Skip to main content

Use Case III: Imaging Biomarkers in Breast Tumours. Development and Clinical Integration

  • Chapter
  • First Online:
Imaging Biomarkers
  • 1139 Accesses

Abstract

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related death among women worldwide [1]. It is a heterogeneous disease with distinct molecular and genetic subtypes, each with characteristic clinical-biological behavior and imaging patterns. A substantial proportion of tumor markers or biomarkers, both fluid and tissue based, are currently used in the management of patients with breast cancer. Serum biomarkers, such as CA 15–3 and carcinoembryonic antigen (CEA), are not recommended in any senological guidelines due to a lack of sensitivity for early disease and a lack of specificity [2]. Rather, genetic tests are regularly performed in populations at high risk of developing breast cancer. By means of a minimally invasive blood test, women are told whether a germ line mutation in cancer susceptibility genes is present (BRCA). Being diagnosed with a BRCA 1 or 2 gene mutation has a dramatic impact on the life course of a woman. About 5–10 % of all breast cancers are caused by germ line mutations in the two breast cancer susceptibility genes, BRCA-1 and BRCA-2, and women carrying BRCA1 or BRCA2 mutations have an increased risk of developing breast cancer of approximately 50–80 % at 70 years of age [3–5]. Various histopathological and immunohistochemical staining-derived features of breast cancer are used to clinically establish the prognostically relevant subtype, including hormonal receptor expression, architectural growth patterns, and nuclear grades (low, intermediate, or high). Subsequently, the individual management of breast cancer patients is adapted according to these subtypes. Despite the enormous advances in breast imaging, the aforementioned clinically relevant subtyping of breast lesions is still based on invasive procedures, such as core needle biopsy or surgery. However, imaging is increasingly used to assess not only the morphologic features of the pathological process but also to assess the function of tumor tissues or to characterize individual phenotypes for targeted drug therapies, building on developments in genomics and molecular biology features [6–9]. Imaging biomarkers can be defined as any anatomic, physiologic, biochemical, or molecular parameter that is detectable with one or more imaging methods used to help establish the presence and/or severity of disease. The specific term “quantitative imaging biomarkers” corresponds to parameters that are objectively and quantitatively measured noninvasively, are less susceptible to subjective judgment, and are resolved spatially and temporally [10]. Moreover, prerequisites for the effective use of imaging biomarkers are standardization and validation [10–12]. The aim of this chapter is to describe breast imaging biomarkers and their objective, quantifiable features. We consider here only imaging biomarkers that require an element of quantification and standardization, to demonstrate their contribution in the management of breast cancer patients. First, we briefly summarize the heterogeneous group of subtypes of breast cancer, both invasive and noninvasive, to give the reader a synopsis of the complexity of this disease and an insight into the molecular biomarkers of breast cancer. However, a complete overview of the different histologic breast cancer subtypes is beyond the aim of this chapter. Second, we discuss the role of breast imaging biomarkers in terms of risk prediction for the development of breast cancer. These include quantitative imaging techniques for the assessment of breast density based on mammography and the measure of fibroglandular tissue (FGT) and background parenchymal enhancement (BPE) based on magnetic resonance imaging (MRI). Third, we will explain the central role of MRI in noninvasively providing quantitative information about tissue characteristics, such as cell density, tumor angiogenesis, and metabolism, leading to an improved differentiation of benign and malignant breast lesions and to a better management of breast cancer patients in monitoring and predicting response to treatment. Finally, we discuss the potential of other imaging techniques, and emerging techniques, which could improve diagnostic accuracy and have the potential for the development of new imaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeSantis CE, Bray F, Ferlay J, et al. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1495–506. doi:10.1158/1055-9965.EPI-15-0535.

    Article  PubMed  Google Scholar 

  2. Duffy MJ. Serum tumor markers in breast cancer: are they of clinical value? Clin Chem. 2006;52:345–51. doi:10.1373/clinchem.2005.059832.

