Skip to main content

Exploiting Beneficial Traits of Plant-Associated Fluorescent Pseudomonads for Plant Health

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Plants have recently been recognized as meta-organisms harboring distinct microbiome and reveling close symbiotic relationship with the associated microflora. Each plant has a unique niche and possesses species-specific microbes to a certain proportion and majority of the ubiquitous microbes that fulfill important host as well as ecosystem function. Currently, agricultural crops are facing challenges due to imbalance of micronutrients, deterioration of soil health, fluctuating environmental conditions, and increasing pest and pathogen attack. The rhizosphere region of the plants is the most extensively studied area due to its remarkable microbial diversity. Fluorescent pseudomonads are Gram-negative, motile, rod-shaped bacteria predominantly inhabiting the vicinity of rhizosphere and sometimes even the root interior. They effectively colonize the plant roots and rhizosphere soil because of their excellent ability to utilize a variety of organic substrates exuded by the plant roots. The study on the role of fluorescent pseudomonads in agriculture has been a matter of great interest attributable to their ability to control plant diseases, maintain soil health, and influence the plant growth directly or indirectly. They directly promote the plant growth by producing secondary metabolites such as siderophores and phosphatases that can chelate iron and solubilize phosphorus, respectively, from the soil and make them available to the plants. They also produce indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase that sequesters ACC, the precursor of ethylene. They also indirectly promote the plant growth mainly by suppressing the plant pathogens by producing an array of antibiotics and fungal cell wall degrading enzymes. Specific metabolites produced by fluorescent pseudomonads may elicit defense reactions and induce systemic resistance of the host plants. Introduction of such multifunctional rhizobacteria to the plant roots can lead to increased plant growth and protection against phytopathogens. This chapter reviews the beneficial traits of the fluorescent pseudomonads and their relationship to the functioning in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari TB, Joseph CM, Yang GP, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Alstrom S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Article  Google Scholar 

  • Andersen JB, Koch B, Nielsen TH, Sorensen D, Hansen M, Nybroe O, Christophersen C, Sorensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiol 149:1147–1156

    Article  CAS  Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Hofte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11:847–854

    Article  CAS  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Article  CAS  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156

    Article  CAS  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sreehari Rao M, Sunish Kumar R, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937

    Article  CAS  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sakthivel N (2007) Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). J Microbiol Biotechnol 17:919–927

    CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Netherlands J Plant Pathol 92:249–256

    Article  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    Article  CAS  Google Scholar 

  • Baron SS, Teranova G, Rowe JJ (1997) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18:223–230

    Article  CAS  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  CAS  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:43–350

    Article  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:983–993

    Article  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  CAS  Google Scholar 

  • Brand J, Lugtenberg BJJ, Glandorf DCM, Bakker PAHM, Schippers B, de Weger LA (1991) Isolation and characterization of a superior potato root-colonizing Pseudomonas strain. In: Keel C, Knoller B, Defago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. IOBC/WPRS Bull 14, Interlaken, pp 350–354

    Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228

    Article  CAS  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch C 52:713–720

    CAS  Google Scholar 

  • Budzikiewicz H (2010) Siderophores from bacteria and from fungi. In: Cornelis P, Andrews SC (eds) Iron uptake and homeostasis in microorganisms. Caister Academic, Norfolk, pp 1–16

    Google Scholar 

  • Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  Google Scholar 

  • Buysens S, Poppe J, Hofte M (1994) Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 139–141

    Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Furhmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Entophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth promoting rhizobacteria. Ecol Manag 133:81–88

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are development- ally programmed and correlate with soil microbial functions. PLoSOne 8:e55731

    Article  CAS  Google Scholar 

  • Chatterjee A, Valasubramanian R, Vachani A, Mau WL, Gnanamanickam SS, Chatterjee AK (1996) Biological control of rice diseases with Pseudomonas fluorescence 7–14: isolation of ant mutants altered in antibiotic production, cloning of ant+ DNA and an evaluation of a role for antibiotic production in the control of blast and sheath blight. Biol Control 7:185–195

    Article  Google Scholar 

  • Chen C, Belanger R, Benhamou N, Paulitz TC (2000) Defence enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis lycopersici. Mol Plant Microbe Interact 10:79–86

    Article  Google Scholar 

  • Combes-Meynet E, Pothier JF, Moenne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284

    Article  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  CAS  Google Scholar 

  • Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescence strains and a range of chemical treatments. Appl Environ Microbiol 67:2088–2094

    Article  CAS  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2001) Biosynthesis of hormones and elicitors molecules. In: Buchanan BB, Grussem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plants Biologists, Rockville, pp 850–900

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Das K, Katiyar V, Goel R (2003) P-solubilization potential of plant growth promoting Pseudomonas mutant at low temperature. Microbiol Res 158:559–562

    Article  Google Scholar 

  • De Meyer G, Hofte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathol 87:588–593

    Article  CAS  Google Scholar 

  • de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34

    Article  Google Scholar 

  • De Weert S, Vermeiren H, Mulders HM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, de Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis toward exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  CAS  Google Scholar 

  • De Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    Article  CAS  Google Scholar 

  • de Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg BJJ (1989) Pseudomonas spp. with mutational changes in the O-antigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin, pp 197–202

    Chapter  Google Scholar 

  • Defago G, Berling CH, Burger U, Hass D, Kahr G, Keel C, Voisard C, Wirthner P, Wuthrich B (1990) Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wellingford, pp 93–108

    Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  CAS  Google Scholar 

  • Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR-Arabidopsis interactions is a useful system to study signalling pathways involved in plant developmental control. Plant Signal Behav 4:321–323

    Article  CAS  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from forest soil. Biol Fertil Soils 28:87–94

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Duijff BJ, Pouhair D, Alivian C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by P. fluorescens WCS417r and by non pathogenic Fusarium oxysporum by Fo47. Eur J Plant Pathol 104:903–910

    Article  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2007) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193

    Article  CAS  Google Scholar 

  • Flaishman M, Eyal Z, Voisard C, Haas D (1990) Suppression of Septoria triticii by phenazine or siderophore-deficient mutants of Pseudomonas. Curr Microbiol 20:121–124

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil: microbial production and function. Marcel Dekker, New York, p. 503

    Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a β-1, 3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcon R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  CAS  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific, New Delhi, p 114

    Google Scholar 

  • Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Analysis and expression of a phenazine biosynthesis locus of Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus-ice nucleation reporter gene fusion. Appl Environ Microbiol 60:4573–4579

    CAS  Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Ann Phytopathol Soc Japan 58:380–385

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta CP, Dubey RC, Kamng SC, Maheshwari DK (2001) Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr Sci 81(1):91–94

    Google Scholar 

  • Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gutterson N, Layton TJ, Ziegle JS, Warren GJ (1986) Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent pseudomonad. J Bacteriol 165:696–703

    Article  CAS  Google Scholar 

  • Hammer PE, Hill DS, Lam ST, van Pee KH, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63:2147–2154

    CAS  Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berucksichtigung der Grundungung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hoffland E, Hakulinen J, Van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathol 86:757–762

    Article  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens with an antibiotic produced by the bacterium. Phytopathol 69:480–482

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum -induced damping off of cotton seedling by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathol 70:712–715

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Jamsen P (2000) Auxins and cytokinins in plant pathogen interactions—an overview. Plant Growth Regul 32:369–380

    Article  Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilisation potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581

    Article  CAS  Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on plant health. In: Ghose TK, Ghosh P (eds) Advances in biochemical engineering/biotechnology, vol 84. Springer, Berlin, pp 49–89

    Google Scholar 

  • Jones D, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  CAS  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phyto-pathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189:6773–6786

    Article  CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaf folder pest and sheath blight disease of rice. Pest Manage Sci 66:555–564

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(8):473–480

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathol 70:1078–1082

    Article  Google Scholar 

  • Kloepper JW, Zehnder GW, Tuzum S, Murphy JF, Wei G, Yao C, Raupach G (1996) In: Proceedings of the international workshop on biological control of plant diseases, China Agricultural University Press, Beijing, pp 165–174

    Google Scholar 

  • Kuklinsky-Sobral HL, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  Google Scholar 

  • Lam ST, Gaffney TD (1993) Biological activities of bacteria in plant pathogen control. In: Chet I (ed) Biotechnology in plant disease control. Wiley-Liss, New York, pp 291–320

    Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol 69:2023–2031

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathol 85:1021–1027

    Article  CAS  Google Scholar 

  • Lemanceau P (1992) Effets benefiques de rhizobacteries surles plantes: exemple des Pseudomonas spp. Fluorescents. Agron 12:413–437

    Article  Google Scholar 

  • Lemanceau P, Alabouvette C (1993) Suppression of fusarium wilts by fluorescent pseudomonas: mechanisms and applications. Biocontrol Sci Technol 3:219–234

    Article  Google Scholar 

  • Lewis TA, Cortese MS, Sebat JL, Green TL, Crawford RL, Lee CH (2000) A Pseudomonas stutzeri gene cluster encoding biosynthesis of the CCl4-dechlorination agent pyridine-2, 6-bis (thiocarboxylic acid). Environ Microbiol 2:407–416

    Article  CAS  Google Scholar 

  • Lim H, Kim Y, Kim S (1991) Pseudomonas stutzeri YLP-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microb Interact 4:5–13

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 63:541–556

    Article  CAS  Google Scholar 

  • Malathi P, Viswanathan R, Padmanaban P, Mohanraj D, Ramesh Sundar A (2002) Microbial detoxification of Colletotrichum falcatum toxin. Curr Sci 83:6

    Google Scholar 

  • Martin FN, Loper JE (1999) Soil-borne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  • Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Tioquinolobactin a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  CAS  Google Scholar 

  • Matthijs S, Budzikiewicz H, Schafer M, Wathelet B, Cornelis P (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch C 63:8–12

    Article  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fl uorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathol 84:139–146

    Article  CAS  Google Scholar 

  • McKenzie RH, Roberts TL (1990). Soil and fertilizers phosphorus update. In: Proceedings of Alberta soil science workshop, Edmonton, 20–22 Feb, pp 84–104

    Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  Google Scholar 

  • Mohammad D, Jesus MB, Van Loon LC, Bakker PAHM (2009) Analysis of determinants of Pseudomonas fluorescens WCS374r involved in induced systemic resistance in Arabidopsis thaliana. Biological control of fungal and bacterial plant pathogens. IOBC/WPRS Bull 43:109–112

    Google Scholar 

  • Nagrajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R (2005) Detoxification of oxalic acid by P. fluorescens strain PfMDU2: implication for the biocontrol of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160:291–298

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Article  Google Scholar 

  • Nielsen MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite and endochitinase dependent antagonism towards plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    CAS  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Article  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  • Paul D, Sarma YR (2006) Antagonistic effects of metabolites of P. fluorescens strains on the different growth phases of Phytophthora capsici, root rot pathogen of black perpper (Piper nigrum L.). Arch Phytopathol Plant Protect 39:113–118

    Article  CAS  Google Scholar 

  • Paulitz TC (1991) Effect of Pseudomonas putida on the stimulation of Pythium ultimum by seed volatiles of pea and soybean. Phytopathol 81:1282–1287

    Article  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  Google Scholar 

  • Petermann SR, Sherwood JS, Logue CM (2008) The Yersinia high pathogenicity island is present in Salmonella enterica subspecies I isolated from turkeys. Microb Pathog 45:110–114

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  CAS  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pages L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281

    Article  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Article  CAS  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24

    Article  CAS  Google Scholar 

  • Pradhan N, Sukla LB (2006) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    CAS  Google Scholar 

  • Primrose SB (1979) Ethylene and agriculture: the role of the microbe. J Appl Bacteriol 46:1–25

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4 diacetyl phloroglucinol producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MPM, Van der Sluis I, Schippers B, Bakker PAHM (1995a) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathol. 85:1075–1081

    Article  Google Scholar 

  • Raaijmakers JM, van der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995b) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raghuchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11

    Article  CAS  Google Scholar 

  • Ramette A, Frapolli M, Defago G, Moenne-Loccoz Y (2003) Phylogeny of HCN synthase encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant Microbe Interact 16:525–535

    Article  CAS  Google Scholar 

  • Ravindra Naik P, Raman G, Badri Narayanan K, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  Google Scholar 

  • Romeiro RS (2000) PGPR e induc¸aËœo de resisteˆncia sisteˆmica em plantas a pato´genos. Summa Phytopathol 26:177–184

    Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl Environ Microbiol 53:2056–2059

    CAS  Google Scholar 

  • Salisbury FB (1994) The role of plant hormones plant environment interactions. In: Wilkinson RE (ed) Plant environment interactions. Dekker, New York, pp 39–81

    Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology, 4th edn. Wadsworth, Belmont

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathol 72:1567–1573

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Baker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) Biocontrol and biofertilization. Springer, Amsterdam, pp 111–142

    Chapter  Google Scholar 

  • Siddiqui IA, Shaukat S (2005) Pseudomonas aeruginosa mediated induction of systemic resistance in tomato against root knot nematode. J Phytopathol 4:21–25

    Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    Article  CAS  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance 18(3):275–281

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015a) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS (2015b) Plant-microbe interactions: a viable tool for agricultural sustainability. Appl Soil Ecol 92:45–46

    Article  Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Singh JS, Singh DP (2013) Plant Growth Promoting Rhizobacteria (PGPR): microbes in sustainable agriculture. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Dordrecht, pp 307–319

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher Co., New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Abhilash PC, Gupta VK (2016a) Agriculturally important microbes in sustainable food production. Trend Biotechnol 34:773–775

    Article  CAS  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016b) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Spiers AJ, Bukling A, Rainey PB (2005) The causes of Pseudomonas diversity. Microbiology 146(10):2–9

    Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–217

    Article  CAS  Google Scholar 

  • Sun GX, Zhou WQ, Zhong JJ (2006) Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment. Appl Environ Microbiol 72:6411–6413

    Article  CAS  Google Scholar 

  • Sung KC, Chung YR (1997) Enhanced suppression of rice sheath blight using combination of bacteria which produce chitinases or antibiotics. In: Ogoshi A, Kobayashim K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria-present status and future prospects: proceedings of the fourth international workshop on plant growth promoting rhizobacteria. Nakanishi Printing, Sapporo, pp 370–372

    Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 1. Chapman and Hall, New York, pp 187–236

    Chapter  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    CAS  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 493–499

    Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Wackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  CAS  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001a) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 35:57–65

    Article  CAS  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001b) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:553–483

    Article  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes. Controlled-environment studies. Can J Plant Sci 82:282–290

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:1–10

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weller D (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH18 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292

    Article  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Zafar-ul-Hye M (2008) Improving nodulation in lentil through co-inoculation with rhizobia and ACC-deaminase containing plant growth promoting rhizobacteria. PhD Thesis, University of Agriculture, Faisalabad, p 198

    Google Scholar 

  • Zdor RE, Anderson AJ (1992) Influence of root colonizing bacteria on the defense responses in bean. Plant Soil 140:99–107

    Article  Google Scholar 

  • Zhou CX, Liu JY, Ye WC, Liu CH, Tan RX (2003) Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron 59:5743–5747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Head, Centre of Advanced Study in Botany for providing necessary facilities. Anuradha Rai thanks DST, New Delhi for financial assistance in the form of Woman Scientist Scheme-A [WOS-A, Reference no.SR/WOS-A/LS-469/2013 (G)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rai, A., Rai, P.K., Singh, S. (2017). Exploiting Beneficial Traits of Plant-Associated Fluorescent Pseudomonads for Plant Health. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_2

Download citation

Publish with us

Policies and ethics