Skip to main content

Yeast for Pentose Fermentation: Isolation, Screening, Performance, Manipulation, and Prospects

  • Chapter
  • First Online:
Advances of Basic Science for Second Generation Bioethanol from Sugarcane

Abstract

The global demand for energy has led the research and the investments to use plant biomass to convert the sugars contained in this material into ethanol. The characteristics of the substrate and process have a strong impact on the choice of microorganisms to be used for fermentation of the sugars. In the most of feedstocks for ethanol production, the sugars containing five carbons (pentoses) are abundant. Naturally occurring yeasts that can use pentoses as carbon source have been isolated from the environment, and among them, Pichia stipitis is one of the most important species. However, some important characteristics needed in ethanol industry are high resistance to inhibiting compounds and high fermentation performance and, until this moment, none a single strain that gather these features has not been found naturally. Techniques of evolutionary engineering and genetic manipulation have been applied to introduce and select the required traits for pentose fermentation in Saccharomyces cerevisiae, the most employed yeast industrially. This chapter discusses the context of the microorganisms, especially the yeast group, in the fermentation of hemicellulosic substrates for bioethanol production regarding isolation, screening, performance, limitations, prospects, and state of the art, trying to contribute to the improvement of the global process of ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger K, Jeffries TW (2007) The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Appl Biochem Biotechnol 136:653–662

    Google Scholar 

  • Agbogbo FK, Wenger KS (2006) Effect of pre treatmentchemicals on xylose fermentation by P. stipitis. Biotechnol Lett 28(24):2065–2069

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRM, Runquist D, Nogué VS, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299

    Article  CAS  PubMed  Google Scholar 

  • Amartey SA, Jeffries TW (1994) Comparison of corn steep liquor with other nutrients in the fermentation of d-xylose by Pichia stipitis CBS6054. Biotechnol Lett 16(2):211–214

    Article  CAS  Google Scholar 

  • Amorim HV, Lopes ML, Oliveira JVC, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Ananda N, Vadlani PV, Madl RL (2011) Rice bran is an effective substitute for yeast extract in ethanol fermentation. J Biobased Mater Bioenergy 5(1):70–74

    Article  CAS  Google Scholar 

  • Andrietta MGS, Andrietta SR, Stupiello ENA (2011) Bioethanol—what has Brazil learned about yeasts inhabiting the ethanol production processes from sugar cane? In: MAS B (ed) Biofuel production—recent developments and prospects. InTech, Croatia, pp 67–84

    Google Scholar 

  • Antunes FAF, Chandel AK, Milessi TSS, Santos JC, Rosa CA, Silva SS (2014) Bioethanol production from sugarcane bagasse by a novel Brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int J Chem Eng. doi:10.1155/2014/180681

    Google Scholar 

  • Antunes FAF, Santos JC, Chandel AK, Milessi TSS, Peres GFD, Silva SS (2016) Hemicellulosic ethanol production by immobilized wild Brazilian yeast Scheffersomyces shehatae UFMG-HM 52.2: effects of cell concentration and stirring rate. Curr Microbiol 72:133–138

    Article  CAS  PubMed  Google Scholar 

  • Barbosa MFS, Lee H, Schneider H, Forsberg CW (1990) Temperature mediated changes of d-xylose metabolism in the yeast Pachysolen tannophilus. FEMS Microbiol Lett 72:35–40

    Article  CAS  Google Scholar 

  • Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:125–134

    Article  CAS  PubMed  Google Scholar 

  • Bellido C, González-Benito G, Coca M, Lucas S, García-Cubero MT (2013) Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis. Bioresour Technol 133:51–58

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Heidelberger, pp 221–240

    Chapter  Google Scholar 

  • Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Heidelberger, pp 67–100

    Chapter  Google Scholar 

  • Buckeridge MS, Santos WD, Tiné MS, De Souza AP (2015) The cell wall architecture of sugarcane and its implications to cell wall recalcitrance. In: Lam E, Carrer H, Silva JA (eds) Compendium of bioenergy plants: sugarcane. CRC Press—Taylor & Francis Group, Boca Raton, FL, pp 31–50

    Google Scholar 

  • Cadete RM, Melo MA, Dussán KJ, Rodrigues RCLB, Silva SS, Zilli JE, Vital MJS, Gomes FCO, Lachance MA, Rosa CA (2012) Diversity and physiological characterization of d-xylose fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS One 7(8):e43135. doi:10.371/journal.pone.0043135