    Article  CAS  PubMed  Google Scholar 

  3. Phi X-A, Houssami N, Obdeijn I-M, et al. Magnetic resonance imaging improves breast screening sensitivity in BRCA mutation carriers age ≥50 years: evidence from an individual patient data meta-analysis. J Clin Oncol. 2015;33:349–56. doi:10.1200/JCO.2014.56.6232.

    Article  PubMed  Google Scholar 

  4. Riedl CC, Ponhold L, Gruber R, et al. New information on high risk breast screening. Radiologe. 2010;50:955–6. doi:10.1007/s00117-010-2011-z, 958–963.

    Article  CAS  PubMed  Google Scholar 

  5. Riedl CC, Luft N, Bernhart C, et al. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol. 2015;33:1128–35. doi:10.1200/JCO.2014.56.8626.

    Article  PubMed  Google Scholar 

  6. Clark SE, Warwick J, Carpenter R, et al. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer. 2011;104:120–7. doi:10.1038/sj.bjc.6606021.

    Article  CAS  PubMed  Google Scholar 

  7. Grimm LJ, Johnson KS, Marcom PK, et al. Can breast cancer molecular subtype help to select patients for preoperative MR imaging? Radiology. 2015;274:352–8. doi:10.1148/radiol.14140594.

    Article  PubMed  Google Scholar 

  8. Smid M, Wang Y, Zhang Y, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 2008;68:3108–14. doi:10.1158/0008-5472.CAN-07-5644.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon H-J, Kang KW, Chun IK, et al. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2014;41:1534–43. doi:10.1007/s00259-014-2744-4.

    Article  CAS  PubMed  Google Scholar 

  10. European Society of Radiology (ESR). White paper on imaging biomarkers. Insights Imaging. 2010;1:42–5. doi:10.1007/s13244-010-0025-8.

    Article  Google Scholar 

  11. Van Beers BE, Vilgrain V. Biomarkers in abdominal imaging. Abdom Imaging. 2009;34:663–7. doi:10.1007/s00261-008-9480-9.

    Article  PubMed  Google Scholar 

  12. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huber KE, Carey LA, Wazer DE. Breast cancer molecular subtypes in patients with locally advanced disease: impact on prognosis, patterns of recurrence, and response to therapy. Semin Radiat Oncol. 2009;19:204–10. doi:10.1016/j.semradonc.2009.05.004.

    Article  PubMed  Google Scholar 

  14. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52. doi:10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  15. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–23. doi:10.1073/pnas.0932692100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74. doi:10.1073/pnas.191367098.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tran B, Bedard PL. Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 2011;13:221. doi:10.1186/bcr2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertos NR, Park M. Breast cancer – one term, many entities? J Clin Invest. 2011;121:3789–96. doi:10.1172/JCI57100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perez EA, Romond EH, Suman VJ, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol. 2014;32:3744–52. doi:10.1200/JCO.2014.55.5730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84. doi:10.1056/NEJMoa052122.

    Article  CAS  PubMed  Google Scholar 

  21. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48. doi:10.1056/NEJMra1001389.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider BP, Winer EP, Foulkes WD, et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14:8010–8. doi:10.1158/1078-0432.CCR-08-1208.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta A, Mutebi M, Bardia A. Gene-expression-based predictors for breast cancer. Ann Surg Oncol. 2015;22:3418–32. doi:10.1245/s10434-015-4703-0.

    Article  PubMed  Google Scholar 

  24. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26. doi:10.1056/NEJMoa041588.

    Article  CAS  PubMed  Google Scholar 

  25. Martin LJ, Boyd NF. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res. 2008;10:201. doi:10.1186/bcr1831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Byng JW, Yaffe MJ, Jong RA, et al. Analysis of mammographic density and breast cancer risk from digitized mammograms. Radiographics. 1998;18:1587–98. doi:10.1148/radiographics.18.6.9821201.

    Article  CAS  PubMed  Google Scholar 

  27. McCormack VA, dos Santos SI. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:1159–69. doi:10.1158/1055-9965.EPI-06-0034.

    Article  PubMed  Google Scholar 

  28. Pettersson A, Graff RE, Ursin G, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014; 106(5). pii: dju078. doi: 10.1093/jnci/dju078.

