Skip to main content

Radiochemistry

  • Chapter
  • First Online:
Imaging Infections

Abstract

We have described the radiochemical methods to produce radiopharmaceuticals for SPECT and PET and also discussed the synthesis of several agents used for infection imaging. Translation of new agents to the clinic requires excellent preclinical validation, robust synthetic schemes, and compliance with manufacturing guidelines such as the GMP regulations enforced by the FDA. The specialized equipment (e.g., cyclotron) required to produce radiopharmaceuticals can be a challenge. However, central radiopharmacies, now a common phenomenon throughout the world, and distribution networks have partially solved this problem. However, the use of on-site generators, such as those used to produce 68Ga radiopharmaceuticals can greatly enhance the availably of radiopharmaceuticals, and kit formulations for 68Ga labeling are eagerly anticipated. Finally, the discovery of novel targets for pathogen-specific imaging as well as their specific ligands is very exciting, and robust radiolabeling techniques could expedite the development of future rapid and specific, whole-body detection and monitoring of infections such as tuberculosis (TB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, M.J. and D.S. Wilbur, Radiohalogens for imaging and therapy. Chemical Society Reviews, 2005. 34: p. 153-163.

    Article  CAS  PubMed  Google Scholar 

  2. IAEA. Cyclotron Produced Radionuclides : Physical Characteristics and Production Methods. 2009.

    Google Scholar 

  3. Koehler, L., et al., Iodine-124: A Promising Positron Emitter for Organic PET Chemistry. Molecules, 2010. 15: p. 2686-2718.

    Article  CAS  PubMed  Google Scholar 

  4. IAEA. TECDOC-1512 Production techniques and quality control of sealed radioactive sources of palladium-103, iodine-125, iridium-192 and ytterbium-169. 2006.

    Google Scholar 

  5. Wang, H., et al., Synthesis of [125I]iodoDPA-713: A new probe for imaging inflammation. Biochemical and Biophysical Research Communications, 2009. 389: p. 80-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Signore, A., et al., Molecular Imaging of Inflammation / Infection : Nuclear Medicine and Optical Imaging Agents and Methods. Chemical Reviews, 2010. 110: p. 3112-3145.

    Article  CAS  PubMed  Google Scholar 

  7. Clark, J.C. and P.D. Buckingham, The preparation and storage of carbon-11 labelled gases for clinical use. The International Journal of Applied Radiation and Isotopes, 1971. 22(11): p. 639-646.

    Article  CAS  PubMed  Google Scholar 

  8. Scott, P.J., Methods for the incorporation of carbon-11 to generate radiopharmaceuticals for PET imaging. Angewandte Chemie International Edition, 2009. 48(33): p. 6001-6004.

    Article  CAS  PubMed  Google Scholar 

  9. Tochon-Danguy, H.J., et al., Positron emission tomography: radioisotope and radiopharmaceutical production. Australasian Physical and Engineering Science in Medicine, 1999. 22(4): p. 136-144.

    CAS  Google Scholar 

  10. Wuest, F., M. Berndt, and T. Kniess, Carbon-11 labeling chemistry based upon [11C]methyl iodide. Ernst Schering Research Foundation Workshop, 2007(62): p. 183-213.

    Article  CAS  Google Scholar 

  11. Liu, L., et al., Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. Journal of Medicinal Chemistry, 2010. 53(7): p. 2882-2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coenen, H.H., Fluorine-18 Labeling Methods: Features and Possibilities of Basic Reactions. Ernst Schering Research Foundation Workshop, 2007(62): p. 15-50.

    Google Scholar 

  13. Cai, L., S. Lu, and V.W. Pike, Chemistry with [18F]fluoride ion. European Journal of Organic Chemistry, 2008: p. 2853-2873.

    Google Scholar 

  14. Ermert, J., 18 F-Labelled Intermediates for Radiosynthesis by Modular Build-Up Reactions: Newer Developments. BioMed Research International, 2014.

    Google Scholar 

  15. Kao, C.H.K., et al., GMP production of [18F]FDOPA and issues concerning its quality analyses as in USP “fluorodopa F 18 Injection”. Annals of Nuclear Medicine, 2011. 25: p. 309-316.

    Article  PubMed  Google Scholar 

  16. Ross, T.L., et al., Nucleophilic 18F-Fluorination of Heteroaromatic Iodonium Salts with No-Carrier-Added [18F]Fluoride. Journal of the American Chemical Society, 2007. 129: p. 8018-8025.

    Article  CAS  PubMed  Google Scholar 

  17. Kamlet, A.S., et al., Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation. PLoS ONE, 2013. 8: p. e59187.

    Google Scholar 

  18. Tredwell, M., et al., A General Copper-Mediated Nucleophilic 18 F Fluorination of Arenes. Angewandte Chemie International Edition, 2014. 53: p. 7751-7755.

    Article  CAS  PubMed  Google Scholar 

  19. Mason, N.S., C.A. Mathis, and W.E. Klunk, Positron emission tomography radioligands for in vivo imaging of Aβ plaques. Journal of Labelled Compounds and Radiopharmaceuticals, 2013. 56: p. 89-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richter, S. and F. Wuest, 18F-Labeled Peptides: The Future Is Bright. Molecules, 2014. 19: p. 20536-20556.

    Article  PubMed  CAS  Google Scholar 

  21. Kuhnast, B. and F. Dolle, The Challenge of Labeling Macromolecules with Fluorine-18: Three Decades of Research. Current Radiopharmaceuticals, 2010. 3: p. 174-201.

    Article  CAS  Google Scholar 

  22. Liu, S., et al., Recent Progress in Radiofluorination of Peptides for PET Molecular Imaging. Current Organic Synthesis, 2011. 8: p. 584-592.

    Article  CAS  Google Scholar 

  23. Kettenbach, K., H. Schieferstein, and T.L. Ross, 18F-Labeling Using Click Cycloadditions. BioMed Research International, 2014. 2014: p. 1-16.

    Article  CAS  Google Scholar 

  24. Schieferstein, H. and T.L. Ross, A polar 18F-labeled amino acid derivative for click labeling of biomolecules. European Journal of Organic Chemistry, 2014. 2014: p. 3546-3550.

    Article  CAS  Google Scholar 

  25. Zlatopolskiy, B.D., et al., Synthesis of 18F-labelled β-lactams by using the Kinugasa reaction. Chemistry - A European Journal, 2014. 20: p. 4697-4703.

    Article  CAS  Google Scholar 

  26. Bunschoten, A., et al., Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjugate Chemistry, 2013. 24: p. 1971-1989.

    Article  CAS  PubMed  Google Scholar 

  27. Li, X.-G., M. Haaparanta, and O. Solin, Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review. Journal of Fluorine Chemistry, 2012. 143: p. 49-56.

    Article  CAS  Google Scholar 

  28. Goins, B.A., Radiolabeled lipid nanoparticles for diagnostic imaging. Expert Opinion on Medical Diagnostics, 2008. 2: p. 853-873.

    Article  CAS  PubMed  Google Scholar 

  29. Loudos, G., G.C. Kagadis, and D. Psimadas, Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. European Journal of Radiology, 2011. 78: p. 287-295.

    Article  PubMed  Google Scholar 

  30. Pretze, M., et al., The traceless Staudinger ligation with fluorine-18: A novel and versatile labeling technique for the synthesis of PET-radiotracers. Tetrahedron Letters, 2010. 51: p. 6410-6414.

    Article  CAS  Google Scholar 

  31. Carroll, L., et al., The traceless Staudinger ligation for indirect 18F-radiolabelling. Organic & biomolecular chemistry, 2011. 9: p. 136-140.