    Google Scholar 

  • Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FCO, Lachance MA, Rosa CA (2009) Spathaspora arborariae sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Canilha L, Carvalho W, Silva JBA (2005) Influence of medium composition on xylitol bioproduction from wheat straw hemicellulosic hydrolysate. World J Microbiol Biotechnol 21:1087–1093

    Article  CAS  Google Scholar 

  • Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol. doi:10.1155/2012/989572

    PubMed  PubMed Central  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:8–20

    CAS  Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2012) Detoxification of lignocelluloses hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenergy Res 6(1):388–401

    Article  CAS  Google Scholar 

  • Codato CB (2013) Produção de etanol de segunda geração por Dekkera bruxellensis a partir de hidrolisado de bagaço de cana-de-açúcar. Dissertation, Universidade Federal de São Carlos

    Google Scholar 

  • Converti A, Perego P, Domínguez JM, Silva SS (2001) Effect of temperature on the microaerophilic metabolism of Pachysolen tannophylus. Enzyme Microb Technol 28:339–345

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Pereira F, Hickert LR, Sehnem NT, Souza-Cruz PB, Rosa CA, Ayub MAZ (2011) Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations. Bioresour Technol 102:4218–4225

    Article  CAS  PubMed  Google Scholar 

  • Deak T (2009) Ecology and biodiversity of yeasts with potential value in biotechnology. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Heidelberger, p 151

    Chapter  Google Scholar 

  • Dehkhoda A, Brandberg T, Taherzadeh M (2009) Comparison of vacuum and high pressure evaporated wood hydrolyzate for ethanol production by repeated fed-batch using flocculating Saccharomyces cerevisiae. BioRes 4(1):309–320

    CAS  Google Scholar 

  • De Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenerg Res 7:24–35

    Article  CAS  Google Scholar 

  • De Souza AP, Kamei CLA, Torres AF, Pattathil S, Hahn MG, Trindade LM, Buckeridge MS (2015) How cell wall complexity influences saccharification efficiency in Miscanthus sinensis. J Exp Bot 66:4351–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6:564–579

    Article  CAS  Google Scholar 

  • du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–952

    Article  Google Scholar 

  • du Preez JC, Bosh M, Prior BA (1986) Xylose fermentation by Candida shehatae and Pichia stipitis: effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8(6):360–364

    Article  Google Scholar 

  • du Preez JC, Prior BA, Monteiro AMT (1984) The effect of aeration on xylose fermentation by Candida shehatae and Pachysolen tannophilus. Appl Microbiol Biotechnol 19:261–266

    Article  Google Scholar 

  • du Preez JC, van der Walt JP (1983) Fermentation of d-xylose to ethanol by a strain of Candida shehatae. Biotechnol Lett 5(5):357–362

    Article  Google Scholar 

  • Fan TWM, Lane AN, Shenkar M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221

    Article  CAS  PubMed  Google Scholar 

  • Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997) Fermentation of sugar cane bagasse hemicellulosic hydrolysate for xylitol production: effect of pH. Biomass Bioenerg 13(1/2):11–14

    Article  CAS  Google Scholar 

  • Ferreira AD, Mussatto SI, Cadete RM, Rosa CA, Silva SS (2011) Ethanol production by a new-pentose fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 28:547–554

    Article  CAS  PubMed  Google Scholar 

  • Fonseca C, Romão R, Sousa HR, Hahn-Hagerdal B, Spencer-Martins I (2007b) L-Arabinose transport and catabolism in yeast. FEBS J 274:3589–3600

    Article  CAS  PubMed  Google Scholar 

  • Fonseca C, Spencer-Martins I, Hahn-Hagerdal B (2007a) L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biotechnol 75:303–310

    Article  CAS  PubMed  Google Scholar 

  • Galafassi S, Merico A, Francesca P, Hellborg L, Molinari F, Piskur J (2011) Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 38(8):1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241

    CAS  PubMed  Google Scholar 

  • Grootjen DRJ, van der Lans RGJM, Luyben KCA (1990) Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb Technol 12:20–23

    Article  CAS  Google Scholar 

  • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass LN, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. PNAS 108(2):504–509

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolysate. Appl Biochem Biotechnol 28-29(1):131–144