  29. Byrne C. Mammographic density: a breast cancer risk factor or diagnostic indicator? Acad Radiol. 2002;9:253–5.

    Article  PubMed  Google Scholar 

  30. Boyd NF, Rommens JM, Vogt K, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6:798–808. doi:10.1016/S1470-2045(05)70390-9.

    Article  PubMed  Google Scholar 

  31. Lee CI, Bassett LW, Lehman CD. Breast density legislation and opportunities for patient-centered outcomes research. Radiology. 2012;264:632–6. doi:10.1148/radiol.12120184.

    Article  PubMed  Google Scholar 

  32. Gierach GL, Ichikawa L, Kerlikowske K, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012;104:1218–27. doi:10.1093/jnci/djs327.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kopans DB. Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk. Radiology. 2008;246:348–53. doi:10.1148/radiol.2461070309.

    Article  PubMed  Google Scholar 

  34. Kerlikowske K, Ichikawa L, Miglioretti DL, et al. Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk. J Natl Cancer Inst. 2007;99:386–95. doi:10.1093/jnci/djk066.

    Article  PubMed  Google Scholar 

  35. Vachon CM, Kushi LH, Cerhan JR, et al. Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev. 2000;9:151–60.

    CAS  PubMed  Google Scholar 

  36. Vachon CM, van Gils CH, Sellers TA, et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007;9:217. doi:10.1186/bcr1829.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138:168–75.

    Article  PubMed  Google Scholar 

  38. Kerlikowske K, Hubbard RA, Miglioretti DL, et al. Comparative effectiveness of digital versus film-screen mammography in community practice in the United States: a cohort study. Ann Intern Med. 2011;155:493–502. doi:10.7326/0003-4819-155-8-201110180-00005.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening. Radiographics. 2015;35:302–15. doi:10.1148/rg.352140106.

    Article  PubMed  Google Scholar 

  40. Yaffe M, Boyd N. Mammographic breast density and cancer risk: the radiological view. Gynecol Endocrinol. 2005;21 Suppl 1:6–11. doi:10.1080/09513590400030053.

    Article  PubMed  Google Scholar 

  41. Boyd NF, Lockwood GA, Byng JW, et al. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7:1133–44.

    CAS  PubMed  Google Scholar 

  42. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36. doi:10.1056/NEJMoa062790.

    Article  CAS  PubMed  Google Scholar 

  43. Byng JW, Boyd NF, Fishell E, et al. The quantitative analysis of mammographic densities. Phys Med Biol. 1994;39:1629–38.

    Article  CAS  PubMed  Google Scholar 

  44. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  45. Ciatto S, Houssami N, Apruzzese A, et al. Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast. 2005;14:269–75. doi:10.1016/j.breast.2004.12.004.

    Article  CAS  PubMed  Google Scholar 

  46. Redondo A, Comas M, Macià F, et al. Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Br J Radiol. 2012;85:1465–70. doi:10.1259/bjr/21256379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Timmers JMH, van Doorne-Nagtegaal HJ, Verbeek ALM, et al. A dedicated BI-RADS training programme: effect on the inter-observer variation among screening radiologists. Eur J Radiol. 2012;81:2184–8. doi:10.1016/j.ejrad.2011.07.011.

    Article  CAS  PubMed  Google Scholar 

  48. Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues. Phys Med Biol. 1987;32:675–95.

    Article  CAS  PubMed  Google Scholar 

  49. Ciatto S, Bernardi D, Calabrese M, et al. A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification. Breast. 2012;21:503–6. doi:10.1016/j.breast.2012.01.005.

    Article  PubMed  Google Scholar 

  50. Yaffe MJ. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008;10:209. doi:10.1186/bcr2102.

    Article  PubMed  PubMed Central  Google Scholar 

  51. van Engeland S, Snoeren PR, Huisman H, et al. Volumetric breast density estimation from full-field digital mammograms. IEEE Trans Med Imaging. 2006;25:273–82. doi:10.1109/TMI.2005.862741.

    Article  PubMed  Google Scholar 

  52. Highnam R, Brady M, English R. Detecting film-screen artifacts in mammography using a model-based approach. IEEE Trans Med Imaging. 1999;18:1016–24. doi:10.1109/42.811313.

    Article  CAS  PubMed  Google Scholar 

  53. Highnam R, Jeffreys M, McCormack V, et al. Comparing measurements of breast density. Phys Med Biol. 2007;52:5881–95. doi:10.1088/0031-9155/52/19/010.

    Article  CAS  PubMed  Google Scholar 

  54. Morris EA. Diagnostic breast MR imaging: current status and future directions. Radiol Clin North Am. 2007;45:863–80. doi:10.1016/j.rcl.2007.07.002, vii.

    Article  PubMed  Google Scholar 

  55. Wei J, Chan H-P, Helvie MA, et al. Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images. Med Phys. 2004;31:933–42.

    Article  PubMed  Google Scholar 

  56. Nie K, Chang D, Chen J-H, et al. Quantitative analysis of breast parenchymal patterns using 3D fibroglandular tissues segmented based on MRI. Med Phys. 2010;37:217–26.

    Article  PubMed  Google Scholar 

  57. Nie K, Chen J-H, Chan S, et al. Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med Phys. 2008;35:5253–62.

    Article  PubMed  PubMed Central  Google Scholar 

  58. King V, Brooks JD, Bernstein JL, et al. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology. 2011;260:50–60. doi:10.1148/radiol.11102156.

    Article  PubMed  Google Scholar 

  59. Baltzer PA, Dietzel M, Vag T, et al. Clinical MR mammography: impact of hormonal status on background enhancement and diagnostic accuracy. RoFo. 2011;183:441–7. doi:10.1055/s-0029-1246072.

    Article  CAS  PubMed  Google Scholar 

  60. Price ER, Brooks JD, Watson EJ, et al. The impact of bilateral salpingo-oophorectomy on breast MRI background parenchymal enhancement and fibroglandular tissue. Eur Radiol. 2014;24:162–8. doi:10.1007/s00330-013-2993-9.

    Article  CAS  PubMed  Google Scholar 

  61. DeLeo MJ, Domchek SM, Kontos D, et al. Breast MRI fibroglandular volume and parenchymal enhancement in BRCA1 and BRCA2 mutation carriers before and immediately after risk-reducing salpingo-oophorectomy. AJR Am J Roentgenol. 2015;204:669–73. doi:10.2214/AJR.13.12146.

    Article  PubMed  Google Scholar 

  62. Hambly NM, Liberman L, Dershaw DD, et al. Background parenchymal enhancement on baseline screening breast MRI: impact on biopsy rate and short-interval follow-up. AJR Am J Roentgenol. 2011;196:218–24. doi:10.2214/AJR.10.4550.

    Article  PubMed  Google Scholar 

  63. Ko ES, Lee BH, Choi HY, et al. Background enhancement in breast MR: correlation with breast density in mammography and background echotexture in ultrasound. Eur J Radiol. 2011;80:719–23. doi:10.1016/j.ejrad.2010.07.019.

    Article  PubMed  Google Scholar 

  64. Dontchos BN, Rahbar H, Partridge SC, et al. Are qualitative assessments of background parenchymal enhancement, amount of fibroglandular tissue on MR images, and mammographic density associated with breast cancer risk? Radiology. 2015;276:371–80. doi:10.1148/radiol.2015142304.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Uematsu T, Kasami M, Watanabe J. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer? Eur Radiol. 2011;21:2261–7. doi:10.1007/s00330-011-2175-6.

    Article  PubMed  Google Scholar 

  66. DeMartini WB, Liu F, Peacock S, et al. Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol. 2012;198:W373–80. doi:10.2214/AJR.10.6272.

