Skip to main content
Log in

Drought as a challenge for the plant breeder

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Since agriculture began, drought has been on of the major plagues affecting crop production causing famine and death. Despite many decades of research, drought continues to be a major challenge to agricultural scientists. This is due to the unpredictability of its occurrence, severity, timing and duration; and to the interaction of drought with other abiotic stresses, particularly extremes of temperature and variations in nutrients availability; and with biotic stresses. Breeding has not been as effective in improving crop production under drought-stress conditions as it has in their absence — or where the stress can be alleviated by irrigation. This paper argues that the relative lack of success of breeding for stress conditions in general, and for drought-stress conditions in particular, can be partly attributed to use of the same breeding approach that is successful for favourable environments. A different breeding approach for drought-stress conditions is discussed in relation to the environment in which selection should be conducted, the germplasm to be used, and the experimental designs and plot techniques to be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard RW and Hansche PE (1964) Some parameters of population variability and their implications in plant breeding. Adv Agron 16: 281–325

    Google Scholar 

  2. Baker RJ (1988) Tests for crossover genotype-environmental interactions Can J Plant Sci 68: 405–410

    Google Scholar 

  3. Blum A (1988) Plant Breeding for Stress Environments. Boca Raton, Florida, USA: CRC Press

    Google Scholar 

  4. Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77: 205–219

    Google Scholar 

  5. Ceccarelli S, Acevedo E and Grando S (1991) Breeding for yield stability in unpredicatable environments: Single traits, interaction between traits, and architecture of genotypes. Euphytica 56: 169–185

    Google Scholar 

  6. Ceccarelli S, Grando S and vanLeur JAG (1995) Barley landraces of the fertile crescent offer new breeding options for stress environments. Diverity 11: 112–113

    Google Scholar 

  7. Engledow FL (1925) The economic possibilities of plant breeding. In: FT Brooks (ed) Report of the Proceedings of the Imperial Botanical Conference, pp 31–40

  8. Falconer DS (1952) The problem of environment and selection. Am Nat 86: 293–298

    Article  Google Scholar 

  9. Hayes HK (1923) Controlling experimental error in nursery trials. J A Soc Agron 15: 177–192

    Google Scholar 

  10. Hill J (1975) Genotype-environment interactons — a challenge for plant breeding. J Agric Sci Camb 85: 477–493

    Google Scholar 

  11. Hinz PN (1987) Nearest-neighbor analysis in practice. Iowa State J Res 62: 199–217

    Google Scholar 

  12. Passioura JB (1986) Resistance to drought and salinity: avenues for improvement. Aust J Plant Physiol 13: 191–201

    Google Scholar 

  13. Patterson HD and Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63: 83–92

    Google Scholar 

  14. Patterson and Robinson (1989) Row-and-column design with two replicates. J Agric Sci Camb 112: 73–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccarelli, S., Grando, S. Drought as a challenge for the plant breeder. Plant Growth Regul 20, 149–155 (1996). https://doi.org/10.1007/BF00024011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024011

Keywords

Navigation