Skip to main content

Microorganisms for Xylitol Production: Focus on Strain Improvement

  • Chapter
  • First Online:
D-Xylitol

Abstract

Xylitol, a five-carbon sugar alcohol, is widely used as a functional sweetener in the food and confectionary industry because of a number of advantageous properties. Although xylitol is industrially produced by chemical reduction of d-xylose derived from hemicellulose hydrolysates, this production method is uneconomical because of the requirement for pure d-xylose, high temperature, and pressure. Therefore, xylitol production by microorganisms has attracted focus as an economical and environment-friendly method. A variety of compounds have been used as substrates (d-xylose, d-glucose, d-arabitol, and l-arabinose) or co-substrates (d-glucose, ethanol, and glycerol) during microbial production of xylitol. In order to improve the biological production of xylitol, both natural xylitol-producing and nonproducing strains of microorganisms have been subjected to genetic modification strategies. This chapter describes recent advances made in metabolic engineering efforts aimed at improving production of xylitol by fungi, yeasts, and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Shim WY, Jeon WY, Yoon BH, Kim JH (2012) Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35:199–204

    Article  PubMed  CAS  Google Scholar 

  • Akinterinwa O, Cirino PC (2009) Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11:48–55

    Article  PubMed  CAS  Google Scholar 

  • Akinterinwa O, Cirino PC (2011) Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways. Appl Environ Microbiol 77:706–709

    Article  PubMed  CAS  Google Scholar 

  • Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467

    Article  PubMed  CAS  Google Scholar 

  • Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, Ryu YW, Seo JH (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Tech 35:545–549

    Article  CAS  Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292

    Article  CAS  Google Scholar 

  • Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Li Z, Jiang N, Deng Z (2009) Cloning, purification and characterization of an NAD-dependent d-arabitol dehydrogenase from acetic acid bacterium, Acetobacter suboxydans. Protein J 28:263–272

    Article  PubMed  CAS  Google Scholar 

  • Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27:333–341

    Article  PubMed  CAS  Google Scholar 

  • Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220

    Article  PubMed  CAS  Google Scholar 

  • Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64:1350–1358

    PubMed  CAS  Google Scholar 

  • Chung YS, Kima MD, Leea WJ, Ryub YW, Kimc JH, Seoa jH (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 30:809–816

    Google Scholar 

  • Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176

    Article  PubMed  CAS  Google Scholar 

  • De Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trend Biotechnol 22:72–79

    Article  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258-266

    Google Scholar 

  • Dominguez H, Lindley ND (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62:3878–3880

    PubMed  CAS  Google Scholar 

  • Fernandes C, Avelino A, Farelo FF (1999) Crystallization of xylitol from hydro-alcoholic solutions containing arabitol and adonitol. Proceedings of the 14th international symposium on industrial crystallization, Cambridge, UK, 12–16 Sept 1999

    Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007a) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281

    Article  PubMed  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007b) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hag-erdahl B, Penttila M, Keranen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49:399–404

    Article  PubMed  CAS  Google Scholar 

  • Hibi M, Yukitomo H, Ito M, Mori H (2007) Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding. Appl Environ Microbiol 73:7657–7663

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi T, Kiritani R, Azuma M, Ooshima H (2000) Effect of d-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. J Basic Microbiol 40:167–175

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    Article  PubMed  CAS  Google Scholar 

  • Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53:106–113

    Article  PubMed  CAS  Google Scholar 

  • Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198

    Article  PubMed  CAS  Google Scholar 

  • Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis d-xylulokinase mutant. Appl Microbiol Biotechnol 68:42–45

    Article  PubMed  CAS  Google Scholar 

  • Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35:331–341

    Article  PubMed  CAS  Google Scholar 

  • Khankal R, Chin JW, Cirino PC (2008a) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134:246–252

    Article  PubMed  CAS  Google Scholar 

  • Khankal R, Luziatelli F, Chin JW, Frei CS, Cirino PC (2008b) Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production. Biotechnol Lett 30:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Chung YS, Seo JH, Jo DH, Park YH, Ryu YW (2001) High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis. J Microbiol Biotechnol 11:564–569

    CAS  Google Scholar 

  • Kim SH, Yun JY, Kim SG, Seo JH, Park JB (2010) Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enz Microb Technol 46:366–371

    Article  CAS  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganism. Benjamin/Cummings, London, pp 115–142

