Skip to main content

PGPR: Prospective Biocontrol Agents of Plant Pathogens

  • Chapter
PGPR: Biocontrol and Biofertilization

Abstract

Plant growth promoting rhizobacteria (PGPR) are indigenous to soil and the plant rhizosphere and play a major role in the biocontrol of plant pathogens. PGPR can profoundly improve seed germination, root development and water utilization by plants. These rhizobacteria can stimulate plant growth directly by producing growth hormones and improving nutrient uptake or indirectly by changing microbial balance in the rhizosphere in favour of beneficial microorganisms. They can suppress a broad spectrum of bacterial, fungal and nematode diseases. PGPR can also provide protection against viral diseases. The use of PGPR has become a common practice in many regions of the world. Although significant control of plant pathogens has been demonstrated by PGPR in laboratory and greenhouse studies, results in the field have been inconsistent. Recent progress in our understanding of their diversity, colonizing ability, mechanisms of action, formulation and application should facilitate their development as reliable biocontrol agents against plant pathogens. Some of these rhizobacteria may also be used in integrated pest management programmes. Greater application of PGPR is possible in agriculture for biocontrol of plant pathogens and biofertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalten, P. M., Vitour, D., Blanvillain, D., Gowen, S. R., and Sutra, L., 1998, Effect of rhizosphere fluorescent Pseudomonas strains on plant parasitic nematodes Radopholus similis and Meloidogyne spp. Letters Appl. Microbiol. 27:357–361.

    Google Scholar 

  • Ahn, I. P., Park, K., and Kim, C. H., 2002, Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense related gene expression. Mol. Cells 13: 302–308.

    CAS  PubMed  Google Scholar 

  • Aksoy, H. M., and Mennan, S., 2004, Biological control of Heterodera cruciferae (Tylenchida: Heteroderidae) Franklin 1945 with fluorescent Pseudomonas spp. J. Phytopathol. 152: 514–518.

    Article  Google Scholar 

  • Amer, G. A., and Utkhede, R. S., 2000, Development of formulations of biological agents for management of root rots of lettuce and cucumber. Can. J. Microbiol. 46: 809–816.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, A.J., Hablbzadegah-Tarl, P., and Tepper, C.S., 1988, Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Appl. Environ. Microbiol. 54: 375–380.

    CAS  PubMed  Google Scholar 

  • Anjaiah, V., Cornelis, P., and Koedam, N., 2003, Effect of genotype and root colonization in biological control of Fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can. J. Microbiol. 49: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Azad, H. R., Davis, J. R., and Kado, C. I., 1985, Relationships between rhizoplane and rhizosphere bacteria and Verticillium wilt resistance in potato. Arch. Microbiol. 140: 347–351.

    Article  Google Scholar 

  • Baker, R., 1990. An overview of current and future strategies and models for biological control. In: Biological control of soil-borne plant pathogens, D., Hornby ed., C.A.B International, Wallingford, UK, pp 375–388.

    Google Scholar 

  • Bakker, P. A. H. M., Bakker, A.W., Marugg, J.D., Weisbeek, P.J., and Schippers, B., 1987, Bioassay for studying the role of siderophores in potato growth stimulation by Pseudomonas spp. in short potato rotations. Soil Biol. Biochem. 19: 443–449.

    CAS  Google Scholar 

  • Bakker, P. A. H. M., Lamers, J. G., Bakker, A. W., Marugg, J. D., Weisbeek, P. J., and Schippers, B., 1986, The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth. J. Plant Pathol. 92: 249–256.

    Google Scholar 

  • Bakker, P. A. H. M., Ran, L. X., Pieterse, C. M. J., and van Loon L. C., 2003., Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can. J. Plant Pathol. 25: 5–9.

    Google Scholar 

  • Bangera, M. G., and Thomashow L. S., 1996, Characterization of a genomic locus required for synthesis of the antibiotic 2, 4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant-Microbe Interact. 9: 83–90.

    CAS  PubMed  Google Scholar 

  • Barka, E. A., Gognies, S., Nowak, J., Audran, J., and Belarbi, A., 2002, Inhibitory effect of endophyte bacteria on Botrytis cineria and its influence to promote the grapevine growth. Biol. Contr., 24: 135–142.

    Google Scholar 

  • Basha, S., and Ulaganathan, K., 2002, Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Current Science, 82:1457–1463.

    CAS  Google Scholar 

  • Bashan, Y., and Bashan, L. E., 2002, Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 68: 2637–2643.

    Article  CAS  PubMed  Google Scholar 

  • Becker, J. O., and Cook, R. J., 1988, Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology, 78: 778–782.

    CAS  Google Scholar 

  • Becker, J. O., Zavaleta-Mejia, E., Colbert, S. F., Schroth. M. N., Weinhold, A. R., Hancock, J. G., and VanGundy, S. D., 1988, Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology, 78: 1466–1469.

    Google Scholar 

  • Benhamou N., Bélanger R. R., and Paulitz T. C., 1996a, Pre-inoculation of Ri T-DNA-transformed pea roots with Pseudomonas fluorescens inhibits colonization by Pythium ultimum Trow: an ultra structural and cytochemical study. Planta, 199: 105–117.

    Article  CAS  Google Scholar 

  • Benhamou, N., Bélanger, R. R., and Paulitz, T. C., 1996b, Induction of differential host responses by Pseudomonas fluorescens in Ri T-DNA-transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology, 86:1174–1185.