    Article  CAS  Google Scholar 

  32. Bernard-Gauthier, V., et al., 18 F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals. BioMed Research International, 2014. 2014: p. 1-20.

    Article  CAS  Google Scholar 

  33. McBride, W.J., R.M. Sharkey, and D.M. Goldenberg, Radiofluorination using aluminum-fluoride (Al18F). European Journal of Nuclear Medicine and Molecular Imaging Research, 2013. 3: p. 36.

    Google Scholar 

  34. Schirrmacher, R., et al., 18F-Labeling of Peptides by means of an Organosilicon-Based Fluoride Acceptor. Angewandte Chemie International Edition, 2006. 45: p. 6047-6050.

    Article  CAS  PubMed  Google Scholar 

  35. Rosa-Neto, P., et al., [ 18 F]SiFA-isothiocyanate: A New Highly Effective Radioactive Labeling Agent for Lysine-Containing Proteins. ChemBioChem, 2009. 10: p. 1321-1324.

    Google Scholar 

  36. Choudhry, U., et al., Alkoxysilane groups for instant labeling of biomolecules with 18F,. Nuclear Medicine Communications, 2006. 27(3): p. 27.

    Google Scholar 

  37. McBride, W.J., et al., New lyophilized kit for rapid radiofluorination of peptides. Bioconjugate Chemistry, 2012. 23: p. 538-547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan, W., et al., First Experience of 18F-Alfatide in Lung Cancer Patients Using a New Lyophilized Kit for Rapid Radiofluorination. Journal of Nuclear Medicine, 2013. 54: p. 691-698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McBride, W.J., et al., The radiolabeling of proteins by the [18F]AlF method. Applied Radiation and Isotopes, 2012. 70: p. 200-204.

    Article  CAS  PubMed  Google Scholar 

  40. Ting, R., et al., Toward [ 18 F ] -Labeled Aryltrifluoroborate Radiotracers : In Vivo Positron Emission Tomography Imaging of Stable Aryltrifluoroborate Clearance in Mice. Journal of the American Chemical Society, 2008. 130: p. 12045-12055.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z., et al., Preclinical Evaluation of a High-Affinity 18F-Trifluoroborate Octreotate Derivative for Somatostatin Receptor Imaging. Journal of Nuclear Medicine, 2014. 55: p. 1499-1505.

    Article  CAS  PubMed  Google Scholar 

  42. Segrè, E.A. and G.T. Seaborg, Nuclear Isomerism in Element 43. Physical Review, 1938. 54(9): p. 772.

    Google Scholar 

  43. Banerjee, S., M.R. Pillai, and N. Ramamoorthy, Evolution of Tc-99m in diagnostic radiopharmaceuticals. Seminars in Nuclear Medicine, 2001. 31(4): p. 260-77.

    Article  CAS  PubMed  Google Scholar 

  44. Green, C.H., Technetium-99m production issues in the United Kingdom. Journal of Medical Physics, 2012. 37: p. 66–71.

    Google Scholar 

  45. Pillai, M.R.A., et al. , Sustained Availability of 99mTc: Possible Paths Forward,. Journal of Nuclear Medicine, 2013. 54: p. 313-323.

    Google Scholar 

  46. Seaborg, G.R., and E. Segrè, Nuclear isomerism of element 43. Physics Reviews, 1939. 55: p. 808-814.

    Google Scholar 

  47. Richards, P., Nuclide generators. Radioactive Pharmaceuticals, 1965: p. 155-163.

    Google Scholar 

  48. Wang, C.H., et al., 99mTcO4- Scintigraphic detection of follicular thyroid cancer and multiple metastaic lesions: A case report. Oncology Letters, 2013. 6: p. 1729–1732.

    Google Scholar 

  49. Harper, P.V., et al., Pharmacodynamics of some technetium-99m preparations. Radioactive Pharmaceuticals, 1965: p. 335-358.

    Google Scholar 

  50. Taskeav E., et al., Extraction generation for [99mTc]sodium pertechnetate production. Applied Radiation and Isotopes, 1995. 46: p. 13–16.

    Google Scholar 

  51. Liu, Y., et al., A brief review of chelators for radiolabeling oligomers. Materials, 2010. 3: p. 3204-3217.

    Google Scholar 

  52. Liu, S., 6-Hydrazinonicotinamide Derivatives as Bifunctional Coupling Agents for 99mTc-Labeling of Small Biomolecules. Topics in Current Chemistry, 2005. 252: p. 117–153.

    Google Scholar 

  53. Richards, P., Chemistry of technetium as applied to radiopharmaceuticals. Radiopharmaceuticals, 1975: p. 23-35.

    Google Scholar 

  54. Srivastava, S.C., et al., Problems associated with stannous 99mTc-radiopharmaceuticals,. International Journal of Applied Radiation and Isotopes, 1977. 28: p. 83-95.

    Google Scholar 

  55. Tofe, A.J. and M.D. Francis, In vitro stabilization of a low-tin bone imaging agent (Tc-99m-Sn-HEDP) by ascorbic acid. Journal of Nuclear Medicine, 1976. 17: p. 820-825.

    Google Scholar 

  56. Burke, J., Advances in 99mTc Radiopharmaceutical Chemistry. Paper presented at the 148th Annual Meeting of the American Pharmaceutical Association, 2001.

    Google Scholar 

  57. Mazzi, U., et al., Technetium coordination chemistry: development of new backbones for 99mTc radiopharmaceuticals. Technetium and Rhenium in Chemistry and Nuclear Medicine p. 39-50.

    Google Scholar 

  58. Johannsen, B., et al., Chemical and biological characterization of different Tc complexes of cysteine and cysteine derivatives. Journal of Nuclear Medicine, 1978. 19: p. 816-824.

    Google Scholar 

  59. Meerdink D.J. and J.A. Leppo, Comparison of hypoxia and ouabain effects on the myocardial uptake kinetics of technetium-99m hexakis 2-methoxyisobutyl isonitrile and thallium-201. Journal of Nuclear Medicine, 1989. 30: p. 1500-1506.

    Google Scholar 

  60. Carvalho, P.A., et al., Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. Journal of Nuclear Medicine, 1992. 33: p. 1516-1521.

    Google Scholar 

  61. Jurisson S.S. and J.D. Lydon, Potential technetium small molecule radiopharmaceuticals. Chemical Reviews, 1999. 99: p. 2205-2218.

    Google Scholar 

  62. Alberto, R., et al., A novel organometallic aquo complex of technetium for the labeling of biomolecules: Synthesis of [Tc(H2O)3(CO)3]+ from 99mTcO4- in aqueous solution and its reaction with a bifunctional ligand. Journal of the American Chemical Society, 1998. 120: p. 7987-7988.

    Google Scholar 

  63. Spradau, T.W., et al., Synthesis and biological evaluation of Tc-99m cyclopentdienyltricarbonyltechnetium-labeled octreotide. Nuclear Medicine and Biology, 1999. 26: p. 1-7.

    Google Scholar 

  64. Kowalsky, R.J., Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine, 2nd ed. Washington, DC: American Pharmacists Association, 2004.

    Google Scholar 

  65. Loberg M.D. and A.T. Fields, Stability of 99mTc-labeled N-substituted iminodiacetic acids: Ligand exchange reaction between 99mTc-HIDA and EDTA. International Journal of Applied Radiation and Isotopes, 1977. 28: p. 687-692.