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Pamment N (2004) Microbial pentose metabolism. Appl Biochem Biotechnol 113:1207–1209

    Article  PubMed  Google Scholar 

  • Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY, Habash MB, Trevors JT, Lee H (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42:1–20

    Article  CAS  PubMed  Google Scholar 

  • Hayn M, Steiner W, Klinger R, Steinmuller H, Sinner M, Esterbauer H (1993) Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, UK, pp 33–72

    Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214

    Article  CAS  PubMed  Google Scholar 

  • Hou-Rui Z, Xiang-Xiang Q, Silva SS, Sarrouh BF, Ai-Hua C, Yu-Heng Z, Ke J, Qiu X (2009) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152(2):199–212

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (1986) Effects of culture conditions on the fermentation of xylose to ethanol by Candida shehatae. Biotechnol Bioeng 15:149–166

    CAS  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (2008) Engineering the Pichia stipitis genome for fermentation of hemicellulose hydrolysates. In: Wall J, Harwood CS, Demain A (eds) Bioenergy. American Society for Microbiology, Washington, pp 37–47

    Chapter  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J et al (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3). doi:10.1038/nbt1290

  • Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microb Technol 16:922–932

    Article  CAS  Google Scholar 

  • Jeffries TW, van Vleet JRH (2009) Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res 9(6):793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahar P, Tanaka S (2014) A xylose-fermenting yeast hybridized by intergeneric fusion between Saccharomyces cerevisiae and Candida intermediai mutants for ethanol production. Sustain Chem Process 2:17–28

    Article  CAS  Google Scholar 

  • Karczewska H (1959) Some observations on pentose utilization by Candida tropicalis. Compt Rend Lab Carlsberg 31(17):251–258

    CAS  Google Scholar 

  • Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordowska-Wiater M (2015) Production of arabitol by yeasts: current status and future prospects. J Appl Microbiol 119:303–314

    Article  CAS  PubMed  Google Scholar 

  • Krahulec S, Kratzer R, Longus K, Nidetzky B (2012) Comparison of Scheffersomyces stipitis strains CBS 5773 and VBS 6054 with regard to their xylose metabolism: implications for xylose fermentation. Microbiol Open 1(1):64–70

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study. Elsevier, Amsterdam

    Google Scholar 

  • Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR (2012) Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol—a review. Appl Biochem Biotechnol 166:1908–1926

    Article  CAS  PubMed  Google Scholar 

  • Lertwattanasakul N, Rodrussamee N, Suprayogi Limtong S, Thanonkeo P, Kosaka T, Yamada M (2011) Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. AMB Express 1:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Nitiyon S, Kaewwichian R, Jindamorakot S, Am-In S, Yongmanitchai W (2012) Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. Int J Syst Evol Microbiol 62:2786–2792

    Article  CAS  PubMed  Google Scholar 

  • Lobo F, Gonçalves DL, Alves SL Jr et al (2014) Draft genome sequence of the D-xylose-fermenting yeast Spathaspora arborariae UFMG-HM19.1AT. Genome Announc 2(1):e01163-13. doi:10.1128/genomeA.01163-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorliam W, Akaracharanya A, Suzuki M, Ohkuma M, Tanasupawat S (2013) Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand. Microb Environ 28(3):354–360

    Article  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  CAS  PubMed  Google Scholar 

  • Martini C (2014) Isolamento, identificação e caracterização de linhagem de levedura quanto ao crescimento e fermentação utilizando meios sintéticos com pentoses e hidrolisado de bagaço de cana-de-açúcar. Thesis, Universidade Estadual Paulista Julio de Mesquita Filho

    Google Scholar 

  • Martini C, Tauk-Tornisielo SM, Codato CB, Bastos RG, Ceccato-Antonini SR (2016) A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. World J Microbiol Biotechnol 32:80. doi:10.1007/s11274-016-2036-1

    Article  CAS  PubMed  Google Scholar 

  • Martiniano SE, Chandel AK, Soares LCSR, Pagnocca FC, Silva SS (2013) Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. 3 Biotech. doi:10.1007/s13205-013-0145-1

    PubMed  PubMed Central  Google Scholar 

  • Matos ITSR, Cassa-Barbosa LA, Galvão RSM, Nunes-Silva CG, Astolfi-Filho S (2014) Isolation, taxonomic identification and investigation of the biotechnological potential of wild-type Meyerozyma guilliermondii associated with Amazonian termites able to ferment d-xylose. Biosci J 30(1):260–266

