter failures in hip replacement - faiure mode analysis and influene of implant material. BMC Musculoskeletal Disorders 11: 3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulow J, Scholz R, Freiherr von Salis-Soglio G (2007) Short-stemmed endoprotheses in total hip arthroplasty. Orthopäde 36 (4): 353-9

    Article  CAS  PubMed  Google Scholar 

  • Hagel A, Hein W, Wohlrab D (2008) Experience with the Mayo conservative hip system. Acta Chir Orthop Traumatol Cech 75 (4): 288-92

    CAS  PubMed  Google Scholar 

  • Hamadouche M, Witvoet J, Porcher R, et al (2001) Hydroxyapatite-coated versus gritblasted femoral stems. A prospective, randomised study using EBRA-FCA. J Bone Joint Surg (Br) 83-B: 979-987

    Article  Google Scholar 

  • Jerosch J (2012) Kurzschaft ist nicht gleich Kurzschaft - Eine Klassifikation von Kurzschaftendoprothesen. OUP 7-8: 304-312

    Google Scholar 

  • Jerosch J, Funken S (2004) Veränderung des Offsets nach Implantation von Hüftalloarthroplastiken? Unfallchirurg 107: 475-482

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Glameyer H (2009) Anatomische Anforderungen an ein Kurzschaftsystem (Mini-Hip). Orthopädische Praxis 45: 74-81

    Google Scholar 

  • Jerosch J, Grasselli C, Kothny C, Litzkow D, Hennecke T (2012) Postoperative Veränderungen von Offset, CCD-Winkel und Beinlänge nach Implantation einer metaphysär fixierten Kurzschaftprothese - eine radiologische Untersuchung. Z Orthop Unfall 150 (1): 20-6

    Article  CAS  PubMed  Google Scholar 

  • Kärrholm J, Herberts P, Hultmark P, et al (1997) Radiostereometry of hip prostheses. Review of methodology and clinical results. Clin Orthop Relat Res 344: 94-110

    Google Scholar 

  • Kohler S, Ratayski H, Zacher J (2010) Implant-related fractures of the femoral neck cone adapter of a modular short-stem hip prosthesis - patient management and operative technique. Z Orthop Unfall 148: 413-418

    Article  Google Scholar 

  • Krismer M, Biedermann R, Stöckl B et al (1999) The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J Bone Joint Surg (BR) 81-B: 273-280

    Article  Google Scholar 

  • lagulli ND, Mallory TH, Berend KR, Lobardi AV Jr, Russell JH, Adams JB, Roseth KL (2006) A simple and accurate method for determining leg length in primary total hip arthroplasty. Am J Orthop (Belle Mead NJ) 35: 455-7

    Google Scholar 

  • Lazarinis S, Mattsson P, Milbrink J, Mallmin H, Hailer NP (2013) A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84:32-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerch M, von der Haar-Tran A, Windhagen H, et al (2012) Bone remodelling around the Metha short-stem in total hip arthroplasty: a prospective dual-energy x-ray absorptiometry study. Int Orthop 36: 533-38

    Article  PubMed  Google Scholar 

  • Lombardi AV Jr, Berend KR, Mallory TH, Skeels MD, Adams JB (2009) Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin Orthop Relat Res 467: 146-154

    Article  PubMed  Google Scholar 

  • Malchau H, Kärrholm J, Wang YX, Herberts P (1995) Accuracy of migration analysis in hip arthroplasty. Digitized and conventional radiography compared to radiostereometry in 51 patients. Acta Orthop Scand 66: 418-424

    Article  CAS  PubMed  Google Scholar 

  • McCalden RW, Charron KD, Yuan X, et al (2010) Randomised controlled trial comparing early migration of two collarless polished cemented stems using radiostereometric analysis. J Bone Joint Surg (BR) 92-B: 935-940

    Article  Google Scholar 

  • Meldrum RD, Willie BM, Bloebaum RD (2003) An assessment of the biological fixation of a retrieved Mayo femoral component. Iowa Orthop J 23: 103-7

    PubMed  PubMed Central  Google Scholar 

  • Mihalko WM, Saleh KJ, Heller MO, Mollard B, König C, Kammerzell S (2009) Femoral neck cut level affects positioning of modular short-stem implant. Orthopedics 32 (10 Suppl): 18-21

    Article  PubMed  Google Scholar 

  • Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82: 952-8

    Article  CAS  PubMed  Google Scholar 

  • Nistor L, Blaha JD, Kjellström U, Selvik G (1991) in vivo measurements of relative motion between an uncemented femoral total hip component and the femur by roentgen stereophotogrammetric analysis. Clin Orthop Relat Res 269: 220-227