    CAS  Google Scholar 

  • Benhamou, N., Gagné, S., Quéré, D. L., and Dehbi, L., 2000, Bacterial-mediated induced resistance in cucumber: Beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology, 90: 45–56.

    Google Scholar 

  • Benhamou, N., Kloepper, J. W., Quadt-Hallman, A., and Tuzun, S., 1996c, Induction of defense-related ultra structural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112: 919–929.

    CAS  PubMed  Google Scholar 

  • Benizri, E., Baudoin, E., and Guckert, A., 2001, Root colonization by inoculated plant growth promoting rhizobacteria. Biocontr. Sci. Technol. 11: 557–574.

    Google Scholar 

  • Bigirimana, J., and Hofte, M., 2002, Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica, 30: 159–168.

    Google Scholar 

  • Bloemberg, G. V., and Lugtenberg, B. J. J., 2001, Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Bonsall, R. F., Weller, D. M., and Thomashow, L. S., 1997, Quantification of 2, 4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol, 63: 951–955.

    CAS  Google Scholar 

  • Bora, T., Ozaktan, H., Gore, E., and Aslan, E., 2004, Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of two strains of Pseudomonas putida. J. Phytopathol. 152: 471–475.

    Article  Google Scholar 

  • Brisbane, P. G., and Rovira, A. D., 1988, Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol. 37: 104–111.

    CAS  Google Scholar 

  • Bull, C. T., Weller, D. M., and Thomashow, L. S., 1991, Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology, 81: 954–959.

    Google Scholar 

  • Buysens, S., Heungens, K., Poppe, J., and Hofte, M., 1996, Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865–871.

    CAS  Google Scholar 

  • Carroll, H., Moenne-Loccoz, Y., Dawling, D. N., and Gara, F. O., 1995, Mutational disruption of the biosynthesis genes coding for the antifungal metabolite2,4 diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugar beets. Appl. Environ. Microbiol. 61: 3002–3007.

    CAS  Google Scholar 

  • Chanway, C. P., Nelson, L. M., and Holl, F. B., 1988, Cultivar-specific growth promotion of spring wheat (Triticum aestivum L.) by co-existent Bacillus species. Can. J. Microbiol. 34: 925–929.

    Google Scholar 

  • Chen, C., Belanger, R. R., Benhamou, N., and Paulitz, T. C., 1999, Role of salicyclic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur. J. Plant Pathol. 105: 477–486.

    Article  CAS  Google Scholar 

  • Chen, C., Bélanger, R. R., Benhamou, N., and Paulitz, T. C., 2000, Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plan Pathol. 56: 13–23.

    CAS  Google Scholar 

  • Chernin, L., Ismailov, Z., Haran, S., and Chet, I., 1995, Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61: 1720–1726.

    CAS  Google Scholar 

  • Chernin, L. S., de la Fuente, L., Sobolev, V., Haran, S., Vorgias, C. E., Oppenheim, A. B., and Chet, I., 1997, Molecular cloning, structural analysis and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl. Environ. Microbiol. 63:834–839.

    CAS  PubMed  Google Scholar 

  • Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A.J., et al. 1998, Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL 1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 11: 1069–1077.

    CAS  Google Scholar 

  • Cook, R. J., and Baker, K. F., 1983, The Nature and Practice of Biological Control of Plant Pathogens. APS Press, St. Paul, MN, pp539.

    Google Scholar 

  • Cook, R. J., and Rovira, A. D., 1976, Role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol. Biochem. 8: 269–273.

    Google Scholar 

  • De Boer, M., van der Sluis, I., van Loon, L. C., and Bakker, P. A. H. M., 1997, In vitro compatibility between fluorescent Pseudomonas spp. strains can increase effectivity of Fusarium wilt control by combinations of these strains. in: Plant growth-promoting rhizobacteria — present status and future prospects. Proc. Int. workshop on plant growth-promoting rhizobacteria, 4th. A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, and S. Akino, eds. Nakanishi Printing, Sappora, Japan, pp 380–382.

    Google Scholar 

  • De Boer, M., Van der Sluis, I., vanLoon, L. C., and Bakker, P. A. H. M., 1999, Combining fluorescent Pseudomonas spp. strains to enhance suppression of Fusarium wilt of radish. Eur. J. Plant Pathol. 105: 201–210.

    Google Scholar 

  • De Freitas, J. R., and Germida, J. J., 1990, Plant growth promoting rhizobacteria for winter wheat. Can. J. Microbiol. 36: 265–272.

    Google Scholar 

  • De Freitas, J. R., and Germida, J. J., 1991, Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctonia solani. Can. J. Microbiol. 37:780–784.

    Google Scholar 

  • Duffy, B. K., and Défago, G., 1999, Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429–2438.

    CAS  PubMed  Google Scholar 

  • Duijff, B. J., Gianinazzi-Pearson, V., and Lemanceau, P., 1997, Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol. 135: 325–334.

    Article  CAS  Google Scholar 

  • Duijff, B. J., Meijer, J. W., Bakker, P. A. H. M., and Schippers, B., 1993, Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth. J. Plant Pathol. 99: 277–289.

    CAS  Google Scholar 

  • Duijff, B. J., Pouhair, D., Olivian, C., Alabouvette, C., and Lemanceau, P., 1998, Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescensWCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur.J.Plant Pathol. 104: 903–910.