    Google Scholar 

  66. Ikeda, I., et al., Chemical and biological studies on Tc-99m DMS-II: Effect of Sn(II) on the formation of various Tc-DMS complexes. International Journal of Applied Radiation and Isotopes, 1976. 27: p. 681-688.

    Google Scholar 

  67. Ikeda, I., et al., Preparation of various Tc-99m dimercaptosuccinate complexes and their evaluation as radiotracers. Journal of Nuclear Medicine, 1977. 18: p. 1222-1229.

    Google Scholar 

  68. Treher, E.N., et al., Monocapped tris (dioxime) complexes of technetium(III): Synthesis and structural characterization of TcX(dioxime)3 B-R (x = Cl, Br; dioxime = dimethylglyoxime, cyclohexanedione dioxime; R = CH3, C4H9. Inorganic Chemistry, 1989. 28: p. 3411-3416.

    Google Scholar 

  69. Eckelman W. and P. Richards, Instant Tc-99m DTPA. Journal of Nuclear Medicine, 1970. 11: p. 761.

    Google Scholar 

  70. Arnold, R.W., et al., Comparison of Tc-99m complexes for renal imaging. Journal of Nuclear Medicine., 1975. 16: p. 357-367.

    Google Scholar 

  71. McCarthy, D.W., et al., Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nuclear Medicine and Biology, 1997. 24: p. 35-43.

    Article  CAS  PubMed  Google Scholar 

  72. Szűcs, Z., S. Takács, and B. Alirezapour, Development of cost effective method for production of 64Cu from natNi. Journal of Radioanalytical and Nuclear Chemistry, 2014. 302: p. 1035-1038.

    Article  CAS  Google Scholar 

  73. Jurisson, S., C. Cutler, and S.V. Smith, Radiometal complexes: Characterization and relevant in vitro studies. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2008. 52: p. 222-234.

    CAS  PubMed  Google Scholar 

  74. Stigers, D.J., et al., A new phosphonate pendant-armed cross-bridged tetraaminechelator accelerates copper(ii) binding for radiopharmaceutical applications. Dalton Transactions., 2010. 39: p. 1699-1701.

    Article  CAS  PubMed  Google Scholar 

  75. Bhargava, K.K., et al., In vitro human leukocyte labeling with 64Cu: an intraindividual comparison with 111In-oxine and 18F-FDG. Nuclear Medicine and Biology, 2009. 36: p. 545-549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chopra, A. and D. Pan, cFLFLFK-PEG-64Cu. Molecular Imaging and Contrast Agent Database.

    Google Scholar 

  77. Zhang, Y., et al., Synthesis of novel neutrophil-specific imaging agents for Positron Emission Tomography (PET) imaging. Bioorganic and Medicinal Chemistry Letters, 2007. 17(24): p. 6876-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harper, J., et al., Mouse Model of Necrotic Tuberculosis Granulomas Develops Hypoxic Lesions. Journal of Infectious Diseases, 2012. 205: p. 595-602.

    Article  CAS  PubMed  Google Scholar 

  79. Beaino, W. and C.J. Anderson, PET Imaging of Very Late Antigen-4 in Melanoma: Comparison of 68Ga- and 64Cu-Labeled NODAGA and CB-TE1A1P-LLP2A Conjugates. Journal of Nuclear Medicine, 2014. 55: p. 1856-1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Beaino, W., et al., PET imaging of immune cells in a macaque tuberculosis model. Journal of Nuclear Medicine, 2015. 56: p. 651.

    Google Scholar 

  81. Rolle, A.M., et al., ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proceedings of the National Academy of Sciences of the USA, 2016. 113(8): p. E1026-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kumar, V., et al., Potential use of 68Ga-apo-transferrin as a PET imaging agent for detecting Staphylococcus aureus infection. Nuclear Medicine and Biology, 2011. 38: p. 393-398.

    Article  CAS  PubMed  Google Scholar 

  83. Rizzello, A., et al., Synthesis and quality control of 68Ga citrate for routine clinical PET. Nuclear Medicine Communications, 2009. 30: p. 542-545.

    Article  CAS  PubMed  Google Scholar 

  84. Vorster, M., et al., A modified technique for efficient radiolabeling of 68Ga-citrate from a SnO2-based 68Ge/68Ga generator for better infection imaging. Hellenic Journal of Nuclear medicine, 2013. 16: p. 193-198.

    PubMed  Google Scholar 

  85. Varasteh, Z., et al., The Effect of Mini-PEG-Based Spacer Length on Binding and Pharmacokinetic Properties of a 68Ga-Labeled NOTA-Conjugated Antagonistic Analog of Bombesin. Molecules, 2014. 19: p. 10455-10472.

    Article  CAS  PubMed  Google Scholar 

  86. Notni, J., K. Pohle, and H.-J. Wester, Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. European Journal of Nuclear Medicine and Molecular Imaging Research, 2012. 2: p. 28.

    Google Scholar 

  87. Kubíček, V.C., et al., Gallium(III) Complexes of DOTA and DOTA−Monoamide: Kinetic and Thermodynamic Studies. Inorganic Chemistry, 2010. 49: p. 10960-10969.

    Google Scholar 

  88. de Sá, A., et al., Gallium labeled NOTA-based conjugates for peptide receptor-mediated medical imaging. Bioorganic & Medicinal Chemistry Letters, 2010. 20: p. 7345-7348.

    Article  CAS  Google Scholar 

  89. De León-Rodriguez, L.M., et al., Solid-Phase Synthesis of DOTA–Peptides. Chemistry - A European Journal, 2004. 10: p. 1149-1155.

    Article  CAS  Google Scholar 

  90. Tanaka, K., et al., A Submicrogram-Scale Protocol for Biomolecule-Based PET Imaging by Rapid 6π-Azaelectrocyclization: Visualization of Sialic Acid Dependent Circulatory Residence of Glycoproteins. Angewandte Chemie International Edition, 2008. 47: p. 102-105.

    Article  CAS  PubMed  Google Scholar 

  91. Dijkgraaf, I., et al., Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Organic & Biomolecular Chemistry, 2007. 5: p. 935-944.

    Article  CAS  Google Scholar 

  92. Knör, S., et al., Synthesis of Novel 1,4,7,10-Tetraazacyclodecane-1,4,7,10-Tetraacetic Acid (DOTA) Derivatives for Chemoselective Attachment to Unprotected Polyfunctionalized Compounds. Chemistry - A European Journal, 2007. 13: p. 6082-6090.

    Article  CAS  Google Scholar 

  93. Velikyan, I., Positron Emitting [68Ga]Ga-Based Imaging Agents: Chemistry and Diversity. Medicinal Chemistry, 2011. 7: p. 345-379.

    Article  CAS  PubMed  Google Scholar 

  94. Gleason, G.I., A positron cow. The International Journal of Applied Radiation and Isotopes, 1960. 8: p. 90-94.

    Article  CAS  PubMed  Google Scholar 

  95. Greene, M. and W. Tucker, An Improved Gallium-68 Cow. The international journal of Applied Radiation and Isotopes, 1961. 12: p. 62-63.

    Article  CAS  Google Scholar 

  96. Kopecky, P. and B. Mudrova, 68Ge - 68Ga Generator for the Production of 68Ga in an Ionic Form. The international Journal of Applied Radiation and Isotopes, 1974. 25: p. 263-268.

    Article  CAS  Google Scholar 

  97. Konstantin, P., et al., Processing of Generator-Produced 68Ga for Medical Application. The Journal of Nuclear Medicine, 2007. 48: p. 1741-1748.

    Article  CAS  Google Scholar 

  98. Bauwens, M., et al., Optimal buffer choice of the radiosynthesis of (68)Ga-Dotatoc for clinical application. Nuclear medicine communications, 2010. 31: p. 753-758.