    Google Scholar 

  • Meshitsuka G, Isogai A (1996) Chemical structures of cellulose, hemicellulose, and lignin. In: Hon DNS, Shiraishi N (eds) Chemical modification of lignocellulosic materials. Marcel Dekker, New York, pp 11–34

    Google Scholar 

  • Milessi TSS, Antunes FAF, Chandel AK, Silva SS (2013) Rice bran extract: an expensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate. 3 Biotech 3:373–379

    Article  PubMed  Google Scholar 

  • Milessi TSS, Antunes FAF, Chandel AK, Silva SS (2015) Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitisi: effect of cell concentration and stirring. Bioengineered 6(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TL, Churchill BW (1986) Substrates for large-scale fermentation. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society of Microbiology, Washington, pp 130–131

    Google Scholar 

  • Morais CG, Cadete RM, Uetanabaro APT, Rosa LH, Lachance MA, Rosa CA (2013) D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genet Biol 60:19–26

    Article  CAS  PubMed  Google Scholar 

  • Mouro A (2012) Fermentação de xilose e celobiose por leveduras isoladas da biodiversidade brasileira. Dissertation, Universidade Federal de Santa Catarina

    Google Scholar 

  • Mussato SI, Roberto IC (2004) Avaliação de diferentes tipos de carvão ativo na destoxificação de hidrolisado de palha de arroz para produção de xilitol. Cienc Tecnol Alim 24:94–100

    Article  Google Scholar 

  • Náhlik J, Palatová M, Gírio F, Roseiro C (2003) Model identification and physicological control of xylitol production using Debaryomyces hansenii. Process Biochem 38(12):1695–1705

    Article  CAS  Google Scholar 

  • Nguyen NH, Suh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res 110:1232–1241

    Article  PubMed  Google Scholar 

  • Nigam JN, Ireland RS, Margaritis A, Lachance MA (1985) Isolation and screening of yeasts that ferment D-xylose directly to ethanol. Appl Environ Microbiol 50(6):1486–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nitiyon S, Boonmak C, Am-In S, Jindamorakot S, Kawasaki H, Yongmanitchai W, Limton S (2011) Candida saraburiensis sp. nov. and Candida prachuapensis sp. nov., xylose-utilizing yeast species isolated in Thailand. Int J Syst Evol Microbiol 61:462–468

    Article  CAS  PubMed  Google Scholar 

  • Nitiyon S, Keo-Oudone C, Murata M, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M (2016) Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21. SpringerPlus 5:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novy V, Krahulec S, Longus K, Klimacek M, Nidetzky B (2013) Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae. Bioresour Technol 130:439–448

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolyzate I: inhibition and detoxication. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: a review. Crit Rev Biotechnol 31(1):20–31

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Prompt AH (2012) Análise da fermentação de glucose e xilose por leveduras Spathaspora isoladas de madeira em decomposição. Dissertation, Universidade Federal de Santa Catarina

    Google Scholar 

  • Rao RS, Bhadra B, Shivaji S (2008) Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett Appl Microbiol 47:19–24

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Chen L, Niu Q, Hui F (2014) Description of Scheffersomyces henanensis sp. nov., a new D-xylose-fermenting yeast species isolated from rotten wood. PLoS One 9(3):e92315. doi:10.1371/journal.pone.0092315

    Google Scholar 

  • Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003) Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3:185–189

    Article  CAS  PubMed  Google Scholar 

  • Runquist D, Hahn-Hagerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can J Microbiol 45(6):491–512

    Article  CAS  PubMed  Google Scholar 

  • Sanchez RG, Karhumaa K, Fonseca C et al (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain by using evolutionary engineering. Biotechnol Biofuels 3:13–23

    Article  CAS  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (1997) The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae. Enzyme Microb Technol 21:355–360

    Article  CAS  PubMed  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77(6):641–648

    Article  CAS  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (2004) Influence of temperature on the fermentation of d-xylose by Pachysolen tannophilus to produce ethanol and xylitol. Process Biochem 39:673–679

    Article  CAS  Google Scholar 

  • Sarks C, Mingjie J, Sato TK, Balan V, Dale BE (2014) Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle. Biotechnol Biofuels 7:73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki M, Inui M, Yukawa H (2012) Microorganisms for xylitol production: focus on strain improvement. In: Silva SS, Chandel AK (eds) D-xylitol: fermentative production, application and commercialization. Springer, Heidelberger, pp 109–132