    Article  Google Scholar 

  • Dunne, C., Crowley, J. J., Moënne-Loccoz, Y., Dowling, D. N., de Bruijn, F. J., and O’Gara, F., 1997, Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiol. 143: 3921–3931.

    CAS  Google Scholar 

  • El-Tarabily, K. A., Sykes, M. l., Kurtböke, I. D., Hardy Gest, J., Barbosa, A. M., and Dekker, R. F. H., 1996, Synergistic effects of a cellulase-producing Micromonospora carbonacea and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can. J. Bot. 74: 618–624.

    Google Scholar 

  • Enebak, S. A., and Carey, W. A., 2000, Evidence for induced systemic protection to Fusarium rust in Loblolly pine by plant growth promoting rhizosphere. Plant Dis. 84:306–308.

    Google Scholar 

  • Gamliel, A., and Katan J., 1993, Suppression of major and minor pathogens by fluorescent pseudomonads in solarized and nonsolarized soils. Phytopathology, 83: 68–75.

    Google Scholar 

  • Garrette, S. D., 1965, Towards the biological control of soil-borne plant pathogens. In Ecology of soil-borne plant pathogens. ed Baker, K. F. and Snyder, W. C. pp 4–17. Los Angeles. Univ. Calif. Press 571pp.

    Google Scholar 

  • Gautam, A., Siddiqui, Z. A., and Mahmood, I., 1995, Integrated management of Meloidogyne incognita on tomato. Nematol. medit. 23: 245–247.

    Google Scholar 

  • Gokte, N., and Swarup, G.,1988, On the potential of some bacterial biocides against root-knot and cyst nematodes. Indian J. Nematol. 18:152–153.

    Google Scholar 

  • Guo, J., Ying Qi, H., Guo, Y., Ge, H., Gong, L., Zhang, L., and Sun, P., 2004, Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol. Contr., 29: 66–72.

    Article  Google Scholar 

  • Hallmann, J., Quadt-Hallmann, A., Mahafee, W. F., and Kloepper, J. W., 1997, Bacterial endophytes in agricultural crops. Can.J. Microbiol. 43: 895–914.

    CAS  Google Scholar 

  • Hammer, P. E., Hill, D. S., Lam, S. T., van Pée, K. H., and Ligon, J. M., 1997, Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147–2154.

    CAS  PubMed  Google Scholar 

  • Handelsman, J., and Stabb, E.V., 1996, Biocontrol of soil borne plant pathogens. Plant Cell, 8: 1855–1869.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, L. A., Letendre, L., Kovacevich, P., Piersn, E., and Weller, D. M., 1993, Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent Pseudomonas aureofaciens. Soil Biol. Biochem.25: 215–221.

    Article  CAS  Google Scholar 

  • Hasky-Günther, K., Hoffmann-Hergarten, S., and Sikora, R. A., 1998, Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundam. appl. Nematol. 21: 511–517.

    Google Scholar 

  • Hawes, M. C., 1991, Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere? In The Rhizosphere and Plant Growth, D.L. Keister and P.B. Cregan, eds, Kluwer Academic Publishers, Boston, MA, pp. 51–59.

    Google Scholar 

  • Hoffland, E. Hakulinen, J., and van Pelt, J. A., 1996, Comprison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology, 86: 757–762.

    Google Scholar 

  • Ignoffo, C. M., and Dropkin, V. H., 1977, Deleterious effects of the thermostable toxin of Bacillus thuringiensis on species of soil inhabiting, mycophagous and plant parasitic nematodes. J. Krans. Ent. Soc. 50: 394–395.

    Google Scholar 

  • Jagadeesh, K. S., Kulkarni, J. H., and Krisharaj, P. U., 2001, Evaluation of role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Current Science,81: 882–883.

    Google Scholar 

  • Jetiyanon, K., Tuzun, S., and Kloepper, J. W., 1997, Lignification, peroxidase and superoxidase dismutases as early plant defense reactions associated with PGPR-mediated induced systemic resistance. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S. eds., Plant growth-promoting rhizobacteria: present status and future prospects. Japan: Sapporo, 265–268.

    Google Scholar 

  • Jurkevitch, E., Hadar, Y., and Chen. Y., 1992, Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58: 119–124.

    CAS  PubMed  Google Scholar 

  • Kang, Y., Carlson, R., Tharpe, W., and Schell, M. A., 1998, Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64: 3939–3947.

    CAS  PubMed  Google Scholar 

  • Keel, C., and Défago, G., 1997, Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange A.C., Brown V.K., eds. Multitrophic interactions in terrestrial system. Oxford: Blackwell Science, 27–47.

    Google Scholar 

  • Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, O., and Defago, G., 1992, Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5: 4–13.

    CAS  Google Scholar 

  • Keel, C., Wirthner, P., Oberhansll, T., Viosard, C., Burger, U., Hass, D., and Defago, G., 1990, Pseudomonads as antagonists to plant pathogens in the rhizosphere: Role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis, 9: 327–341.

    CAS  Google Scholar 

  • Kermarrec, A., Jacqua, G., and Anais, J., 1994, Effect of Fusarium solani and Pseudomonas solanacearum on the infestation of aubergine with the plant parasitic nematode, Rotylenchulus reniformis. Nematologica, 40: 152–154.

