Skip to main content
Log in

l-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Arabinose utilization by the yeasts Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012 was investigated in aerobic batch cultures and compared, under similar conditions, to d-glucose and d-xylose metabolism. At high aeration levels, only biomass was formed from all the three sugars. When oxygen became limited, ethanol was produced from d-glucose, demonstrating a fermentative pathway in these yeasts. However, pentoses were essentially respired and, under oxygen limitation, the respective polyols accumulated—arabitol from l-arabinose and xylitol from d-xylose. Different l-arabinose concentrations and oxygen conditions were tested to better understand l-arabinose metabolism. P. guilliermondii PYCC 3012 excreted considerably more arabitol from l-arabinose (and also xylitol from d-xylose) than C. arabinofermentans PYCC 5603T. In contrast to the latter, P. guilliermondii PYCC 3012 did not produce any traces of ethanol in complex l-arabinose (80 g/l) medium under oxygen-limited conditions. Neither sustained growth nor active metabolism was observed under anaerobiosis. This study demonstrates, for the first time, the oxygen dependence of metabolite and product formation in l-arabinose-assimilating yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander NJ (1986) Acetone stimulation of ethanol production from d-xylose by Pachysolen tannophilus. Appl Microbiol Biotechnol 25:203–207

    Article  CAS  Google Scholar 

  • Andreasen AA, Stier TJB (1954) Anaerobic nutrition of Saccharomyces cerevisiae. 2. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Comp Physiol 43:271–281

    Article  CAS  Google Scholar 

  • Bruinenberg PM, Debot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292

    CAS  Google Scholar 

  • Chiang C, Knight SG (1960) A new pathway of pentose metabolism. Biochim Biophys Res Commun 3:554–559

    Article  CAS  Google Scholar 

  • Chiang C, Knight SG (1961) l-Arabinose metabolism by cell-free extracts of Penicillium chrysogenum. Biochim Biophys Acta 46:271–278

    Article  CAS  Google Scholar 

  • de Vries RP, Flipphi MJ, Witteveen CF, Visser J (1994) Characterization of an Aspergillus nidulansl-arabitol dehydrogenase mutant. FEMS Microbiol Lett 123:83–90

    Article  Google Scholar 

  • Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57–58:233–242

    Article  Google Scholar 

  • Dien BS, Hespell RB, Ingram LO, Bothast RJ (1997) Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains K011 and SL40. World J Microbiol Biotechnol 13:619–625

    Article  CAS  Google Scholar 

  • du Preez JC, Bosch M, Prior BA (1986) Xylose fermentation by Candida shehatae and Pichia stipitis: effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364

    Article  Google Scholar 

  • du Preez JC, Driessel B, Prior BA (1989) Effect of aerobiosis on fermentation and key enzyme levels during growth of Pichia stipitis, Candida shehatae and Candida tenuis on d-xylose. Arch Microbiol 152:143–147

    Article  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund MF, Gorgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31–46

    Article  Google Scholar 

  • Kurtzman CP, Dien BS (1998) Candida arabinofermentans, a new l-arabinose fermenting yeast. Antonie van Leeuwenhoek 74:237–243

    Article  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  CAS  Google Scholar 

  • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549

    Article  CAS  Google Scholar 

  • Lee N, Gielow W, Martin R, Hamilton E, Fowler A (1986) The organization of the araBAD operon of Escherichia coli. Gene 47:231–244

    Article  CAS  Google Scholar 

  • Maleszka R, Schneider H (1982) Fermentation of d-xylose, xylitol, and d-xylulose by yeasts. Can J Microbiol 28:360–363

    Article  CAS  Google Scholar 

  • McMillan JD, Boynton BL (1994) Arabinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol 45–46:569–584

    Article  Google Scholar 

  • Nobre A, Lucas C, Leão C (1999) Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65:3594–3598

    Article  CAS  Google Scholar 

  • Palmarola-Adrados B, Choteborska P, Galbe M, Zacchi G (2005) Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol 96:843–850

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1996) Production of l-arabitol from l-arabinose by Candida entomaea and Pichia guilliermondii. Appl Microbiol Biotechnol 45:299–306

    Article  CAS  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–80

    Article  CAS  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394

    Article  CAS  Google Scholar 

  • vanKuyk PA, de Groot MJ, Ruijter GJ, de Vries RP, Visser J (2001) The Aspergillus nigerd-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on d-xylose and l-arabinose. Eur J Biochem 268:5414–5423

    Article  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts—a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    Article  CAS  Google Scholar 

  • Verho R, Putkonen M, Londesborough J, Penttila M, Richard P (2004) A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast. J Biol Chem 279:14746–14751

    Article  CAS  Google Scholar 

  • Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792

    Article  CAS  Google Scholar 

  • von Sivers M, Zacchi G (1996) Ethanol from lignocellulosics: a review of the economy. Bioresour Technol 56:131–140

    Article  Google Scholar 

  • Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78:172–178

    Article  CAS  Google Scholar 

  • Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Otero RR (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326

    Article  CAS  Google Scholar 

  • Witteveen CFB, Busink R, Vandevondervoort P, Dijkema C, Swart K, Visser J (1989) l-Arabinose and d-xylose catabolism in Aspergillus niger. J Gen Microbiol 135:2163–2171

    CAS  Google Scholar 

  • Zhang JY, Reddy J, Buckland B, Greasham R (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82:640–652

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded in part by the European Project “Novel bioprocesses for hemicellulose up-grading” (BIO-HUG), “Quality of Life” Programme (QLK3-00080-1999).

C.F. was a recipient of Marie Curie Fellowships, Program “Quantitative Characterization of Industrial Microorganisms (QCIM)–Marie Curie Training Site” (QLK3-CT-1999-51355 and QLK3-CT-2001-60077) and a Ph.D. fellowship (SFRH/BD/6794/2001) from the Fundação para a Ciência e a Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bärbel Hahn-Hägerdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, C., Spencer-Martins, I. & Hahn-Hägerdal, B. l-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biotechnol 75, 303–310 (2007). https://doi.org/10.1007/s00253-006-0830-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0830-7

Keywords

Navigation