    Article  CAS  PubMed  Google Scholar 

  99. Decristoforo, C., et al., A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nuclear Medicine Communications, 2007. 28: p. 870-875.

    Article  CAS  PubMed  Google Scholar 

  100. de Blois, E., et al., Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Applied Radiation and Isotopes, 2011. 69: p. 308-315.

    Article  CAS  PubMed  Google Scholar 

  101. Meyer, G.-J., et al., 68Ga-labelled DOTA-derivatised peptide ligands. European Journal of Nuclear Medicine and Molecular Imaging, 2004. 31: p. 1097-1104.

    Article  CAS  PubMed  Google Scholar 

  102. Loktionova, N.S., et al., Improved column-based radiochemical processing of the generator produced 68Ga. Applied Radiation and Isotopes, 2011. 69: p. 942-946.

    Article  CAS  PubMed  Google Scholar 

  103. Mueller, D., et al., Simplified NaCl Based 68 Ga Concentration and Labeling Procedure for Rapid Synthesis of 68 Ga Radiopharmaceuticals in High Radiochemical Purity. Bioconjugate Chemistry, 2012. 23: p. 1712-1717.

    Article  CAS  PubMed  Google Scholar 

  104. Rossouw, D.D. and W.A.P. Breeman, Scaled-up radiolabelling of DOTATATE with 68Ga eluted from a SnO2-based 68Ge/68Ga generator. Applied Radiation and Isotopes, 2012. 70: p. 171-175.

    Article  CAS  PubMed  Google Scholar 

  105. Breeman, W.A.P., et al., Radiolabelling DOTA-peptides with 68Ga. European Journal of Nuclear Medicine and Molecular Imaging, 2005. 32: p. 478-485.

    Article  CAS  PubMed  Google Scholar 

  106. Decristoforo, C., R.D. Pickett, and A. Verbruggen, Feasibility and availability of 68Ga-labelled peptides. European Journal of Nuclear Medicine and Molecular Imaging, 2012. 39: p. 31-40.

    Article  CAS  Google Scholar 

  107. Chakravarty, R., et al., Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nuclear Medicine and Biology, 2011. 38: p. 575-583.

    Article  CAS  PubMed  Google Scholar 

  108. Velikyan, I., et al., The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. Nuclear Medicine and Biology, 2008. 35: p. 529-536.

    Article  CAS  PubMed  Google Scholar 

  109. Roesch, F., 68Ge/68Ga Generators and 68Ga Radiopharmaceutical Chemistry on Their Way into a New Century. Journal of Postgraduate Medicine Education and Research, 2013. 47: p. 18-25.

    Article  Google Scholar 

  110. Petrik, M., et al., Microbial challenge tests on nonradioactive TiO2-based 68Ge/68Ga generator columns. Nuclear Medicine Communications, 2012. 33: p. 819-823.

    Article  PubMed  Google Scholar 

  111. Velikyan, I., 68Ga-Based Radiopharmaceuticals: Production and Application Relationship. Molecules, 2015. 20: p. 12913-12943.

    Article  CAS  PubMed  Google Scholar 

  112. Ballinger, J.R. and K.K. Solanki, What will be required to bring 68Ga-labelled peptides into routine clinical use? Nuclear Medicine Communications, 2011. 32: p. 1109-1112.

    Article  PubMed  Google Scholar 

  113. Hupf, H.B. and J.E. Beaver, Cyclotron production of carrier-free gallium-67. The International Journal of Applied Radiation and Isotopes, 1970. 21(2): p. 75-79.

    Article  CAS  PubMed  Google Scholar 

  114. El-Azony, K.M., K. Ferieg, and Z.A. Saleh, Direct separation of 67Ga citrate from zinc and copper target materials by anion exchange. Applied Radiation and Isotopes, 2003. 59(5-6): p. 329-331.

    Article  CAS  PubMed  Google Scholar 

  115. Bartholoma, M.D., et al., Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chemical Reviews, 2010. 110(5): p. 2903-2920.

    Article  CAS  PubMed  Google Scholar 

  116. Tarkanyi, F., et al., Cross sections of proton induced nuclear reactions on enriched 111Cd and 112Cd for the production of 111In for use in nuclear medicine. Applied Radiation and Isotopes, 1994. 45: p. 239-249.

    Article  CAS  PubMed  Google Scholar 

  117. Arano, Y., et al., Radiolabeled Metabolites of Proteins Play a Critical Role in Radioactivity Elimination from the Liver. Nuclear Medicine and Biology, 1995. 22: p. 555-564.

    Article  CAS  PubMed  Google Scholar 

  118. Boswell, C.A., et al., Effects of Charge on Antibody Tissue Distribution and Pharmacokinetics. Bioconjugate Chemistry, 2010. 21: p. 2153-2163.

    Article  CAS  PubMed  Google Scholar 

  119. Hayes, R.L., The medical use of gallium radionuclides: a brief history with some comments. Seminars in Nuclear Medicine, 1978. 8: p. 183-191.

    Article  CAS  PubMed  Google Scholar 

  120. Tsopelas, C., Radiotracers Used for the Scintigraphic Detection of Infection and Inflammation. The Scientific World Journal, 2015. 2015: p. 1-33.

    Article  CAS  Google Scholar 

  121. Signore, A. and A.W.J.M. Glaudemans, The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Annals of Nuclear Medicine, 2011. 25: p. 681-700.

    Article  PubMed  Google Scholar 

  122. Palestro, C.J., FDG-PET in musculoskeletal infections. Seminars in Nuclear Medicine, 2013. 43: p. 367-376.

    Article  PubMed  Google Scholar 

  123. Palestro, C.J., The current role of gallium imaging in infection. Seminars in Nuclear Medicine, 1994. 24: p. 128-141.

    Article  CAS  PubMed  Google Scholar 

  124. Ballinger, J.R. and G. Gnanasegaran, Radiolabelled leukocytes for imaging inflammation: how radiochemistry affects clinical use. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2005. 49: p. 308-318.

    CAS  PubMed  Google Scholar 

  125. Roca, M., et al., Guidelines for the labelling of leucocytes with (111)In-oxine. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. European Journal of Nuclear Medicine and Molecular Imaging, 2010. 37: p. 835-841.

    Google Scholar 

  126. De Vries, E.F.J., et al., Guidelines for the labelling of leucocytes with 99mTc-HMPAO. European Journal of Nuclear Medicine and Molecular Imaging, 2010. 37: p. 842-848.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Roca, M., et al., A consensus protocol for white blood cells labelling with technetium-99m hexamethylpropylene amine oxime. European Journal of Nuclear Medicine and Molecular Imaging, 1998. 25: p. 797-799.

    Article  CAS  Google Scholar 

  128. Kennedy, C., et al., Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose. Science, 1975. 187: p. 850-853.

    Article  CAS  PubMed  Google Scholar 

  129. Yu, S., Review of 18F-FDG synthesis and quality control. Biomedical Imaging and Intervention Journal, 2006. 2: p. e57.

    Google Scholar 

  130. Glaudemans, A.W.J.M., et al., The Use of 18F-FDG-PET/CT for Diagnosis and Treatment Monitoring of Inflammatory and Infectious Diseases. Clinical and Developmental Immunology, 2013. 2013: p. 1-14.

    Article  CAS  Google Scholar 

  131. Kumar, V., Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2005. 49: p. 325-338.

    CAS  PubMed  Google Scholar 

  132. Tsopelas, C., The radiopharmaceutical chemistry of 99mTc-tin fluoride colloid-labeled-leukocytes. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2005. 49: p. 319-324.

