Skip to main content

Innovative Role of DH Breeding in Genomics Assisted-Crop Improvement: Focus on Drought Tolerance in Wheat

  • Chapter
  • First Online:
Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 21))

Abstract

Wheat production across world is greatly hampered due to huge fluctuations in water availability. There is a dire need to seek more efficient approaches towards genetic tailoring of crops for enhanced drought tolerance in a sustainable way and in less time. Wide hybridization in complementation with genomics-assisted doubled haploidy (DH) breeding, molecular cytogenetic tools and marker-assisted selection can help in quick identification and integration of drought-tolerant genes in wheat. Such approaches result in the genetic up-gradation of elite cultivars with high precision in a very short time span. Development of multiparent advanced generation inter-cross (MAGIC) populations is greatly facilitated by DH breeding for stable incorporation of desirable genes in elite wheat cultivars from a variety of sources. In this chapter, the authors discuss the significance of doubled haploidy breeding in sustainable wheat genome upgradation through its integration with advanced genomic tools for the development of widely adaptable drought resistant high yielding cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Badiyal A, Chaudhary HK, Jamwal NS, Hussain W, Mahato A, Bhatt AK (2014) Interactive genotypic influence of triticale and wheat on their crossability and haploid induction under varied agroclimatic regimes. Cereal Res Commun 42:700–709

    Article  Google Scholar 

  • Badiyal A, Chaudhary HK, Jamwal NS, Bhatt AK, Hussain W (2016) Comparative assessment of different auxin analogues on haploid induction in triticale × wheat derived backcross generations. Agric Res J 53:157–168

    Article  Google Scholar 

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dillca-Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Redona E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:1–15

    Article  Google Scholar 

  • Baum M, Korff M, Guo P, Lakew B, Udupa SM, Sayed H, Choumane W, Grando S, Ceccarelli S (2007) Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement. Springer International Publishing, The Netherlands, pp 51–80

    Chapter  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selections for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2010) Genome wide selection with minimal crossing in self pollinating crops. Crop Sci 50:624–627

    Article  Google Scholar 

  • Bohra A, Singh IP, Yadav AK, Pathak A, Soren KR, Chaturvedi S (2015) Utility of informative SSR markers in the molecular characterization of cytoplasmic genetic male sterility-based hybrid and its parents in pigeonpea. Natl Acad Sci Lett 38:13–19

    Article  CAS  Google Scholar 

  • Bräutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol 12:831–841

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S, Grando S (1996) Drought as a challenge for the plant breeder. Plant Growth Regul 20:149–155

    Article  CAS  Google Scholar 

  • Chaudhary HK (2007) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches vis-à-vis genetic upgradation of bread wheat for organic and low input farming systems in north-western Himalayas. In: Proceedings of the Eucarpia symposium on organic and sustainable, low-input agriculture with genotype × environment interactions, Wageningen, Netherlands, p 54

    Google Scholar 

  • Chaudhary HK (2008a) Dynamics of wheat × Imperata cylindrica—a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of the 11th international wheat genetics symposium, University of Sydney Press, Sydney, Australia, pp 647–650

    Google Scholar 

  • Chaudhary HK (2008b) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches in bread wheat. In: Taniguchi K, Zhang X (eds) Focus on north-west Himalayan regions, vol 3. Advanced chromosome science. The Society of Chromosome Research, Japan, pp 67–69

    Google Scholar 

  • Chaudhary HK (2009) New frontiers in chromosome engineering: Genetic upgradation of bread wheat for varied agroclimatic situations in north-west Himalayas. In: Tomar SMS et al (eds) Proceedings of the national seminar on designing crops for the changing climate, Ranchi, Jharkhand, India, pp 51–52

    Google Scholar 

  • Chaudhary HK (2010a) New frontiers in DH breeding: dynamics of wheat × Imperata cylindrica system of chromosome elimination- mediated approach of DH production for striking success in alien introgression endeavours in bread wheat. In: Proceedings of the Eucarpia cereal section meeting: innovations in cereal breeding, Cambridge, England, p 73