    Google Scholar 

  • Parvizi J, Sharkey PF, Bissett GA, Rothmann RH, Hozack WJ (2003) Surgical treatment of limb-length discrepancy following total hip arthroplasty. J Bone Joint Surg Am 85: 2310-7

    Article  PubMed  Google Scholar 

  • Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations of the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208: 108-113

    Google Scholar 

  • Ranawat CS, Rao RR, Rodriguez JA, Bhende HS (2001) Correction of limb-length inequality during total hip arthroplasty. J Arthroplasty 16: 715-20

    Article  CAS  PubMed  Google Scholar 

  • Ritter MA, Fechtman RW (1988) Distal cortical hypertrophy following total hip arthroplasty. Arthroplasty 3: 117-21

    Article  CAS  Google Scholar 

  • Röhrl SM, Li MG, Pedersen E, Ullmark G, Nivbrant B (2006) Migration pattern of a short femoral neck preserving stem. Clin Orthop Relat Res 448: 73-78

    Article  PubMed  Google Scholar 

  • Roth A, Richartz G, Sander K, et al (2005) Verlauf der periprothetischen Knochendichte nach Hüftendoprothesenimplantatien. Orthopäde 34: 334-344

    Article  CAS  PubMed  Google Scholar 

  • Schewelov TV, Ahlborg H, Sanzén L, Besjakov J, Carlsson A (2012) Fixation of the fully hydroxyapatite-coated Corail stem implanted due to femoral neck fracture; 38 patients followed for 2 years with RSA and DEXA. Acta Orthop 83: 153-158

    Article  PubMed  Google Scholar 

  • Schmidutz F, Graf T, Mazoochian F et al (2012) Migration analysis of a metaphyseal anchored short-stem hip prosthesis. Acta Orthop 83: 360-365

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiramizu K, Naito M, Shitama T, Nakamura Y, Shitama H (2004) L-shaped caliper for limb length measurement during total hip arthroplasty. J Bone Joint Surg Br 86: 966-9

    Article  CAS  PubMed  Google Scholar 

  • Simpson DJ, Kendrick BJ, Hughes M, et al (2010) The migration patterns of two versions of the Furlong cementless femoral stem: a randomised controlled trial using radiostereometric analysis. J Bone Joint Surg (BR) 92-B: 1356-1362

    Article  Google Scholar 

  • Søballe K, Toksvig-Larsen S, Gelineck J, et al (1993) Migration of hydroxyapatite coated femoral prostheses. A Roentgen stereophotogrammetric study. J Bone Joint Surg (BR) 75-B: 681-687

    Google Scholar 

  • Ström H, Nilsson O, Milbrink J, Mallmin H, Larsson S (2007a) Early migration pattern of the uncemented CLS stem in total hip arhtroplasties. Clin Orthop Relat Res 454: 127-132

    Article  PubMed  Google Scholar 

  • Ström H, Nilsson O, Milbrink J, Mallmin H, Larsson S (2007b) The effect of early weight bearing on migration pattern of the uncemented CLS stem in total hip arthroplasty. J Arthroplasty 22: 1122-1129

    Article  PubMed  Google Scholar 

  • Swedish hip arthroplasty register (2010) Annual Report 2010. http://www.shpr.se/Libraries/Documents/AnnualReport-2010-eng.sflb.ashx

  • Synder M, Drobniewski M, Pruszczyński B, Sibiński M (2009) Initial experience with short metha stem implantation. Ortop Traumatol Rehabil 11 (4): 317-23

    PubMed  Google Scholar 

  • Thien TM, Ahnfelt L, Eriksson M, Strömberg C, Kärrholm J (2007) Immediate weight bearing after uncemented total hip arthroplasty with an anteverted stem: a prospective randomized comparison using radiostereometry. Acta Orthop 78: 730-738

    Article  PubMed  Google Scholar 

  • Yerasimides JG (2010) Use of the Fitmore hip stem bone-preserving system for the minimally invasive anterior-supine approach in hip replacement. Am J Orthop (Belle Mead NJ) 39 (10 Suppl): 13-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Jerosch, J. et al. (2017). Allgemeine Aspekte. In: Jerosch, J. (eds) Kurzschaftendoprothesen an der Hüfte. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52744-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52744-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52743-6

  • Online ISBN: 978-3-662-52744-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics