Skip to main content

Advertisement

Log in

Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to examine the concept of proximal load initiation of a total short-stemmed hip arthroplasty (Metha® BBraun, Aesculap, Tuttlingen, Germany) on the basis of bone variations by means of osteodensitometric dual energy X-ray absorptiometry and radiologic measurements.

Methods

After power analysis 40 patients were included in this study. DXA examination, radiological and clinical follow-up was performed pre-operatively and postoperatively. Socio-demographic relevancies of bone progression and radiological changes were raised epidemiologically and clinically.

Results

Improvement of the Harris hip score from 54.7 points preoperative to 96.7 points postoperative was detected (p < 0.01). Loss of summarized overall net average bone mass density (netavg BMD) could only be manifested after six months compared to the netavg BMD of the postoperative measurement (p < 0.01). After six and 12 months BMD atrophy was shown mainly in regions of interest (ROI) 1, 4 and 7. Positive correlations between changes of BMD and age, male sex and BMI were detectable. No stem had to be revised.

Conclusions

The Metha® implant shows excellent osseointegration at the coated area of the stem without factors of aseptic loosening in the short term. This study shows that parameters like age, sex and BMI influence BMD progression and stress shielding. Metha® implant shows excellent results especially in young patients with good bone stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82(7):952–958

    Article  PubMed  CAS  Google Scholar 

  2. Wohlrab D, Hagel A, Hein W (2004) Advantages of minimal invasive total hip replacement in the early phase of rehabilitation. Z Orthop Ihre Grenzgeb 14(6):685–90

    Article  Google Scholar 

  3. Wolff J (1899) Die Lehre von der functionellen Knochengestalt. Virchows Arch 155(2):256–315

    Article  Google Scholar 

  4. 4 Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

  5. 5 Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop Relat Res 257:107–128

  6. Vresilovic EJ, Hozack WJ, Rothman RH (1994) Radiographic assessment of cementless femoral components. Correlation with intraoperative mechanical stability. J Arthroplasty Apr 9(2):137–141

    Article  CAS  Google Scholar 

  7. Panisello JJ, Herrero L, Herrera A, Canales V, Martinez A, Cuenca J (2006) Bone remodelling after total hip arthroplasty using an uncemented anatomic femoral stem: a three-year prospective study using bone densitometry. J Orthop Surg (Hong Kong) 14(1):32–7

    CAS  Google Scholar 

  8. 8 Renkawitz T, Santori FS, Grifka J, Valverde C, Morlock MM, Learmonth ID (2008) A new short uncemented, proximally fixed anatomic femoral implant with a prominent lateral flare: design rationals and study design of an international clinical trial. BMC Musculoskelet Disord 9:147

  9. Ishaque BA, Donle E, Gils J, Wienbeck S, Basad E, Stürz H (2009) Eight-year results of the femoral neck prosthesis ESKA-CUT. Z Orthop Unfall 147(2):158–65. doi:10.1055/s-0029-1185527

    PubMed  CAS  Google Scholar 

  10. 10 Frndak PA, Mallory TH, Lombardi AV Jr (1993) Translateral surgical approach to the hip. The abductor muscle “split”. Clin Orthop Relat Res 295:135–141

  11. Hardinge K (1982) The direct lateral approach to the hip. J Bone Joint Surg Br 64(1):17–19

    PubMed  CAS  Google Scholar 

  12. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51(4):737–55

    PubMed  CAS  Google Scholar 

  13. Martini F, Schmidt B, Sell S (1997) Validity and reproducibility of osteodensitometric DEXA-measurements following total hip endoprosthesis. Z Orthop Ihre Grenzgeb 135(1):35–39

    Article  PubMed  CAS  Google Scholar 

  14. Trevisan C, Bigoni M, Cherubini R, Steiger P, Randelli G, Ortolani S (1993) Dual X-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int 53(3):158–61

    Article  PubMed  CAS  Google Scholar 

  15. Pitto RP, Hayward A, Walker C, Shim VB (2010) Femoral bone density changes after total hip arthroplasty with uncemented taper-design stem: a five year follow-up study. Int Orthop 34:783–787. doi:10.1007/s00264-009-0884-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(3):533–8. doi:10.1007/s00264-011-1361-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Götze C, Tschugunow A, Wiegelmann F, Osada N, Götze HG, Böttner F (2006) Long-term influence of the spongiosa metal surface prosthesis on the periprosthetic bone. A radiological and osteodensitometric analysis of implantation of the S& G (ESKA) hip prosthesis. Z Orthop Ihre Grenzgeb 144(2):192–8

    Article  PubMed  Google Scholar 

  18. Zweymuller KA (2012) Bony ongrowth on the surface of HA-coated femoral implants: an x-ray analysis. Z Orthop Unfall 150(1):27–31. doi:10.1055/s-0031-1280028

    PubMed  CAS  Google Scholar 

  19. Katano H (2007) Periprosthetic bone mineral density in bicontact sd stem. Five to ten years follow-up. In: Weller S, Braun A, Eingartner C, Maurer F, Weise K, Winter E, Volkmann R (eds) The bicontact hip arthroplasty system 1987–2007. Georg Thieme Verlag, Tübingen, pp 63–69

    Google Scholar 

  20. Wolf O, Mattsson P, Milbrink J, Larsson S, Mallmin H (2010) Periprosthetic bone mineral density and fixation of the uncemented CLS stem related to different weight bearing regimes: a randomized study using DXA and RSA in 38 patients followed for 5 years. Acta Orthop 81(3):286–91. doi:10.3109/17453674.2010.487238

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim YH, Kim JS, Joo JH, Park JW (2012) A prospective short-term outcome study of a short metaphyseal fitting total hip arthroplasty. J Arthroplasty Jan 27(1):88–94. doi:10.1016/j.arth.2011.02.008

    Article  Google Scholar 

  22. Ludwig F-J, Melzer C, Backofen D (1996) Kriterien zur radiologischen beurteilung zementfreier hüftendoprothesen am beispiel des spotorno-schafts. Unfallchirurg 99:750–757

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Alexander Ishaque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahnke, A., Engl, S., Altmeyer, C. et al. Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis. International Orthopaedics (SICOT) 38, 2045–2050 (2014). https://doi.org/10.1007/s00264-014-2370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2370-6

Keywords

Navigation