    CAS  PubMed  Google Scholar 

  133. Hughes, D.K., Nuclear Medicine and Infection Detection: The Relative Effectiveness of Imaging with 99m Tc-Stannous Fluoride Colloid – Labeled. Journal of Nuclear Medicine Technology, 2003. 31: p. 196-201.

    CAS  PubMed  Google Scholar 

  134. Kanishi, D., 99mTc-MDP accumulation mechanisms in bone. Oral Surgery, Oral Medicine, Oral Pathology, 1993. 75: p. 239-246.

    Article  CAS  PubMed  Google Scholar 

  135. Boerman, O.C., et al., Radiopharmaceuticals for scintigraphic imaging of infection and inflammation. Inflammation Research, 2001. 50: p. 55-64.

    Article  CAS  PubMed  Google Scholar 

  136. Glaudemans, A.W.J.M., et al., Leukocyte and bacteria imaging in prosthetic joint infection. European Cells and Materials, 2012. 25: p. 61-77.

    Article  Google Scholar 

  137. Jimenez Heffernan, A., P.I. Contreras Puertas, and A.C. Rebollo Aguirre, [99mTc-labelled antigranulocyte anibody fragment Fab scintigraphy (sulesomab, leukoscan) and three-phase bone scintigraphy in the study of painful hip and knee prosthesis]. Spanish Journal of Nuclear Medicine and Molecular Imaging, 2002. 21(4): p. 286-93.

    CAS  Google Scholar 

  138. Rubello, D., Timing for evaluating “specific” binding of 99mTc-sulesomab in peripheral bone infection. Journal of Nuclear Medicine, 2005. 46(2): p. 382-383.

    PubMed  Google Scholar 

  139. Rubello, D., et al., Role of anti-granulocyte Fab’ fragment antibody scintigraphy (LeukoScan) in evaluating bone infection: acquisition protocol, interpretation criteria and clinical results. Nuclear Medicine Communications, 2004. 25(1): p. 39-47.

    Google Scholar 

  140. Schroeter, S. and L. Greiner-Bechert, LeukoScan protocol. Nuclear Medicine Communications, 2001. 22(7): p. 841.

    Article  CAS  PubMed  Google Scholar 

  141. Delcourt, A., et al., Comparison between Leukoscan (Sulesomab) and Gallium-67 for the diagnosis of osteomyelitis in the diabetic foot. Diabetes and Metabolism, 2005. 31(2): p. 125-33.

    Article  CAS  PubMed  Google Scholar 

  142. Palestro, C.J., Radionuclide imaging of infection: in search of the grail. Journal of Nuclear Medicine, 2009. 50: p. 671-673.

    Article  PubMed  Google Scholar 

  143. Fischman, A.J., et al., Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptide analogs. Journal of Nuclear Medicine, 1991. 32: p. 483-491.

    CAS  PubMed  Google Scholar 

  144. van der Laken, C.J., et al., Technetium-99m-Labeled Chemotactic Peptides in Acute Infection and Sterile Inflammation. Journal of Nuclear Medicine, 2015. 38: p. 1310-1315.

    Google Scholar 

  145. Nanni, C., et al., 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. Journal of Nuclear Medicine, 2010. 51: p. 1932-1936.

    Article  PubMed  Google Scholar 

  146. Vorster, M., et al., 68Ga-citrate PET/CT in Tuberculosis: A pilot study. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2014 (Epub 2014).

    Google Scholar 

  147. Jensen, S.B., et al., Fast and simple one-step preparation of 68Ga citrate for routine clinical PET. Nuclear Medicine Communications, 2013. 34: p. 806-812.

    Article  CAS  PubMed  Google Scholar 

  148. Petrik, M., et al., Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2012. 39: p. 1175-1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Afonso, P.V., et al., LTB4 Is a Signal-Relay Molecule during Neutrophil Chemotaxis. Developmental Cell, 2012. 22: p. 1079-1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. van Eerd, J.E., et al., Scintigraphic Detection of Pulmonary Aspergillosis in Rabbits with a Radiolabeled Leukotriene B4 Antagonist. Journal of Nuclear Medicine, 2004. 45: p. 1747-1753.

    PubMed  Google Scholar 

  151. Rennen, H.J.J.M., et al., PET imaging of infection with a HYNIC-conjugated LTB4 antagonist labeled with F-18 via hydrazone formation. Nuclear Medicine and Biology, 2007. 34: p. 691-695.

    Article  CAS  PubMed  Google Scholar 

  152. Mäkinen, T.J., et al., Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. European Journal of Nuclear Medicine and Molecular Imaging, 2005. 32: p. 1259-68.

    Article  PubMed  Google Scholar 

  153. Nanni, C., et al., Small animal PET for the evaluation of an animal model of genital infection. Clinical Physiology and Functional Imaging, 2009. 29: p. 187-192.

    Article  PubMed  Google Scholar 

  154. Borges, J.B., et al., Ventilation distribution studies comparing Technegas and “Gallgas” using 68GaCl3 as the label. Journal of Nuclear Medicine, 2011. 52: p. 206-9.

    Article  PubMed  Google Scholar 

  155. Gemmel, F., N. Dumarey, and M. Welling, Future Diagnostic Agents. Seminars in Nuclear Medicine, 2009. 39: p. 11-26.

    Article  PubMed  Google Scholar 

  156. Eggleston, H. and P. Panizzi, Molecular Imaging of Bacterial Infections in vivo: The Discrimination between Infection and Inflammation. Informatics, 2014. 1: p. 72-99.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Siaens, R.H., et al., Synthesis and Comparison of 99mTc-Enrofloxacin and 99mTc-Ciprofloxacin. Journal of Nuclear Medicine, 2004. 45: p. 2088.

    CAS  PubMed  Google Scholar 

  158. Motaleb, M.A., Preparation and biodistribution of 99mTc-lomefloxacin and 99mTc-ofloxacin complexes. Journal of Radioanalytical and Nuclear Chemistry, 2007. 272: p. 95-99.

    Article  CAS  Google Scholar 

  159. Motaleb, M.A., Preparation, quality control and stability of 99mTc-sparafloxacin complex, a novel agent for detecting sites of infection. Journal of Labelled Compounds and Radiopharmaceuticals, 2009. 52: p. 415-418.

    Article  CAS  Google Scholar 

  160. Chattopadhyay, S., et al., Synthesis and evaluation of 99mTc-moxifloxacin, a potential infection specific imaging agent. Applied Radiation and Isotopes, 2010. 68: p. 314-316.

    Article  CAS  PubMed  Google Scholar 

  161. Ibrahim, I.T., M.A. Motaleb, and K.M. Attalah, Synthesis and biological distribution of 99mTc–norfloxacin complex, a novel agent for detecting sites of infection. Journal of Radioanalytical and Nuclear Chemistry, 2010. 285: p. 431-436.

    Article  CAS  Google Scholar 

  162. Shah, S.Q. and M.R. Khan, Radiolabeling of gemifloxacin with technetium-99m and biological evaluation in artificially Streptococcus pneumoniae infected rats. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288: p. 307-312.

    Article  CAS  Google Scholar 

  163. Shah, S.Q. and M.R. Khan, Radiocharacterization of the 99mTc-rufloxacin complex and biological evaluation in Staphylococcus aureus infected rat model. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288: p. 373-378.

    Article  CAS  Google Scholar 

  164. Shah, S. and M. Khan, Synthesis of 99m TcN-clinafloxacin dithiocarbamate complex and comparative radiobiological evaluation in staphylococcus aureus infected mice. World Journal of Nuclear Medicine, 2014. 13: p. 154-158.

    Google Scholar 

  165. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis and biodistribution of 99mTcN-Garenoxacin dithiocarbamate complex a potential infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288: p. 59-64.

    Article  CAS  Google Scholar 

  166. Motaleb, M.A., et al., Study on the preparation and biological evaluation of 99mTc–gatifloxacin and 99mTc–cefepime complexes. Journal of Radioanalytical and Nuclear Chemistry, 2011. 289: p. 57-65.

    Article  CAS  Google Scholar 

  167. Ali, S., et al., Tc labeled levofloxacin as an infection imaging agent : a novel method for labeling levofloxacin using cysteine · HCl as co-ligand and in vivo study. Turkish Journal of Chemistry, 2012. 36: p. 267-277.

    Google Scholar 

  168. Nayak, D.K., et al., Evaluation of 99mTc(I)-tricarbonyl complexes of fluoroquinolones for targeting bacterial infection. Metallomics, 2012. 4: p. 1197-1208.

    Article  CAS  PubMed  Google Scholar 

  169. Langer, O., et al., Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans. Nuclear Medicine and Biology, 2003. 30: p. 285-291.

    Article  CAS  PubMed  Google Scholar 

  170. Langer, O., et al., In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. European Journal of Nuclear Medicine and Molecular Imaging, 2005. 32: p. 143-150.

    Article  CAS  PubMed  Google Scholar 

  171. Sachin, K., et al., Synthesis of N 4 ′-[ 18 F]fluoroalkylated ciprofloxacin as a potential bacterial infection imaging agent for PET study. Bioconjugate chemistry, 2010. 21: p. 2282-2288.

    Google Scholar 

  172. Fischman, A.J., et al., Pharmacokinetics of 18F-labeled fluconazole in rabbits with candidal infections studied with positron emission tomography. The Journal of pharmacology and experimental therapeutics, 1991. 259: p. 1351-1359.

    CAS  PubMed  Google Scholar 

  173. Fischman, A.J., et al., Pharmacokinetics of 18F-Labeled Fluconazole in Healthy Human Subjects by Positron Emission Tomography. Antimicrobial Agents and Chemotherapy, 1993. 37: p. 1270-1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lupetti, A., et al., Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections. European Journal of Nuclear Medicine, 2002. 29: p. 674-679.

    Article  CAS  PubMed  Google Scholar 

  175. Diniz, S.O.F., et al., Scintigraphic imaging using technetium-99m-labeled ceftizoxime in an experimental model of acute osteomyelitis in rats. Nuclear Medicine Communications, 2008. 29: p. 830-836.

    Article  CAS  PubMed  Google Scholar 

  176. Gomes Baretto, V., et al., Labelling of ceftizoxime with 99m Tc. Spanish Journal of Nuclear Medicine and Molecular Imaging, 2014. 19: p. 479-483.

    Google Scholar 

  177. Odília, S., et al., Technetium-99m Ceftizoxime Kit Preparation. Brazilian Archives of Biology and Technology, 2005. 48: p. 89-96.

    Article  Google Scholar 

  178. Roohi, S., A. Mushtaq, and S.A. Malik, Synthesis and biodistribution of 99mTc-Vancomycin in a model of bacterial infection. Radiochimica Acta, 2005. 93: p. 415-18.

    Article  CAS  Google Scholar 

  179. Roohi, S., et al., Synthesis , quality control and biodistribution of 99m Tc-Kanamycin. Journal of Radioanalytical and Nuclear Chemistry, 2006. 267: p. 561-566.

    Google Scholar 

  180. Motaleb, M.A., Preparation of 99mTc-cefoperazone complex, a novel agent for detecting sites of infection. Journal of Radioanalytical and Nuclear Chemistry, 2007. 272: p. 167-171.

    Article  CAS  Google Scholar 

  181. Yurt Lambrecht, F., K. Durkan, and P. Unak, Preparation, quality control and stability of 99mTc-cefuroxime axetil. Journal of Radioanalytical and Nuclear Chemistry, 2007. 275: p. 161-164.

    Article  CAS  Google Scholar 

  182. Yurt Lambrecht, F., et al., Evaluation of 99mTc-Cefuroxime axetil for imaging of inflammation. Journal of Radioanalytical and Nuclear Chemistry, 2008. 277: p. 491-494.

    Google Scholar 

  183. Shah, S.Q., M.R. Khan, and A.U. Khan, 99m Tc-Novobiocin: a~novel radiotracer for infection imaging. Radiochimica Acta, 2011. 99: p. 53-58.

    Article  CAS  Google Scholar 

  184. Martin-Comin, J., et al., Clinical usefulness of 111In-oxine-labeled autologous lymphocytes in kidney-graft rejection. European Journal of Nuclear Medicine, 1985. 10: p. 308-12.

    Article  CAS  PubMed  Google Scholar 

  185. Saverymuttu, S.H., et al., 111Indium autologous granulocytes in the detection of inflammatory bowel disease. Gut, 1985. 26: p. 955-960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bhattacharya, A., et al., PET/CT with 18F-FDG-Labeled Autologous Leukocytes for the Diagnosis of Infected Fluid Collections in Acute Pancreatitis. Journal of nuclear medicine, 2014. 55: p. 1267-1272.

    Article  CAS  PubMed  Google Scholar 

  187. Blocklet, D., et al., In-111-oxine and Tc-99m-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. European Journal of Nuclear Medicine and Molecular Imaging, 2003. 30: p. 440-447.

    Article  CAS  PubMed  Google Scholar 

  188. Wang, G., Positron Emission Tomography Plays a More Important Role in Health Care. Journal of Integrative Oncology, 2014. 4: p. 134-135.

    Google Scholar 

  189. Weinstein, E.A., et al., Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Science Translational Medicine, 2015. 6: p. 1-20.

    Google Scholar 

  190. Gowrishankar, G., et al., Investigation of 6-[18F]-Fluoromaltose as a Novel PET Tracer for Imaging Bacterial Infection. PLoS ONE, 2014. 9: p. e107951.

    Google Scholar 

  191. Ning, X., et al., PET Imaging of Bacterial Infections with Fluorine-18-Labeled Maltohexaose. Angewandte Chemie International Edition, 2014. 53: p. 14096-14101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Li, Z.-B., et al., The Synthesis of 18F-FDS and Its Potential Application in Molecular Imaging. Molecular Imaging and Biology, 2008. 10: p. 92-98.

    Article  PubMed  Google Scholar 

  193. Wang, X. and N. Murthy, Bacterial Imaging Comes of Age. Science Translational Medicine, 2014. 6: p. 259fs43-259fs43.

    Google Scholar 

  194. Peters, A.M., Antibodies in nuclear medicine. Methods in Molecular Medicine, 2000. 40: p. 179-192.

    CAS  PubMed  Google Scholar 

  195. Young, H., Applications of monoclonal antibodies in diagnostic nuclear medicine. Radiography Today, 1989. 55(631): p. 20-21.

    PubMed  Google Scholar 

  196. Keenan, A.M., J.C. Harbert, and S.M. Larson, Monoclonal antibodies in nuclear medicine. Journal of Nuclear Medicine, 1985. 26(5): p. 531-537.

    CAS  PubMed  Google Scholar 

  197. Dams, E., et al., Technetium-99m Labeled to Human Immunoglobulin G Through the Nicotinyl Hydrazine Derivative : A Clinical Study. Journal of Nuclear Medicine, 1998. 39: p. 119-124.