    Google Scholar 

  • Kim, D. H., and Misaghi, I. J., 1996, Biocontrol performance of two isolates of Pseudomonas fluorescens in modified soil atmosphere. Phytopathology, 86: 1238–1241.

    Google Scholar 

  • Kim, B. S., Moon, S. S., and Hwang, B. K., 1999, Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can. J. Bot. 77: 850–858.

    CAS  Google Scholar 

  • King, E. B., and Parke, J. L., 1996, Population density of the biocontrol agent Burkholderia cepacia AMMDRl on four pea cultivars. Soil Biol. Biochem. 28: 307–312.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M..N., 1980, Enhanced plant growth by plant growth promoting rhizobacteria. Nature, 286: 885–886.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Rodriguez-Ubana, R., Zehnder, G. W., Murphy, J. F., Sikora, E., and Fernadez, C., 1999, Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Aust. Plant Pathol. 28:21–26

    Google Scholar 

  • Kloepper, J. W., and Schroth, M. N., 1978, Plant grotwh-promoting rhizobacteria in radish..in Proc. 4th Int’l. Conf. Plant Pathogenic Bact. Gilbert-Clarey, Tours, France, pp 879–882.

    Google Scholar 

  • Kluepfel, D. A., McInnis, T. M., and Zehr, E. A., 1993, Involvement of root colonizing bacteria in peach orchard soils suppressive of the nematode Criconemella xenoplax. Phytopathology, 83: 1240–1245.

    Google Scholar 

  • Kraus, J., and Loper, J. E., 1995, Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61: 849–854.

    CAS  Google Scholar 

  • Kropp, B. R., Thomas, E., Pounder, J. I., and Anderson, A. J., 1996, Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and laboratory conditions. Biol. Fert. Soil. 23: 200–206.

    CAS  Google Scholar 

  • Kuc, J., 1982, Induced immunity to plant disease. Bioscience, 32: 854–860.

    Google Scholar 

  • Kumar, N. R., Arasu, V. T., and Gunasekaran. P., 2002, Genotypeing of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Current Science, 82: 1463–1466.

    CAS  Google Scholar 

  • Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M., and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86: 149–155.

    CAS  Google Scholar 

  • Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M., and Schippers, B., 1995, Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology, 85:1021–1027.

    CAS  Google Scholar 

  • Leong, J., 1986, Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24:187–209.

    Article  CAS  Google Scholar 

  • Liddell, C. M., and Parke, J. L., 1989, Enhanced colonization of pea taproots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil. Phytopathology, 79: 1327–1332.

    Google Scholar 

  • Lindow, S. E., McGourty, G., and Elkins, R., 1996, Interaction of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear. Phytopathology, 86: 841–849.

    CAS  Google Scholar 

  • Liu, L., Kloepper, J. W., and Tuzun, S., 1995, Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology, 85: 1064–1068.

    Google Scholar 

  • Loper, J. E., 1988, Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology, 78: 166–172.

    CAS  Google Scholar 

  • Loper, J. E., and Buyer. L. S., 1991, Siderophores in microbial interactions on plant surfaces. Mol. Plant-Microbe Interact. 4: 5–13.

    CAS  Google Scholar 

  • Loper, J. E., Haack, C., and Schroth, M. N., 1985, Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl. Environ. Microbiol. 49: 416–422.

    PubMed  Google Scholar 

  • Lugtenberg, B. J. J., van der Bij, A., Bloemberg, G., Chin-A-Woeng, T., Dekkers, L., Kravchenko, L., Mulders, I., Phoelich, C., Simons, M., Spaink, H., Tikhonovich, I., de Weger, L., and Wijffelman, C., 1996, Molecular basis of rhizosphere colonization by Pseudomonas bacteria. In: Biology of Plant-Microbe Interactions, G. Stacey, B. Mullin, and P.M. Gresshoff (eds.), ISPMB, St. Paul, Minnesota, pp. 433–440.

    Google Scholar 

  • Lugtenberg, B. J. J., Dekkers, L., and Bloemberg, G. V., 2001, Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Manjula, K., and Podile, A. R., 2001, Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can. J. Microbiol. 47:618–625.

    Article  CAS  PubMed  Google Scholar 

  • Mann, E. W., 1965, Inhibition of tobacco mosaic virus by a bacterial extract. Phytopathology, 59: 658–662.

    Google Scholar 

  • Massomo, S. M. S., Mortensen, C. N., Mabagala, R. B., Newman, M.-A., and Hockenhul, J., 2004, Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains. J. Phytopathol. 152: 98–102.

    Google Scholar 

  • Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P., and Defago, G., 1994a, Induction of systemic resistance of tobacco to tobacco necrosis virus by root colonizing Pseudomonas fluorescens strain CHAO: Influence of the gacA gene and of pyoverdine production. Phytopathology, 84: 139–146.

    CAS  Google Scholar 

  • Maurhofer, M., Keel, C., Haas, D., and Defago, G., 1994b, Pyoluteorin production by Pseudomonas fluorescens strain CHAO is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur. J. Plant Pathol. 100: 221–232.

    Article  CAS  Google Scholar 

  • Maurhofer, M., Keel, C., Haas, D., and Defago, G., 1995, Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathol. 44:40–50.

    Google Scholar 

  • Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D., and Defago, G., 1992, Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology, 82: 190–195.