    Google Scholar 

  • Ko BS, Kim J, Kim JH (2006a) Production of xylitol from d-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72:4207–4213

    Article  PubMed  CAS  Google Scholar 

  • Ko BS, Rhee CH, Kim JH (2006b) Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnol Lett 28:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Ko BS, Kim DM, Yoon BH, Bai S, Lee HY, Kim JH, Kim IC (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH (2006a) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43:86–89

    Article  CAS  Google Scholar 

  • Kwon SG, Park SW, Oh DK (2006b) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188

    Article  PubMed  CAS  Google Scholar 

  • London J, Hausman S (1982) Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei. J Bacteriol 150:657–661

    PubMed  CAS  Google Scholar 

  • Nair N, Zhao H (2010) Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugar. Metab Eng 12:462–468

    Article  PubMed  CAS  Google Scholar 

  • Nigam P, Singh D (1995) Processes for fermentative production of xylitol—a sugar substitute. Process Biochem 30:117–124

    CAS  Google Scholar 

  • Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M (2005) Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol 118:55–66

    Article  PubMed  Google Scholar 

  • Oh YJ, Lee TH, Lee SH, Oh EJ, Ryu YW, Kim MD, Seo JH (2007) Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 47:37–42

    Article  CAS  Google Scholar 

  • Oh EJ, Bae YH, Kim KH, Park YC, Seo JH (2012) Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatalysis Agric Biotechnol 1:15–19

    Article  CAS  Google Scholar 

  • Onishi H, Suzuki T (1969) Microbial production of xylitol from glucose. Appl Environ Microbiol 18:1031–1035

    CAS  Google Scholar 

  • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    Article  PubMed  CAS  Google Scholar 

  • Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31

    Article  PubMed  CAS  Google Scholar 

  • Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93

    Article  PubMed  CAS  Google Scholar 

  • Rao RS, Ch P, Jyothi RS, Prakasham Ch SR, Sarma PN, Venkateswar RL (2006) Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. J Microbiol 44:113–120

    Google Scholar 

  • Reiner AM (1977) Xylitol and d-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J Bacteriol 132:166–173

    PubMed  CAS  Google Scholar 

  • Rodrigues RC, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38:1649–1655

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Sakakibara Y, Cotta MA (2007) Production of d-arabitol by a newly isolated Zygosaccharomyces rouxii. J Ind Microbiol Biotechnol 34:519–523

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng 107:506–511

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K (2003) Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from d-arabitol. Biosci Biotechnol Biochem 67:584–591

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Yokoyama S, Kinoshita Y, Hatsu M, Tamizawa K, Kawai K (1999) Expression of xyrA gene coding for d-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J Ferment Bioeng 87:280–284

    CAS  Google Scholar 

  • Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K (2002) Novel enzymatic method for production of xylitol from d-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem 66:2614–2620

    Article  PubMed  CAS  Google Scholar 

  • Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. Bioprocess Technol 16:37–52

    PubMed  CAS  Google Scholar 

  • Toivari MH, Ruohonen L, Miasnikov AN, Richard P, Penttilä M (2007) Metabolic engineering of Saccharomyces cerevisiae for conversion of d-glucose to xylitol and other five-carbon sugars and sugar alcohols. Appl Environ Microbiol 73:5471–5476

    Article  PubMed  CAS  Google Scholar 

  • Trahan L (1995) Xylitol: a review of its action on mutans streptococci and dental plaque—its clinical significance. Int Dent J 45:77–92

    PubMed  CAS  Google Scholar 

  • Wang TH, Zhong YH, Huang W, Liu T, You YW (2005) Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol 40:424–429

    Article  PubMed  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass, volume I: results of screening for potential candidates from sugars and synthesis gas. U. S. Department of Energy

    Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Yoon BH, Jeon WY, Shim WY, Kim JH (2011) l-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis. Biotechnol Lett 33:747–753

    Article  PubMed  CAS  Google Scholar 

  • Yoshitake T, Shimamura M, Imai T (1973) Xylitol production by a Corynebacterium species. Agr Biol Chem 37:2251–2259

    Article  CAS  Google Scholar 

  • Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Qiao D, Xu H, Liao C, Li S, Cao Y (2009) Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47:351–357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasaki, M., Inui, M., Yukawa, H. (2012). Microorganisms for Xylitol Production: Focus on Strain Improvement. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_5

Download citation

Publish with us

Policies and ethics