    CAS  PubMed  Google Scholar 

  198. Krejcarek, G.E. and K.L. Tucker, Covalent attachment of chelating groups to macromolecules. Biochemical and Biophysical Research Communications, 1977. 77: p. 581-585.

    Article  CAS  PubMed  Google Scholar 

  199. Khaw, B.A., et al., Acute Myocardial Infarct Imaging with Indium-111-Labeled Monoclonal Antimyosin Fab. Journal of Nuclear Medicine, 1987. 28: p. 1671-1678.

    CAS  PubMed  Google Scholar 

  200. Fischman, A., et al., Detection of acute inflammation with 111In-labeled nonspecific polyclonal IgG. Seminars in Nuclear Medicine., 1988. 18: p. 335-344.

    Google Scholar 

  201. Abrams, M.J., et al., Technetium-99m-Human Polyclonal IgG Radiolabeled via the Hydrazino Nicotinamide Derivative for Imaging Focal Sites of Infection in Rats. Journal of Nuclear Medicine, 1990. 31: p. 2022-2029.

    CAS  PubMed  Google Scholar 

  202. Singh, T., et al., Bhatnagar A, A new method for radiolabeling of human immunoglobulin-G and its biological evaluation. Journal of Pharmacy and Bioallied Sciences., 2012. 4: p. 286-290.

    Google Scholar 

  203. Callahan, R.J., et al., Biodistribution and Dosimetry of Technetium- 99m-Hydrazino Nicotinamide IgG : Comparison Biodistribution and Dosimetry of Technetium-99m-Hydrazino Nicotinamide IgG : Comparison with Indium- 111-DTPA-IgG. Journal of Nuclear Medicine, 1996. 37: p. 843-846.

    CAS  PubMed  Google Scholar 

  204. Cao, W., X. Lu and Z. Chang, The Advancement of Human Serum Albumin-Based Molecular Probes for Molecular Imaging. Current Pharmaceutical Design., 2015. 21: p. 1908-1915.

    Google Scholar 

  205. Fu, Z., C. Zhang and R. Wang, 99mTc-HSA is a valuable tracer in monitoring acute lung injury induced by lipopolysaccharide in rats. Journal of Nuclear Medicine, 2015. 56: p. 2506.

    Google Scholar 

  206. Malviya, G., et al., Radiolabelled Peptides and Monoclonal Antibodies for Therapy Decision Making in Inflammatory Diseases. Current Pharmaceutical Design, 2008. 14: p. 2401-2414.

    Article  CAS  PubMed  Google Scholar 

  207. Annovazzi, A., et al., Radiolabelling of a monoclonal anti-TNF-α antibody with 99mTc: in vitro studies. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2002. 46: p. 27.

    Google Scholar 

  208. Conti, F., et al., Successful treatment with intraarticular infliximab for resistant knee monarthritis in a patient with spondylarthropathy: A role for scintigraphy with99mTc-infliximab. Arthritis & Rheumatism, 2005. 52: p. 1224-1226.

    Article  Google Scholar 

  209. Bleeker-Rovers, C.P., et al., 99mTc-labeled interleukin 8 for the scintigraphic detection of infection and inflammation: first clinical evaluation. Journal of Nuclear Medicine, 2007. 48: p. 337-343.

    CAS  PubMed  Google Scholar 

  210. Rennen, H.J.J.M., et al., Specific and rapid scintigraphic detection of infection with 99mTc-labeled interleukin-8. Journal of Nuclear Medicine, 2001. 42: p. 117-123.

    CAS  PubMed  Google Scholar 

  211. Dams, E.T., et al., 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. Journal of Nuclear Medicine, 2000. 41: p. 622-630.

    CAS  PubMed  Google Scholar 

  212. Phillips, W.T., Delivery of gamma-imaging agents by liposomes. Advanced Drug Delivery Reviews, 1999. 37: p. 13-32.

    Article  CAS  PubMed  Google Scholar 

  213. Konteatis, Z.D., et al., Development of C5a receptor antagonists. Differential loss of functional responses. Journal of Immunology, 1994. 153: p. 4200-4205.

    Google Scholar 

  214. Rennen, H.J., et al., Tc-99m-labeled C5a and C5a des Arg74 for infection imaging. Nuclear medicine and biology, 2003. 30: p. 267-272.

    Article  CAS  PubMed  Google Scholar 

  215. Rubin, R.H., et al., Specific and nonspecific imaging of localized Fisher immunotype 1 Pseudomonas aeruginosa infection with radiolabeled monoclonal antibody. Journal of Nuclear Medicine, 1988. 29(5): p. 651-656.

    CAS  PubMed  Google Scholar 

  216. Blauenstein, P., et al., Experience with the iodine-123 and technetium-99m labelled anti-granulocyte antibody MAb47: a comparison of labelling methods. European Journal of Nuclear Medicine, 1995. 22(7): p. 690-698.

    Article  CAS  PubMed  Google Scholar 

  217. Machulla, H.J. and E.J. Knust, Recent developments in the field of 123I-radiopharmaceuticals. Nuklearmedizin, 1984. 23(3): p. 111-118.

    CAS  PubMed  Google Scholar 

  218. Bourguignon, M.H., et al., Iodine-123 labelled radiopharmaceuticals and single-photon emission tomography: a natural liaison. European Journal of Nuclear Medicine, 1997. 24(3): p. 331-344.

    Article  CAS  PubMed  Google Scholar 

  219. Signore, A., et al., The Developing Role of Cytokines for Imaging Inflammation and Infection. Cytokine, 2000. 12: p. 1445-1454.

    Article  CAS  PubMed  Google Scholar 

  220. van der Laken, C.J., et al., Specific targeting of infectious foci with radioiodinated human recombinant interleukin-1 in an experimental model. European Journal of Nuclear Medicine, 1995. 22: p. 1249-1255.

    Article  PubMed  Google Scholar 

  221. van der Laken, C.J., et al., Imaging of infection in rabbits with radioiodinated interleukin-1 (alpha and beta), its receptor antagonist and a chemotactic peptide: A comparative study. European Journal of Nuclear Medicine, 1998. 25: p. 347-352.

    Google Scholar 

  222. Brock, J.H., T. Mainou-Fowler, and S.J. McGregor, Transferrins and defence against infection. Annali dell’Istituto Superiore di Sanita, 1987. 23(4): p. 935-941.

    Google Scholar 

  223. Yeaman, M.R. and N.Y. Yount, Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 2003. 55: p. 27-55.

    Article  CAS  PubMed  Google Scholar 

  224. Ebenhan, T., et al., Antimicrobial Peptides : Their Role as Infection-Selective Tracers for Molecular Imaging. European Cells and Materials, 2014. 2014.

    Google Scholar 

  225. Welling, M.M., et al., Technetium-99m labeled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. European Journal of Nuclear Medicine, 2000. 27: p. 292-301.

    Article  CAS  PubMed  Google Scholar 

  226. Guérin, B., et al., Total Solid-Phase Synthesis of NOTA-Functionalized Peptides for PET Imaging. Organic Letters, 2010. 12: p. 280-283.

    Article  PubMed  CAS  Google Scholar 

  227. Ebenhan, T., et al., Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nuclear Medicine and Biology, 2014. 41: p. 390-400.

    Article  CAS  PubMed  Google Scholar 

  228. Ebenhan, T., et al., Preclinical Evaluation of 68Ga-Labeled 1,4,7-Triazacyclononane-1,4,7-Triacetic Acid-Ubiquicidin as a Radioligand for PET Infection Imaging. Journal of Nuclear Medicine, 2014. 55: p. 308-314.