    CAS  Google Scholar 

  • Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M., and Pierson III, L. S., 1992, Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58: 2616–2624.

    CAS  PubMed  Google Scholar 

  • Milner, J. L., Silo-Suh, L., Lee, J. C., He, H., Clardy, J., and Handelsman, J., 1996, Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62: 3061–3065.

    CAS  PubMed  Google Scholar 

  • M’Piga, P., Bélanger, R. R., Paulitz, T. C., and Benhamou, N., 1997, Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol. Mol. Plant Pathol. 50: 301–320.

    Google Scholar 

  • Murphy, J. F., and Zehnder, G. W., 2000, Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis. 84: 779–784.

    Google Scholar 

  • Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., and Tahara, S., 1999, Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 65: 4334–4339.

    CAS  PubMed  Google Scholar 

  • Nandakumar, R., Viswanathan, R., Babu, S., Shella, J., Raghuchander, T., and Samiyappan, R., 2001, A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46: 493–510.

    Article  Google Scholar 

  • Neal, J. L., Jr., Larson, R. I., and Atkinson, T. G., 1973, Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil, 39: 209–212.

    Article  Google Scholar 

  • Neilands, J. B., 1995, Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723–26726.

    CAS  PubMed  Google Scholar 

  • Nielsen, M. N., Sørensen, J., Fels, J., and Pedersen, H. C., 1998, Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64: 3563–3569.

    CAS  PubMed  Google Scholar 

  • Nelson, L. M., 2004, Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Online. Crop Management doi:101094/Cm-2004-0301-05-RV.

    Google Scholar 

  • Niranjan Raj, S., Chaluvaraju, G., Amruthesh, K. N., Shetty, H. S., Reddy, M. S., and Kloepper, J. W., 2003, Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis. 87: 340–345.

    Google Scholar 

  • Niranjan-Raj, S., Shetty, N. P., and Shetty, H. S., 2004, Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Intern. J. Pest Manag. 50: 41–48.

    Google Scholar 

  • Nowak-Thompson, B., Chaney, N., Wing, J. S., Gould, S. J., and Loper, J. E., 1999, Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181: 2166–2174.

    CAS  PubMed  Google Scholar 

  • O-Callaghan, K. J., Dixon, R. A., and Cocking E. C., 2000, Arabidopsis thaliana: a model for studies of colonization by non pathogenic and plant growth promoting bacteria. Aust. J. Plant Physiol. 28: 975–982.

    Google Scholar 

  • Oka, Y. Chet, I., and Spiege, l. Y., 1993, Control of root-knot nematode Meloidogyne javanica by Bacillus cereus. Bioc. Sci. Tech. 3: 115–126.

    Google Scholar 

  • Ongena, M., Daayf, F., Jacques, P., Thonart, P., Benhamou, N., Paulitz, T. C., Cornelis, P., Koedam, N., and Belanger, R. R., 1999, Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol. 48: 66–76.

    Article  Google Scholar 

  • Oostendorp, M., and Sikora, R. A., 1989a, Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugarbeet. Rev. Nematol. 12:77–83.

    Google Scholar 

  • Oostendorp, M., and Sikora, R. A., 1989b, In-vitro relation ships between rhizosphere bacteria and Heterodera schachtii. Rev. Nematol. 13: 269–274.

    Google Scholar 

  • Papavizas, G. C., and Lumsden, R. D., 1980, Biological control of soil borne fungal propagules. Annu. Rev. Phytopathol. 18: 389–413.

    Article  Google Scholar 

  • Parke, J. L., 1990, Population dynamics of Pseudomonas cepacia in the pea spermosphere in relation to biocontrol of Pythium. Phytopathology, 80: 1307–1311.

    Google Scholar 

  • Parke, J. L., 1991, Root colonization by indigenous and introduced microorganisms. In The Rhizosphere and Plant Growth, D.L. Keister and P.B. Cregan, eds, Kluwer Academic Publishers, Boston, MA, pp 33–42.

    Google Scholar 

  • Paulitz, T. C., and Belanger, R. R., 2001, Biological control in green house system. Annu. Rev. Phytopathol. 39:103–133.

    Article  CAS  PubMed  Google Scholar 

  • Penyalver, R., Oger, P., Lopez, M. M., and Farrand, S. K., 2001, Iron binding compounds from Agrobacterium spp.: Biological control stains Agrobacterium rhizogenes K84 produce a hydroxamate siderophore. Appl. Environ. Microbiol.. 67: 654–664.

    Article  CAS  PubMed  Google Scholar 

  • Pierson, E. A., and Weller, D. M., 1994, Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84: 940–947.

    Google Scholar 

  • Pieterse, C..M. J., VanWees, S. C. M., Hoffland, E., Van Pelt, J. A., and van Loon, L. C., 1996, Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicyclic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8:1225–1237.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M. J., VanWees, S. C. M., Ton, J., VanPelt, J. A., and van Loon, L. C., 2002, Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant boil. 4:535–544.

    CAS  Google Scholar 

  • Pleban, S., Chernin, L., and Chet, I., 1997, Chitinolytic activity of an endophytic strain of Bacillus cereus. Letters Appl. Microbiol. 25: 284–288.

    CAS  Google Scholar 

  • Powell, J. F., Vargas, J. M., Nair, M. G., Detweiler, A. R., and Chandra, A., 2000, Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis. 84:19–24.

    CAS  Google Scholar 

  • Press, C. M., Loper, J. E., and Kloepper, J. W., 2001, Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology, 91: 593–598.

    CAS  Google Scholar 

  • Raaijmakers, J. M., Weller, D. M., and Thomashow, L. S., 1997, Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881–887.

    CAS  Google Scholar 

  • Raaijmakers, J. M., Bonsall, R. F., and Weller, D. M., 1999, Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology, 89: 470–475.

    CAS  Google Scholar 

  • Racke, J., and Sikora, R. A., 1985, Einfluss von Rhizospha-rebakterien auf Rhizoctonia solani und den Befall der kartefftrovte Hanja mit Globodera pallida. Vortr. Pflanzenzucht, 9: 21–28 Status Seminar Grunback 2–21 April.

    Google Scholar 

  • Radja Commare, R., Nandkumar, R., Kandan, A., Suresh, S., Bharathi, M., Raguchander, T., and Samiyappan, R., 2002, Pseudomonas fluorescens based bioformulation for the management of sheath blight disease and leaffolder insect in rice. Crop Protect. 21: 671–677.

    Google Scholar 

  • Ramamoorthy, V., Raghuchander, T., and Samiyappan, R., 2002a, Induction of defense related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f.sp. lycopersici. Plant Soil, 239: 55–68.

    Article  CAS  Google Scholar 

  • Ramamoorthy, V., Raghuchander, T., and Samiyappan, R., 2002b, Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur. J. Plant Pathol. 108: 429–441.

    Article  CAS  Google Scholar 

  • Ramamoorthy, V., and Samiyappan, R., 2001, Induction of defense related genes in Pseudomonas fluorescens treated chili plants in response to infection by Colletotrichum capsici. J. Mycol. Plant Pathol. 31: 146–155.

    CAS  Google Scholar 

  • Randhawa, P. S., and Schaad, N. W., 1985, A seedling bioassay chamber for determining bacterial colonization and antagonism on plant roots. Phytopathology, 75: 254–259.

    Google Scholar 

  • Raupach, G. S., and Kloepper, J. W., 1998, Mixture of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88: 1158–1164.

    Google Scholar 

  • Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., and Kloepper, J. W., 1996, Induced systemic resistance of cucumber and tomato against cucumber mosaic virus using plant growth promoting rhizobacteria. Plant Dis. 80: 891–894.

    Google Scholar 

  • Ross, A.F., 1961, Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358.

    CAS  PubMed  Google Scholar 

  • Rovira, A. D., 1965, Interactions between plant roots and soil microorganisms. Annu. Rev. Microbiol. 19: 241–266.

    Article  CAS  PubMed  Google Scholar 

  • Rovira, A. D., 1969, Plant root exudates. Bot. Rev. 35: 35–57.

    CAS  Google Scholar 

  • Rovira, A. D., 1991, Rhizosphere research-85 years of progress and frustration. In The Rhizosphere and Plant Growth, D.L. Keister and P.B. Cregan, eds, Kluwer Academic Publishers, Boston, MA, pp.3–13.

    Google Scholar 

  • Schroth, M. N., and Hancock, J. G., 1982, Disease suppressive soil and root colonizing bacteria. Science, 216: 1376–1381.

    CAS  Google Scholar 

  • Sharma, V., and Nowak, J., 1998, Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. Strain PsJN). Can. J. Microbiol. 44: 528–536.

    CAS  Google Scholar 

  • Siddiqui, I. A., and Shaukat, S. S., 2002, Rhizobacteria-mediated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica. J. Phytopathol. 150: 469–473.

    Google Scholar 

  • Siddiqui, I. A., and Shaukat, S. S., 2003, Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol. Biochem. 35:1615–1623

    CAS  Google Scholar 

  • Siddiqui, S., Siddiqui, Z. A., and Iqbal, A., 2005, Evaluation of fluorescent pseudomonads and Bacillus isolates for the biocontrol of wilt disease complex of pigeonpea. World J. Microbiol. Biotech. (Press).

    Google Scholar 

  • Siddiqui, Z. A., 2004, Effects of plant growth promoting bacteria and composted organic fertilizers on the reproduction of Meloidogyne incognita and tomato growth. Bioresource Technol. 95: 223–227.

    Article  CAS  Google Scholar 

  • Siddiqui, Z. A., and Husain, S. I., 1991, Studies on the biological control of root-knot nematode. Current Nematol. 2: 5–6.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1992, Biological control of root-rot disease complex of chickpea caused by Meloidogyne incognita race-3 and Macrophomina phaseolina. Nematol. medit. 20: 199–202.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1993, Biological control of Meloidogyne incognita race-3 and Macrophomina phaseolina by Paecilomyces lilacinus and Bacillus subtilis alone and in combination of chickpea. Fundam appl. Nematol. 16: 215–18.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1995a, Role of plant symbionts in nematode management. A Review. Bioresource Technol. 54: 217–26.

    CAS  Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1995b, Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fundam. appl. Nematol. 18: 559–556.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1995c, Management of Meloidogyne incognita race 3 and Macrophomina phaseolina by fungus culture filtrates and Bacillus subtilis on chickpea. Fundam. appl. Nematol. 18: 71–76.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1996, Biological control of plant parasitic nematodes by fungi. A Review. Bioresource Technol. 58: 229–239.

    Article  CAS  Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1998, Effect of a plant growth promoting bacterium, an AM fungus and soil types on the mophometrics and reproduction of Meloidogyne javanica on tomato. Appl. Soil. Ecol. 8: 77–84.

    Article  Google Scholar 

  • Siddiqui, Z. A., Mahmood, I., and Hayat, S., 1998, Biocontrol of Heterodera cajani and Fusarium udum on pigeonpea using Glomus mosseae, Paecilomyces lilacinus and Pseudomonas fluorescens. Thai J. Agri. Sci. 31: 310–321.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 1999, Role of bacteria in the management of plant parasitic nematodes. A Review. Bioresource Technol. 69: 167–179.

    Article  CAS  Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 2000, Effects of Bacillus subtilis, Glomus mosseae and ammonium sulphate on the development of Meloidogyne javanica and on growth of tomato. Thai J. Agri. Sci. 33: 29–35.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 2001, Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresource Technol. 79:41–45.

    Article  CAS  Google Scholar 

  • Siddiqui, Z. A., Iqbal, A., and Mahmood, I., 2001, Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl. Soil Ecol. 16: 179–185.

    Article  Google Scholar 

  • Siddiqui, Z. A., Khan, S., and Mahmood, I., 2002, Use of Rhizobacteria for the management of Meloidogyne incognita on Solanum melongena. Thai. J. Agri. Sci.35: 1–8.

    Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I., 2003, Effects of plant straws and plant growth promoting bacteria on the reproduction of Meloidogyne incognita and growth of tomato. Boil. Agri. Hort. 21:53–62.

    Google Scholar 

  • Siddiqui, Z. A., and Singh, L. P., 2005a, Effects of fly ash and soil microorganisms on the plant growth, photosynthetic pigments and leaf blight of wheat. J. Plant Dis. Protect. 112:146–155.

    Google Scholar 

  • Siddiqui, Z. A., and Singh, L. P., 2005b, Effects of fly ash, Pseudomonas striata and Rhizobium sp. on the reproduction of nematode Meloidogyne incognita and on the growth and transpiration of pea. J. Environ. Biol. 26:117–122.

    PubMed  Google Scholar 

  • Sikora, R. A., 1988, Interrelationship between plant health promoting bacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouww. Rijks.univ. Gent 53(2b): 867–878.

    Google Scholar 

  • Sikora, R. A., Racke, J., and Bodenstein, F., 1989, Influence of plant health promoting bacteria antagonistic to Globodera pallida and Heterodera schachtii on soil borne fungal and bacterial plant pathogens of potato and sugarbeet. J. Nematol. 21: 588.

    Google Scholar 

  • Srivastava, A. K., Singh, T., Jana, T. K., and Arora, D. K., 2001, Induced resistance and control of charcoal rot in Cicer arietinum (chickpea) by Pseudomonas fluorescens. Can. J. Bot. 79:787–795.

    Article  Google Scholar 

  • Steijl, H., Niemann, G. J., and Boon, J. J., 1999, Changes in chemical composition related to fungal infection and induced resistance in carnation and radish investigated by pyrolysis mass spectrometry. Physiol. Mol. Plant Pathol. 55: 297–311.

    Article  CAS  Google Scholar 

  • Szczech, M., and Shoda, M., 2004, Biocontrol of Rhizoctonia damping-off of tomato by Bacillus subtilis combined with Bukholderia cepacia. J. Phytopathol. 152: 549–556.

    Article  Google Scholar 

  • Thomashow, L. S., Weller, D. M., Bonsall, R. F., and Pierson III, L. S. P., 1990, Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908–912.

    CAS  PubMed  Google Scholar 

  • Thrane, C., Olsson, S., Nielsen, T. H., and Sörensen, J., 1999, Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol. Ecol. 30: 11–23.

    CAS  Google Scholar 

  • Timmusk, S., and Wagner, E. G. H., 1999, The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12: 951–959.

    CAS  PubMed  Google Scholar 

  • Ton, J., Van Pelt, J. A., van Loon L. C., and Pieterse, C. M. J., 2002, Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15: 27–34.

    CAS  PubMed  Google Scholar 

  • Unnamalai, N., and Gnanamanickam, S. S., 1984, Pseudomonas fluorescens is an antagonist to Xanthomonas citri (Hasse) Dye, the incitant of citrus canker. Current Science 53:703–704.

    Google Scholar 

  • Uthede, R. S., Koch, C. A., and Menzies, J. G., 1999, Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Can. J. Plant Pathol. 21: 265–271.

    Google Scholar 

  • Valois, D., Fayad, K., Barbasubiye, T., Garon, M., Déry, C., Brzezinski, R., and Beaulieu, C., 1996, Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl. Environ. Microbiol. 62: 1630–1635.

    CAS  Google Scholar 

  • van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J., 1998, Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453–483.

    PubMed  Google Scholar 

  • Van Peer, R., Niemann, G. J., and Schippers, B., 1991, Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81: 728–733.

    Google Scholar 

  • Van Wees, S. C. M., De Swart, E. A. M., VanPelt, J. A., van Loon, L. C., and Pieterse, C. M. J., 2000, Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 8711–8716.

    PubMed  Google Scholar 

  • Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Westende, Y. A. M., Hartog, F., and van Loon, L. C., 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10: 716–724.