    Google Scholar 

  • Chaudhary HK (2010b) Chromosome elimination process—a boon or bane for alien introgression in wheat. In: Zhang X et al (eds) Proceedings of the 4th Asian chromosome colloquium, Beijing, China, p 21

    Google Scholar 

  • Chaudhary HK (2011) DH breeding and chromosome engineering—innovations and implications in crop improvement. In: Bandyopadhyay A et al (eds) Proceedings of national seminar on contemporary approaches to crop improvement, University of Agricultural Sciences, GKVK Campus, Bangalore, India, pp 34–35

    Google Scholar 

  • Chaudhary HK (2012) New frontiers in chromosome engineering for enhanced and high precision crop improvement. In: Proceedings of national seminar on plant cytogenetics: new approaches, Department of Botany, Punjabi University, Patiala, Punjab, India, pp 35–36

    Google Scholar 

  • Chaudhary HK (2013a) New frontiers in chromosome elimination-mediated doubled haploidy breeding for accelerated and high precision genetic upgradation in wheat. In: Plant and animal genome meeting in the International Triticeae mapping initiative workshop, Cornell University, USA

    Google Scholar 

  • Chaudhary HK (2013b) Dynamics of wheat chromosome engineering-innovations and implications in crop improvement. In: Proceedings of the centenary session of Indian Science Congress, Kolkata, pp 24, 3–7 Jan 2013

    Google Scholar 

  • Chaudhary HK, Mukai Y (2004) Molecular cytogenetic analysis of the alien genes introgressed into bread wheat (Triticum aestivum). Report submitted to the Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi, pp 1–31

    Google Scholar 

  • Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter × spring wheat hybrids. J Genet Breed 56:259–266

    Google Scholar 

  • Chaudhary HK, Dhaliwal I, Singh S, Sethi GS (2003) Genetics of androgenesis in winter and spring wheat genotypes. Euphytica 132:311–319

    Article  Google Scholar 

  • Chaudhary HK, Schwarzacher T, Heslop-Horrison JS (2004) Detection and characterization of rye (Secalecereale) chromatin introgression into wheat (Triticum aestivum) through fluorescence in situ hybridization. Report submitted to Commonwealth Commission, London, pp 1–6

    Google Scholar 

  • Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98

    Article  Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013a) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. Nucleus 56:7–14

    Article  Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013b) Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica-mediated chromosome elimination approach. Plant Breed 132:155–158

    Article  Google Scholar 

  • Chaudhary HK, Kaila V, Rather SA, Badiyal A, Hussain W, Jamwal NS (2014) Wheat. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol 2. Achievements and impacts. Springer Science Business Media, LLC, pp 1–26

    Google Scholar 

  • Chaudhary HK, Badiyal A, Jamwal NS (2015) New frontiers in doubled haploidy breeding in wheat. Agric Res J 52(4):1–12

    Article  Google Scholar 

  • Chaudhary HK, Kaila V, Rather SA, Badiyal A, Jamwal NS (2016) Chromosome engineering for high precision crop improvement. In: Rajpal VR et al (eds) Gene pool diversity and crop improvement, vol 1. Springer International Publishing, LLC, pp 291–323

    Chapter  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhiman R, Rana V, Chaudhary HK (2012) Himalayan maize-potential pollen source for maize mediated system of chromosome elimination approach in DH breeding of bread wheat. Cereal Res Commun 40:246–255

    Article  Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RD, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:154–163

    Article  Google Scholar 

  • Finkel E (2009) With ‘phenomics’, plant scientists hope to shift breeding into overdrive. Sci 325:380–381

    Article  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Roder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 2. Genomics applications in crops. Springer International Publishing, LLC, pp 1–24

    Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to great use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V, Kulwal P (2012) Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: status and prospects. Plant Breed Rev 36:85–168

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:1–21

    Article  CAS  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Carlton, pp 30–56

    Google Scholar 

  • Huang BE, Verbyla AP, Raghvan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Ilyas M, Ilyas N, Arshad M, Kazi AG, Mujeeb-Kazi A, Waheed A (2014) QTL mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage. Pak J Bot 46:1889–1897

    CAS  Google Scholar 

  • Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304

    Article  CAS  Google Scholar 

  • Jamwal NS, Chaudhary HK, Badiyal A, Hussain W (2016) Factors influencing crossability among triticale and wheat and its subsequent effect along with hybrid necrosis on haploid induction. Acta Agri Scand Sec B-Soil Plant Sci 66:282–289

    CAS  Google Scholar 

  • Kaila V, Chaudhary HK, Tayeng T, Rather SA (2012) Resolution of genetic mechanism of chromosome elimination in wheat × Imperata cylindrica system of doubled haploidy breeding: the genome responsible. In: Proceedings of national seminar on plant cytogenetics: new approaches, Department of Botany, Punjabi University, Patiala, Punjab, India, p 82

    Google Scholar 

  • Kishore N, Chaudhary HK, Chahota RK, Kumar V, Sood SP, Jeberson S (2011) Relative efficiency of the maize and Imperata cylindrica mediated chromosome elimination approaches for induction of haploids of wheat-rye derivatives. Plant Breed 130:192–194

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Article  Google Scholar 

  • Lehmensiek A, Bovill W, Wenzl P, Langridge P, Rudi A (2009) Genetics and genomics of the triticeae. In: Feuillet C, Muehlbauer GJ (eds) Plant genetics and genomics: crops and models, vol 7, https://doi.org/10.1007/978-0-387-77489-3_7

    Chapter  Google Scholar 

  • Liu X, Li R, Chang X, Jing R (2013) Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 189:51–66

    Article  Google Scholar 

  • Lua Y, Zhangc S, Shah T, Xiec C, Haoc Z, Lic X, Farkharib M, Ribaut JM, Caoa M, Ronga T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Giuliani S, Tuberosa R (2009) Genomics of tolerance to abiotic stress in the Triticeae. In: Feuillet C, Muehlbauer G (eds) Plant genetics and genomics: crops and models, vol 7. Genetics and genomics of the Triticeae. Springer International Publishing, Dordrrecht, pp 481–558

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  CAS  PubMed  Google Scholar 

  • Mahato A, Chaudhary HK (2015) Relative efficiency of maize and Imperata cylindrica for haploid induction in Triticum durum following chromosome elimination-mediated approach of doubled haploid breeding. Plant Breed 134:379–383

    Article  Google Scholar 

  • Mayel A, Chaudhary HK, Badiyal A, Jamwal NS (2015) Comparative pollination efficiency of freshly harvested pollen of Imperata cylindrica and Zea mays for haploid induction in bread wheat. Cereal Res Commun 44:162–171

    Article  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang YW, Hu CC, Chuang CC, Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci Sin 16:79–95

    Google Scholar 

  • Passioura JB (2010) Scaling up: the essence of effective agricultural research. Funct Plant Biol 37:585–591

    Article  Google Scholar 

  • Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93:105–111

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Chaudhary HK (2007a) Genetic studies on the effect of triticale × wheat F1s and maize genotypes on haploid induction following wheat x maize system. J Genet Breed 60:119–124

    Google Scholar 

  • Pratap A, Chaudhary HK (2007b) Comparative studies on crossability among triticale and wheat gene pools under different climatic regimes. Indian J Crop Sci 2:141–144

    Google Scholar 

  • Pratap A, Chaudhary HK (2012) Effect of auxins on induction of polyhaploids in triticale and triticale × wheat hybrids through the chromosome elimination technique. Indian J Agric Sci 82:66–70

    CAS  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through chromosome elimination technique. Plant Breed 124:147–153

    Article  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rather SA, Chaudhary HK, Kaila V (2013) Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun 42:19–26

    Article  Google Scholar 

  • Rather SA, Chaudhary HK, Kaila V (2014) Influence of different wheat and Imperata cylindrica genetic backgrounds on haploid induction efficiency in wheat doubled haploid breeding. Czech J Genet Plant Breed 50:195–200

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179

    Article  PubMed  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Roder MS, Huang XQ, Ganal MW (2004) Wheat microsatellites in plant breeding: potential and implications. In: Loerz H, Wenzel G (eds) Molecular markers in plant breeding. Springer, Heidelberg, pp 255–266

    Google Scholar 

  • Rustgi S, Shafqat MN, Kumar N, Baenziger PS, Ali ML (2013) Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: bridging gaps between QTLs and underlying genes. PLoS ONE 8:e70526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2010) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Article  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R (2007) Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol 151:291–305

    Article  Google Scholar 

  • Skovmand B, Reynolds MP, Delacy IH (2001) Mining wheat germplasm collections for yield enhancing traits. Euphytica 119:26–32

    Article  Google Scholar 

  • Sozzani R, Benfey PN (2011) High-throughput phenotyping of multicellular organisms: finding the link between genotype and phenotype. Genome Biol 12:219–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadesse W, Nachit M, Abdalla O, Rajaram S (2016) Wheat breeding at ICARDA: achievements and prospects in the CWANA region. In: Bonjean A, Angus B, Van Ginkel M (eds) The world wheat book, vol 3. A history of wheat breeding. Lavoiseier, Paris, pp 371–401

    Google Scholar 

  • Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulation in Imperata cylindrica mediated chromosome elimination approach. Plant Breed 131:574–578

    Article  CAS  Google Scholar 

  • Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Article  Google Scholar 

  • Tuberosa R (2010) Phenotyping drought-stressed crops: key concepts, issues and approaches. In: Monneveaux P, Ribaut JM (eds) Drought phenotyping in crops: from theory to practice. Generation Challenge Programme, c/o CIMMYT, Mexico, p 3–35

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23

    Article  Google Scholar 

  • Varshney RK, Dubey A (2009) Novel genomic tools and modern genetic and breeding approaches for crop improvement. J Plant Biochem Biotech 18:127–138

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrell AE (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Mahender T, Aggarwal RK, Borner A (2007) Genetic molecular markers in plants: development and applications. In: Varshney RK, Tuberosa R (eds) Genomic assisted crop improvement: genomics approaches and platforms, vol 1. Springer International Publishing, The Netherlands, pp 13–30

    Chapter  Google Scholar 

  • Varshney RK, Paulo MJ, Grando S, Eeuwijk FA, Keizer LCP, Guo P, Ceccarelli S, Kilian A, Baum M, Graner A (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res 126:171–180

    Article  Google Scholar 

  • Verma V, Foulkes MJ, Caligari P, Bradley SR, Snape J (2004) Mapping QTLs for flag leaf senescence as a yield determinant in winter wheat under optimal and drought stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Worch S, Rajesh K, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Chang X, Jing R (2011) Genetic analysis of carbon isotope discrimination and its relation to yield in wheat doubled haploid population. J Integr Plant Biol 53:719–730

    Article  PubMed  CAS  Google Scholar 

  • Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38

    Article  Google Scholar 

  • Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19:333–349

    Article  Google Scholar 

  • Zenkteler M, Nitzsche W (1984) Wide hybridization experiments in cereals. Theor Appl Genet 68:311–315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, H.K. et al. (2019). Innovative Role of DH Breeding in Genomics Assisted-Crop Improvement: Focus on Drought Tolerance in Wheat. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II. Sustainable Development and Biodiversity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-99573-1_5

Download citation

Publish with us

Policies and ethics