    Article  CAS  PubMed  Google Scholar 

  229. Peschel, A., et al., Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. Journal of Biological Chemistry, 1999. 274: p. 8405-8410.

    Article  CAS  PubMed  Google Scholar 

  230. Welling, M.M., et al., Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. Journal of Nuclear Medicine, 1999. 40: p. 2073-2080.

    CAS  PubMed  Google Scholar 

  231. Pauwels, E.K., et al., The labeling of proteins and LDL with 99mTc: a new direct method employing KBH4 and stannous chloride. Nuclear Medicine and Biology, 1993. 20: p. 825-833.

    Article  CAS  PubMed  Google Scholar 

  232. Liberatore, M., et al., Microbial targeting of 99mTc-labeled recombinant human beta-defensin-3 in an animal model of infection: a feasibility pilot study. Journal of Nuclear Medicine, 2009. 50: p. 823-826.

    Article  CAS  PubMed  Google Scholar 

  233. Locke, L.W., et al., A novel neutrophil-specific PET imaging agent: cFLFLFK-PEG-64Cu. Journal of Nuclear Medicine, 2009. 50(5): p. 790-797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Silvola, J., et al., Preliminary evaluation of novel 68 Ga-DOTAVAP-PEG-P2 peptide targeting vascular adhesion protein-1. Clinical Physiology and Functional Imaging, 2010. 30: p. 75-78.

    Article  CAS  PubMed  Google Scholar 

  235. Ujula, T., et al., Synthesis, 68Ga labeling and preliminary evaluation of DOTA peptide binding vascular adhesion protein-1: a potential PET imaging agent for diagnosing osteomyelitis. Nuclear Medicine and Biology, 2009. 36: p. 631-641.

    Article  CAS  PubMed  Google Scholar 

  236. Ahtinen, H., et al., 68 Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections. European Journal of Nuclear Medicine and Molecular Imaging Research, 2014. 4: p. 45.

    Google Scholar 

  237. Haubner, R. and H.-J. Wester, Radiolabeled Tracers for Imaging of Tumor Angiogenesis and Evaluation of Anti-Angiogenic Therapies. Current Pharmaceutical Design, 2004. 10: p. 1439-1455.

    Article  CAS  PubMed  Google Scholar 

  238. Dijkgraaf, I., et al., PET imaging of αvβ 3 integrin expression in tumours with 68 Ga-labelled mono-, di- and tetrameric RGD peptides. European Journal of Nuclear Medicine and Molecular Imaging, 2011. 38: p. 128-137.

    Google Scholar 

  239. Audi, S., et al., Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin. Nuclear Medicine and Biology, 2012. 39: p. 821-825.

    Article  CAS  PubMed  Google Scholar 

  240. Thompson, C., Apoptosis in the pathogenesis and treatment of disease. Science, 1995. 267: p. 1456-1462.

    Article  CAS  PubMed  Google Scholar 

  241. Carter, V., et al., Killer Bee Molecules: Antimicrobial Peptides as Effector Molecules to Target Sporogonic Stages of Plasmodium. PLoS Pathogens, 2013. 9: p. e1003790.

    Google Scholar 

  242. Zhao, M., Z. Li, and S. Bugenhagen, 99mTc-Labeled Duramycin as a Novel Phosphatidylethanolamine-Binding Molecular Probe. Journal of Nuclear Medicine, 2008. 49: p. 1345-1352.

    Article  CAS  PubMed  Google Scholar 

  243. Zhao, M. and Z. Li, A single-step kit formulation for the 99mTc-labeling of HYNIC-Duramycin. Nuclear Medicine and Biology, 2012. 39: p. 1006-1011.

    Article  CAS  PubMed  Google Scholar 

  244. Yao, S., et al., Positron emission tomography imaging of cell death with [18F]FPDuramycin. Apoptosis, 2014. 19: p. 841-850.

    Article  CAS  PubMed  Google Scholar 

  245. Mokaleng, B.B., et al., Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent. Biomed Res Int, 2015. 2015.

    Google Scholar 

  246. Lazzeri, E., et al., Scintigraphic Imaging of Vertebral Osteomyelitis With 111In-Biotin. Spine, 2008. 33: p. E198-E204.

    Article  PubMed  Google Scholar 

  247. Virzi, F., et al., New indium-111 labeled biotin derivatives for improved immunotargeting. International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology, 1991. 18: p. 719-726.

    CAS  PubMed  Google Scholar 

  248. Shoup, T.M., et al., Synthesis of Fluorine-18-Labeled Biotin Derivatives: Biodistribution and Infection Localization. Journal of Nuclear Medicine, 1994. 35: p. 1685-90.

    CAS  PubMed  Google Scholar 

  249. Wójtowicz-Rajchel, H., M. Migas, and H. Koroniak, Simple Synthesis of Some Pentafluoropropenyl Derivatives of Pyrimidine and Purine Based on Addition−Elimination Reaction. The Journal of Organic Chemistry, 2006. 71: p. 8842-8846.

    Article  PubMed  CAS  Google Scholar 

  250. Peñuelas, I., et al., A Fully Automated One Pot Synthesis of 9-(4-[18F]Fluoro-3-Hydroxymethylbutyl) Guanine for Gene Therapy Studies. Molecular Imaging and Biology, 2002. 4: p. 415 -424.

    Article  PubMed  Google Scholar 

  251. Tjuvajev, J.G., et al., Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. Journal of Nuclear Medicine, 2002. 43: p. 1072-83.

    PubMed  Google Scholar 

  252. Vaidyanathan, G. and M.R. Zalutsky, Preparation of 5-[131I]iodo- and 5-[211At]astato-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) uracil by a halodestannylation reaction. Nuclear medicine and biology, 1998. 25: p. 487-96.

    Article  CAS  PubMed  Google Scholar 

  253. Alauddin, M.M., et al., Synthesis and evaluation of 2′-deoxy-2′-18F-fluoro-5-fluoro-1-beta-D-arabinofuranosyluracil as a potential PET imaging agent for suicide gene expression. Journal of Nuclear Medicine, 2004. 45: p. 2063-2069.

    CAS  PubMed  Google Scholar 

  254. Lamare, F., et al., Detection and Quantification of Large-Vessel Inflammation with 11C-(R)-PK11195 PET/CT. Journal of Nuclear Medicine, 2011. 52: p. 33-39.

    Article  PubMed  Google Scholar 

  255. Rojas, S., et al., Imaging brain inflammation with [11C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. Journal of Cerebral Blood Flow & Metabolism, 2007. 27: p. 1975-1986.

    Article  CAS  Google Scholar 

  256. Cagnin, A., A. Gerhard, and R. Banati, Neuroinflammation — From Bench to Bedside. PET Neuroinflammation — From Bench to Bedside, 2002: p. 179-191.

    Google Scholar 

  257. Chauveau, F., et al., Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. Journal of Nuclear Medicine, 2009. 50(3): p. 468-476.

    Article  CAS  PubMed  Google Scholar 

  258. Hacht, B., Gallium (III) ion hydrolysis under physiological conditions. Bulletin - Korean Chemical Society, 2008. 29: p. 372-376.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rijn Zeevaart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ebenhan, T., Wagener, C., Bambarger, L.E., Kalinda, A.S., Zeevaart, J.R. (2017). Radiochemistry. In: Jain, S. (eds) Imaging Infections . Springer, Cham. https://doi.org/10.1007/978-3-319-54592-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54592-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54590-5

  • Online ISBN: 978-3-319-54592-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics