Skip to main content
Log in

Primary stability of the Fitmore® stem: biomechanical comparison

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

After clinical introduction of the Fitmore® stem (Zimmer), we noticed the formation of cortical hypertrophies in a few cases. We questioned whether (1) the primary stability or (2) load transfer of the Fitmore® stem differs from other stems unassociated with the formation of hypertrophies. We compared the Fitmore® stem to the well-established CLS® stem.

Methods

Four Fitmore® and four CLS® stems were implanted in eight synthetic femurs. A cyclic torque around the stem axis and a mediolateral cyclic torque were applied. Micromotions between stems and femurs were measured to classify the specific rotational implant stability and to analyse the bending behaviour of the stem.

Results

No statistical differences were found between the two stem designs with respect to their rotational stability (p = 0.82). For both stems, a proximal fixation was found. However, for the mediolateral bending behavior, we observed a significantly (p < 0.01) higher flexibility of the CLS® stem compared to the Fitmore® stem.

Conclusion

Hip stem implantation may induce remodelling of the periprosthetic bone structure. Considering the proximal fixation of both stems, rotational stability of the Fitmore® stem might not be a plausible explanation for clinically observed formation of hypertrophies. However, bending results support our hypothesis that the CLS® stem presumably closely follows the bending of the bone, whereas the shorter Fitmore® stem acts more rigidly. Stem rigidity and flexibility needs to be considered, as they may influence the load transfer at the implant–bone interface and thus possibly affect bone remodelling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garellick G (2012) Swedish Hip Arthroplasty Register. Annual Report 2011. Department of Ortopaedics, Sahlgrenska University Hospital

  2. Rubash HE, Sinha RK, Shanbhag AS, Kim SY (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29(2):173–186

    Article  CAS  PubMed  Google Scholar 

  3. Scannell PT, Prendergast PJ (2009) Cortical and interfacial bone changes around a non- cemented hip implant: simulations using a combined strain/damage remodelling algorithm. Med Eng Phys 31(4):477–488. doi:10.1016/j.medengphy.2008.11.007

    PubMed  Google Scholar 

  4. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 274:79–96

    PubMed  Google Scholar 

  5. Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1992) ESB Research Award 1992. The mechanism of bone remodeling and resorption around press- fitted THA stems. J Biomech 26(4–5):369–382

    Google Scholar 

  6. Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 274:202–212

    PubMed  Google Scholar 

  7. Bougherara H, Bureau MN, Yahia L (2010) Bone remodeling in a new biomimetic polymer-composite hip stem. J Biomed Mater Res A 92(1):164–174. doi:10.1002/jbm.a.32346

    Article  PubMed  Google Scholar 

  8. Glassman AH, Bobyn JD, Tanzer M (2006) New femoral designs: do they influence stress shielding? Clin Orthop Relat Res 453:64–74

    Article  CAS  PubMed  Google Scholar 

  9. Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82(7):952–958

    Article  CAS  PubMed  Google Scholar 

  10. Wilkinson JM, Hamer AJ, Rogers A, Stockley I, Eastell R (2003) Bone mineral density and biochemical markers of bone turnover in aseptic loosening after total hip arthroplasty. J Orthop Res 21(4):691–696. doi:10.1016/S0736-0266(02)00237-1

    Article  CAS  PubMed  Google Scholar 

  11. Steinhauser E (2006) Biomechanical principles of implant anchoring. In: Gradinger R, Gollwitzer H (eds) Ossear integration. Springer Medizin Verlag, Heidelberg, pp 16–23

    Google Scholar 

  12. Bensmann G (1990) [Cementless fixation of endoprostheses]. Biomed Tech (Berl) 35(Suppl 3):44–47

    Article  Google Scholar 

  13. Gustke K (2012) Short stems for total hip arthroplasty: initial experience with the Fitmore stem. J Bone Joint Surg Br 94(11 Suppl A):47–51. doi:10.1302/0301-620X.94B11.30677

    Article  CAS  PubMed  Google Scholar 

  14. Streit MR, Schroder K, Korber M, Merle C, Gotterbarm T, Ewerbeck V, Aldinger PR (2012) High survival in young patients using a second generation uncemented total hip replacement. Int Orthop 36(6):1129–1136. doi:10.1007/s00264-011-1399-z

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schmidbauer U, Brendel T, Kunze KG, Nietert M, Ecke H (1993) Dynamic force measurement in implantation of total endoprostheses of the hip joint. Unfallchirurgie 19(1):11–15

    CAS  PubMed  Google Scholar 

  16. Gortz W, Nagerl UV, Nagerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713

    Article  CAS  PubMed  Google Scholar 

  17. Jakubowitz E, Bitsch RG, Heisel C, Lee C, Kretzer JP, Thomsen MN (2008) Primary rotational stability of cylindrical and conical revision hip stems as a function of femoral bone defects: an in vitro comparison. J Biomech 41(14):3078–3084. doi:10.1016/j.jbiomech.2008.06.002

    Article  PubMed  Google Scholar 

  18. Jakubowitz E, Kinkel S, Nadorf J, Heisel C, Kretzer JP, Thomsen MN (2011) The effect of multifilaments and monofilaments on cementless femoral revision hip components: an experimental study. Clin Biomech (Bristol, Avon) 26(3):257–261. doi:10.1016/j.clinbiomech.2010.11.004

    Article  Google Scholar 

  19. Wolff J (1892) Law of bone remodeling. Law of bone remodeling. Julius Wolf Institut, Charité - Universitätsmedizin Berlin, Hirschwald

    Google Scholar 

  20. Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH (1994) Fit of the uncemented femoral component and the use of cement influence the strain transfer the femoral cortex. J Orthop Res 12(5):648–656. doi:10.1002/jor.1100120507

    Article  CAS  PubMed  Google Scholar 

  21. Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg Br 86(1):20–26

    CAS  PubMed  Google Scholar 

  22. Aldinger PR, Jung AW, Breusch SJ, Ewerbeck V, Parsch D (2009) Survival of the cementless Spotorno stem in the second decade. Clin Orthop Relat Res 467(9):2297–2304. doi:10.1007/s11999-009-0906-7

    Article  PubMed Central  PubMed  Google Scholar 

  23. Merle C, Streit MR, Volz C, Pritsch M, Gotterbarm T, Aldinger PR (2011) Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty: a DXA study at 12 and 17 years. Osteoporos Int 22(11):2879–2886. doi:10.1007/s00198-010-1483-z

    Article  CAS  PubMed  Google Scholar 

  24. Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Durselen L (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech (Bristol, Avon) 27(2):158–164. doi:10.1016/j.clinbiomech.2011.08.004

    Article  Google Scholar 

  25. Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    PubMed  Google Scholar 

  26. Saito J, Aslam N, Tokunaga K, Schemitsch EH, Waddell JP (2006) Bone remodeling is different in metaphyseal and diaphyseal-fit uncemented hip stems. Clin Orthop Relat Res 451:128–133. doi:10.1097/01.blo.0000224045.63754.a3

    Article  PubMed  Google Scholar 

  27. Mulier M, Jaecques SV, Raaijmaakers M, Nijs J, Van der Perre G, Jonkers I (2011) Early periprosthetic bone remodelling around cemented and uncemented custom-made femoral components and their uncemented acetabular cups. Arch Orthop Trauma Surg 131(7):941–948. doi:10.1007/s00402-010-1239-4

    Article  CAS  PubMed  Google Scholar 

  28. Yamaguchi K, Masuhara K, Ohzono K, Sugano N, Nishii T, Ochi T (2000) Evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. The influence of the extent of porous coating. J Bone Joint Surg Am 82-A(10):1426–1431

    CAS  PubMed  Google Scholar 

  29. Falez F, Casella F, Panegrossi G, Favetti F, Barresi C (2008) Perspectives on metaphyseal conservative stems. J Orthop Traumatol 9(1):49–54. doi:10.1007/s10195-008-0105-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short- stemmed total hip replacement. J Arthroplasty 24(6):945–950. doi:10.1016/j.arth.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  31. Santori FS, Santori N (2010) Mid-term results of a custom-made short proximal loading femoral component. J Bone Joint Surg Br 92(9):1231–1237. doi:10.1302/0301-620X.92B9.24605

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nadorf.

Additional information

W. Pepke and J. Nadorf shared first-authorship: these authors contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepke, W., Nadorf, J., Ewerbeck, V. et al. Primary stability of the Fitmore® stem: biomechanical comparison. International Orthopaedics (SICOT) 38, 483–488 (2014). https://doi.org/10.1007/s00264-013-2138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2138-4

Keywords

Navigation