    PubMed  Google Scholar 

  • Vesper, S. J., 1987, Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl. Environ. Microbiol. 53: 1397–1405.

    CAS  PubMed  Google Scholar 

  • Vidhyasekaran, P., Kamala, N., Ramanathan, A., Rajappan, K., Paranidharan, V., and Velazhahan, R., 2001, Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica, 29: 155–166.

    Google Scholar 

  • Viswanathan, R., and Samiyappan, R., 2002, Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Protec. 21: 1–10.

    Google Scholar 

  • Vivekananthan, R., Ravi, M., Ramanathan, A., and Samiyappan, R., 2004, Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World J. Microbiol. Biotech. 20: 235–244.

    CAS  Google Scholar 

  • Voisard, C., Keel, C., Haas, D., and Defago, G., 1989, Cyanide pmduction by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351–358.

    CAS  Google Scholar 

  • Waisel, Y., Eshel, A., and Katkafl, U., 1991, Plant Roots: The Hidden Half. Marcel Dekker, New York Inc. N.Y.

    Google Scholar 

  • Weger, L. A., Arendonk, J. J. C. M., Recourt, K., Hofstad, G. A. J. M., Weisbeek, P. J., and Lugtenberg, B., 1988, Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J. Bacteriol. 170: 4693–4698.

    PubMed  Google Scholar 

  • Wei, G., Kloepper, J. W., and Tuzun, S., 1991, Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology, 81: 1508–1512.

    Google Scholar 

  • Wei, G., Kloepper, J. W., and Tuzun, S., 1996, Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology, 86:221–224.

    Google Scholar 

  • Weidenborner, M., and Kunz, B., 1993, Infuence of fermentation conditions on nematicidal activity of Pseudomonas fluorescens. Zeitschrift fur Pfleanzenkrankheiten und pflanzenschuts, 100: 90–94.

    Google Scholar 

  • Weller, D. M., 1983, Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology, 73: 1548–1553.

    Google Scholar 

  • Weller, D. M., 1988, Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379–407.

    Article  Google Scholar 

  • Weller, D. M., and Cook, R. J., 1983, Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463–469.

    Google Scholar 

  • Weller, D. M., and Cook, R. J., 1986, Increased growth of wheat by seed treatment with fluorescent pseudomonads, and implications of Pythium control. Can. J. Plant Pathol. 8:328–334.

    Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., McSpadden Gardener, B. B., and Thomashow, L. S., 2002, Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309–348.

    Article  CAS  PubMed  Google Scholar 

  • Weller, D. M., Zhang, B. X., and Cook, R. J., 1985, Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Dis. 68: 710–713.

    Google Scholar 

  • Westcott, S. W., III and Kluepfel, D. A., 1992, Inhibition of Criconemella xenoplax egg hatch by a strain of Pseudomonas aureofaciens. J. Nematol. 24: 626.

    Google Scholar 

  • Whipps, J. M., 1997, Developments in the biological control of soil-borne plant pathogens. Adv. Bot. Res. 26: 1–134.

    Google Scholar 

  • Whipps, J. M., 2001, Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487–511.

    CAS  PubMed  Google Scholar 

  • Wilson, M., and. Backman. P. A., 1999, Biological control of plant pathogens,. In Handbook of pest management, J. R. Ruberson (ed.), Marcel Dekker, Inc., New York, N.Y. pp. 309–335.

    Google Scholar 

  • Wilson, M., and Lindow, S. E., 1993, Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83:117–123.

    Google Scholar 

  • Xu, G. W., and Gross, D. C., 1986, Field evaluation of the interactions among fluorescent pseudomonads, Erwinia carotovora and potato yields. Phytopathology,76: 423–430.

    Google Scholar 

  • Yang, C.-H., and Crowley, D. E., 2000, Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66:345–351.

    CAS  PubMed  Google Scholar 

  • Yan, Z., Reddy, M. S., Ryu, C. M., Mc.Inroy, J. A., Wilson, M. A., and Kloepper, J. W., 2002, Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology, 92: 1329–1333.

    CAS  Google Scholar 

  • Yuen, G. Y., and Schroth, M. N., 1986, lnteractions of Pseudomonas flourescens strain E6 with ornamental plants and its effect on the composition of root-colonizing microflora. Phytopathology, 76:176–180.

    Google Scholar 

  • Zavaleta-Mejia, E., 1985, The effect of soil bacteria on Meloidogyne incognita (Kofoid & White) Chitwood infection. Dissertation abstract. International b. Science & Engineering 46(4):108.

    Google Scholar 

  • Zavaleta-Mejia, E., and VanGundy, S. D., 1982, Effects of rhizobacteria on Meloidogyne infection. J. Nematol. 14:475–476.

    Google Scholar 

  • Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. R., and Kloepper, J. W., 2000, Induction of resistance to tomato against cucumber mosaic cucumo virus by plant growth promoting rhizobacteria. Biocontrol, 45:127–137.

    Article  Google Scholar 

  • Zuckerman, B. M., Dicklow, M. B., and Acosta, N., 1993, A strain of Bacillus thuringiensis for the control of plant parasitic nematodes. Biocontr. Sci. Tech. 3:41–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Siddiqui, Z.A. (2005). PGPR: Prospective Biocontrol Agents of Plant Pathogens. In: Siddiqui, Z.A. (eds) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4152-7_4

Download citation

Publish with us

Policies and ethics