    Chapter  Google Scholar 

  • Schneider H, Wang PY, Yk C, Maleszka R (1981) Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3(2):89–92

    Article  CAS  Google Scholar 

  • Skoog K, Hahn-Hagerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Signori L, Passolunghi S, Ruohonen L, Porro D, Branduardi P (2014) Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact 13:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DV, Cândido EJ, Arruda PV, Silva SS, Felipe MGA (2014) New culture medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract. Braz J Microbiol 45(4):1469–1475

    Article  PubMed  Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC (2010) The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl Microbiol Biotechnol 162:1306–1315

    CAS  Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Braz J Chem Eng 28(1):151–156

    Article  CAS  Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2012) Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew Energy 37:259–265

    Article  CAS  Google Scholar 

  • Slininger PJ, Bothast RJ, Ladisch MR, Okos MR (1990) Optimum pH and temperature conditions for xylose fermentation by Pichia stipitis. Biotechnol Bioeng 35(7):727–731

    Article  CAS  PubMed  Google Scholar 

  • Smith J, van Rensburg E, Gorgens JF (2014) Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol 14:41–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge MS, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bon EPS, Moraes LMP, Araújo JA, Torres FAG (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    Article  CAS  PubMed  Google Scholar 

  • Souto-Maior AM, Runquist D, Hahn-Hagerdal B (2009) Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 143:119–123

    Article  CAS  PubMed  Google Scholar 

  • Sreenath HK, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeast. Bioresour Technol 72:253–260

    Article  CAS  Google Scholar 

  • Su YK, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng 112(3): 457–469. doi:10:1002/bit.25445

    Google Scholar 

  • Suh SO, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145

    Article  PubMed  Google Scholar 

  • Suh SO, White MM, Nguyen NH, Blackwell M (2004) The status and characterization of Enteroramus dimorphus: a xylose-fermenting yeast attached to the gut of beetles. Mycologia 96(4):756–760

    Article  CAS  PubMed  Google Scholar 

  • Talebnia F, Taherzadeh MJ (2006) In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated Saccharomyces cerevisiae. J Biotechnol 125(3):377–384

    Article  CAS  PubMed  Google Scholar 

  • Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SpringerPlus 1:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tengborg C, Galbe M, Zacchi G (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol Prog 17(1):110–117

    Article  CAS  PubMed  Google Scholar 

  • Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffer WA (1984) Alcoholic fermentation of d-xylose by yeasts. Appl Environ Microbiol 47:1221–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  PubMed  Google Scholar 

  • Urbina H, Schuster J, Blackwell M (2013) The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose- and xylose-fermenting yeasts. Fungal Ecol 6:339–355

    Article  Google Scholar 

  • van der Walt JP, Ferreira NP, Steyn RL (1987) Candida lyxosophila sp. nov., a new d-xylose fermenting yeast from Southern Africa. Antonie van Leeuwenhoek 53:93–97

    Article  PubMed  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1995) Effects of environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218

    Article  CAS  PubMed  Google Scholar 

  • Varize CS (2013) Isolamento e seleção de leveduras para fermentação de xilose. Dissertation, Universidade de São Paulo – ESALQ

    Google Scholar 

  • Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei N, Quaterman J, Kim SR, Cate JHD, Jin YS (2013) Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 4:2580. doi:10.1038/ncomms3580

    PubMed  Google Scholar 

  • Wisselink HW, Toirkens MJ, Berriel MRF, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73(15):4881–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1):26–40

    Article  CAS  Google Scholar 

  • Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strains constructed through a modified genome shuffling method. Biotechnol Biofuels 5:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the financial support to INCT (Instituto Nacional de Ciência e Tecnologia do Bioetanol).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Regina Ceccato-Antonini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ceccato-Antonini, S.R., Codato, C.B., Martini, C., Bastos, R.G., Tauk-Tornisielo, S.M. (2017). Yeast for Pentose Fermentation: Isolation, Screening, Performance, Manipulation, and Prospects. In: Buckeridge, M., De Souza, A. (eds) Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Springer, Cham. https://doi.org/10.1007/978-3-319-49826-3_8

Download citation

Publish with us

Policies and ethics