    Article  PubMed  Google Scholar 

  67. Thompson DJ, Leach MO, Kwan-Lim G, et al. Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK MARIBS study. Breast Cancer Res. 2009;11:R80. doi:10.1186/bcr2447.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Khazen M, Warren RML, Boggis CRM, et al. A pilot study of compositional analysis of the breast and estimation of breast mammographic density using three-dimensional T1-weighted magnetic resonance imaging. Cancer Epidemiol Biomarkers Prev. 2008;17:2268–74. doi:10.1158/1055-9965.EPI-07-2547.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wengert GJ, Helbich TH, Vogl W-D, et al. Introduction of an automated user-independent quantitative volumetric magnetic resonance imaging breast density measurement system using the Dixon sequence: comparison with mammographic breast density assessment. Invest Radiol. 2015;50:73–80. doi:10.1097/RLI.0000000000000102.

    Article  PubMed  Google Scholar 

  70. Ma J. Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med. 2004;52:415–9. doi:10.1002/mrm.20146.

    Article  PubMed  Google Scholar 

  71. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28:543–58. doi:10.1002/jmri.21492.

    Article  PubMed  Google Scholar 

  72. Clauser P, Pinker K, Helbich TH, et al. Fat saturation in dynamic breast MRI at 3 Tesla: is the Dixon technique superior to spectral fat saturation? A visual grading characteristics study. Eur Radiol. 2014;24:2213–9. doi:10.1007/s00330-014-3189-7.

    Article  CAS  PubMed  Google Scholar 

  73. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  74. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  75. Tennant DA, Durán RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010;10:267–77. doi:10.1038/nrc2817.

    Article  CAS  PubMed  Google Scholar 

  76. Tennant DA, Durán RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009;30:1269–80. doi:10.1093/carcin/bgp070.

    Article  CAS  PubMed  Google Scholar 

  77. Trosko JE, Chang C-C, Upham BL, Tai M-H. Ignored hallmarks of carcinogenesis: stem cells and cell-cell communication. Ann N Y Acad Sci. 2004;1028:192–201. doi:10.1196/annals.1322.023.

    Article  CAS  PubMed  Google Scholar 

  78. Houssami N, Ciatto S, Macaskill P, et al. Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol. 2008;26:3248–58. doi:10.1200/JCO.2007.15.2108.

    Article  PubMed  Google Scholar 

  79. Kuhl C. The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 2007;244:356–78. doi:10.1148/radiol.2442051620.

    Article  PubMed  Google Scholar 

  80. Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233:830–49. doi:10.1148/radiol.2333031484.

    Article  PubMed  Google Scholar 

  81. Mann RM, Balleyguier C, Baltzer PA, et al. Breast MRI: EUSOBI recommendations for women’s information. Eur Radiol. 2015;25(12):3669–78. doi:10.1007/s00330-015-3807-z.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Spick C, Szolar DHM, Preidler KW, et al. Breast MRI used as a problem-solving tool reliably excludes malignancy. Eur J Radiol. 2015;84:61–4. doi:10.1016/j.ejrad.2014.10.005.

    Article  PubMed  Google Scholar 

  83. Benndorf M, Baltzer PAT, Vag T, et al. Breast MRI as an adjunct to mammography: does it really suffer from low specificity? A retrospective analysis stratified by mammographic BI-RADS classes. Acta Radiol. 2010;51:715–21. doi:10.3109/02841851.2010.497164.

    Article  PubMed  Google Scholar 

  84. Baltzer PAT, Benndorf M, Dietzel M, et al. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol. 2010;20:1101–10. doi:10.1007/s00330-009-1654-5.

    Article  PubMed  Google Scholar 

  85. Pinker K, Bogner W, Baltzer P, et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Invest Radiol. 2014;49:421–30. doi:10.1097/RLI.0000000000000029.

    Article  CAS  PubMed  Google Scholar 

  86. Baltzer PAT, Schäfer A, Dietzel M, et al. Diffusion tensor magnetic resonance imaging of the breast: a pilot study. Eur Radiol. 2011;21:1–10. doi:10.1007/s00330-010-1901-9.

    Article  PubMed  Google Scholar 

  87. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534–46.

    Article  PubMed  Google Scholar 

  88. Gore JC, Manning HC, Quarles CC, et al. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging. 2011;29:587–600. doi:10.1016/j.mri.2011.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuhl CK. Current status of breast MR imaging. Part 2. Clinical applications. Radiology. 2007;244:672–91. doi:10.1148/radiol.2443051661.

    Article  PubMed  Google Scholar 

  90. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med. 1995;333:1757–63. doi:10.1056/NEJM199512283332608.

    Article  CAS  PubMed  Google Scholar 

  91. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6. doi:10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  92. Brasch R, Turetschek K. MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. Eur J Radiol. 2000;34:148–55.

    Article  CAS  PubMed  Google Scholar 

  93. Warner E. The role of magnetic resonance imaging in screening women at high risk of breast cancer. Top Magn Reson Imaging. 2008;19:163–9. doi:10.1097/RMR.0b013e31818bc994.

    Article  PubMed  Google Scholar 

  94. Burnside ES, Sickles EA, Bassett LW, et al. The ACR BI-RADS experience: learning from history. J Am Coll Radiol. 2009;6:851–60. doi:10.1016/j.jacr.2009.07.023.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kuhl CK, Jost P, Morakkabati N, et al. Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology. 2006;239:666–76. doi:10.1148/radiol.2392050509.

    Article  PubMed  Google Scholar 

  96. Kaiser CG, Reich C, Dietzel M, et al. DCE-MRI of the breast in a stand-alone setting outside a complementary strategy – results of the TK-study. Eur Radiol. 2015;25:1793–800. doi:10.1007/s00330-014-3580-4.

    Article  PubMed  Google Scholar 

  97. Baltzer PAT, Benndorf M, Dietzel M, et al. False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study. AJR Am J Roentgenol. 2010;194:1658–63. doi:10.2214/AJR.09.3486.

    Article  PubMed  Google Scholar 

  98. Kuhl CK, Schrading S, Leutner CC, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23:8469–76. doi:10.1200/JCO.2004.00.4960.

    Article  PubMed  Google Scholar 

  99. Kuhl CK. Breast MR imaging at 3T. Magn Reson Imaging Clin N Am. 2007;15:315–20. doi:10.1016/j.mric.2007.08.003, vi.

    Article  PubMed  Google Scholar 

  100. Korteweg MA, Veldhuis WB, Visser F, et al. Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and (1)H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Invest Radiol. 2011;46:370–6. doi:10.1097/RLI.0b013e31820df706.

    Article  CAS  PubMed  Google Scholar 

  101. Gruber S, Minarikova L, Pinker K, et al. Diffusion-weighted imaging of breast tumours at 3 Tesla and 7 Tesla: a comparison. Eur Radiol. 2015;26(5):1466–73. doi:10.1007/s00330-015-3947-1.

    Article  PubMed  Google Scholar 

  102. Pinker K, Baltzer P, Bogner W, et al. Multiparametric MR imaging with high-resolution dynamic contrast-enhanced and diffusion-weighted imaging at 7 T improves the assessment of breast tumors: a feasibility study. Radiology. 2015;276:360–70. doi:10.1148/radiol.15141905.

    Article  PubMed  Google Scholar 

  103. Rahbar H, Partridge SC. Multiparametric MR imaging of breast cancer. Magn Reson Imaging Clin N Am. 2016;24:223–38. doi:10.1016/j.mric.2015.08.012.

    Article  PubMed  Google Scholar 

  104. Baltzer PAT, Freiberg C, Beger S, et al. Clinical MR-mammography: are computer-assisted methods superior to visual or manual measurements for curve type analysis? A systematic approach. Acad Radiol. 2009;16:1070–6. doi:10.1016/j.acra.2009.03.017.

    Article  PubMed  Google Scholar 

  105. Baltzer PA, Dietzel M, Vag T, et al. Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography? RoFo. 2010;182:254–60. doi:10.1055/s-0028-1109843.

    Article  CAS  PubMed  Google Scholar 

  106. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  CAS  PubMed  Google Scholar 

  107. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med. 1995;33:564–8.

    Article  CAS  PubMed  Google Scholar 

  108. Buadu LD, Murakami J, Murayama S, et al. Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology. 1996;200:639–49. doi:10.1148/radiology.200.3.8756909.

    Article  CAS  PubMed  Google Scholar 

  109. Tuncbilek N, Unlu E, Karakas HM, et al. Evaluation of tumor angiogenesis with contrast-enhanced dynamic magnetic resonance mammography. Breast J. 2003;9:403–8.

    Article  PubMed  Google Scholar 

  110. Agrawal G, Su M-Y, Nalcioglu O, et al. Significance of breast lesion descriptors in the ACR BI-RADS MRI lexicon. Cancer. 2009;115:1363–80. doi:10.1002/cncr.24156.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pabst T, Kenn W, Kaiser WA, Hahn D. Understanding why contrast enhancement in dynamic MRI is not reproducible: illustration with a simple phantom. Breast J. 2001;7:166–70.

    Article  CAS  PubMed  Google Scholar 

  112. Zwick S, Brix G, Tofts PS, et al. Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol. 2010;20:432–42. doi:10.1007/s00330-009-1556-6.

    Article  PubMed  Google Scholar 

  113. Kuhl CK, Kooijman H, Gieseke J, Schild HH. Effect of B1 inhomogeneity on breast MR imaging at 3.0 T. Radiology. 2007;244:929–30. doi:10.1148/radiol.2443070266.

    Article  PubMed  Google Scholar 

  114. Huang W, Tudorica LA, Li X, et al. Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging. Radiology. 2011;261:394–403. doi:10.1148/radiol.11102413.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yankeelov TE, Luci JJ, Lepage M, et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging. 2005;23:519–29. doi:10.1016/j.mri.2005.02.013.

    Article  CAS  PubMed  Google Scholar 

  116. Huang W, Li X, Chen Y, et al. Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol. 2014;7:153–66.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kaiser WA, Zeitler E. MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology. 1989;170:681–6. doi:10.1148/radiology.170.3.2916021.

    Article  CAS  PubMed  Google Scholar 

  118. Kaiser WA. False-positive results in dynamic MR mammography. Causes, frequency, and methods to avoid. Magn Reson Imaging Clin N Am. 1994;2:539–55.

    CAS  PubMed  Google Scholar 

  119. Li L, Wang K, Sun X, et al. Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer. Med Sci Monit. 2015;21:376–82. doi:10.12659/MSM.892534.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Helbich TH. Contrast-enhanced magnetic resonance imaging of the breast. Eur J Radiol. 2000;34:208–19.

    Article  CAS  PubMed  Google Scholar 

  121. Malich A, Fischer DR, Wurdinger S, et al. Potential MRI interpretation model: differentiation of benign from malignant breast masses. AJR Am J Roentgenol. 2005;185:964–70. doi:10.2214/AJR.04.1073.

    Article  PubMed  Google Scholar 

  122. Kaiser WA. Breast magnetic resonance imaging: principles and techniques. Semin Roentgenol. 2007;42:228–35. doi:10.1053/j.ro.2007.07.003.

    Article  PubMed  Google Scholar 

  123. Fischer DR, Wurdinger S, Boettcher J, et al. Further signs in the evaluation of magnetic resonance mammography: a retrospective study. Invest Radiol. 2005;40:430–5.

    Article  PubMed  Google Scholar 

  124. Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology. 1999;211:101–10. doi:10.1148/radiology.211.1.r99ap38101.

    Article  CAS  PubMed  Google Scholar 

  125. Dietzel M, Kaiser C, Baltzer PAT. Magnetic resonance imaging of intraductal papillomas: typical findings and differential diagnosis. J Comput Assist Tomogr. 2014;39(2):176–84. doi:10.1097/RCT.0000000000000188.

    Article  Google Scholar 

  126. Dietzel M, Baltzer PA, Vag T, et al. Magnetic resonance mammography of invasive lobular versus ductal carcinoma: systematic comparison of 811 patients reveals high diagnostic accuracy irrespective of typing. J Comput Assist Tomogr. 2010;34:587–95. doi:10.1097/RCT.0b013e3181db9f0e.

    Article  PubMed  Google Scholar 

  127. Vincensini D, Dedieu V, Eliat PA, et al. Magnetic resonance imaging measurements of vascular permeability and extracellular volume fraction of breast tumors by dynamic Gd-DTPA-enhanced relaxometry. Magn Reson Imaging. 2007;25:293–302. doi:10.1016/j.mri.2006.10.016.

    Article  CAS  PubMed  Google Scholar 

  128. Warren RML, Thompson D, Pointon LJ, et al. Evaluation of a prospective scoring system designed for a multicenter breast MR imaging screening study. Radiology. 2006;239:677–85. doi:10.1148/radiol.2393042007.

    Article  PubMed  Google Scholar 

  129. Vag T, Baltzer PAT, Dietzel M, et al. Kinetic characteristics of ductal carcinoma in situ (DCIS) in dynamic breast MRI using computer-assisted analysis. Acta Radiol. 2010;51:955–61. doi:10.3109/02841851.2010.508171.

    Article  PubMed  Google Scholar 

  130. Vag T, Baltzer PAT, Dietzel M, Kaiser WA. Kinetic characterization of non-mass lesions on breast MRI using manual and computer assisted methods. Eur J Radiol. 2012;81 Suppl 1:S177–8. doi:10.1016/S0720-048X(12)70072-4.

    Article  PubMed  Google Scholar 

  131. Baltzer PAT, Vag T, Dietzel M, et al. Computer-aided interpretation of dynamic magnetic resonance imaging reflects histopathology of invasive breast cancer. Eur Radiol. 2010;20:1563–71. doi:10.1007/s00330-010-1722-x.

    Article  PubMed  Google Scholar 

  132. Koo HR, Cho N, Song IC, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging. 2012;36:145–51. doi:10.1002/jmri.23635.

    Article  PubMed  Google Scholar 

  133. Baltzer PAT, Zoubi R, Burmeister HP, et al. Computer assisted analysis of MR-mammography reveals association between contrast enhancement and occurrence of distant metastasis. Technol Cancer Res Treat. 2012;11:553–60.

    PubMed  Google Scholar 

  134. Dietzel M, Baltzer PAT, Schön K, Kaiser WA. MR-mammography: high sensitivity but low specificity? New thoughts and fresh data on an old mantra. Eur J Radiol. 2012;81 Suppl 1:S30–2. doi:10.1016/S0720-048X(12)70012-8.

    Article  PubMed  Google Scholar 

  135. Chang Y-W, Kwon KH, Choi DL, et al. Magnetic resonance imaging of breast cancer and correlation with prognostic factors. Acta Radiol. 2009;50:990–8. doi:10.3109/02841850903225180.

    Article  PubMed  Google Scholar 

  136. Szabó BK, Aspelin P, Kristoffersen Wiberg M, et al. Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol. 2003;13:2425–35. doi:10.1007/s00330-003-2000-y.

    Article  PubMed  Google Scholar 

  137. Narisada H, Aoki T, Sasaguri T, et al. Correlation between numeric gadolinium-enhanced dynamic MRI ratios and prognostic factors and histologic type of breast carcinoma. AJR Am J Roentgenol. 2006;187:297–306. doi:10.2214/AJR.05.0696.

    Article  PubMed  Google Scholar 

  138. Hylton NM, Blume JD, Bernreuter WK, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy – results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263:663–72. doi:10.1148/radiol.12110748.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ah-See M-LW, Makris A, Taylor NJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2008;14:6580–9. doi:10.1158/1078-0432.CCR-07-4310.

    Article  CAS  PubMed  Google Scholar 

  140. Pickles MD, Lowry M, Manton DJ, et al. Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res Treat. 2005;91:1–10. doi:10.1007/s10549-004-5819-2.

    Article  CAS  PubMed  Google Scholar 

  141. Wasser K, Klein SK, Fink C, et al. Evaluation of neoadjuvant chemotherapeutic response of breast cancer using dynamic MRI with high temporal resolution. Eur Radiol. 2003;13:80–7. doi:10.1007/s00330-002-1654-1.

    Article  CAS  PubMed  Google Scholar 

  142. Woolf DK, Padhani AR, Taylor NJ, et al. Assessing response in breast cancer with dynamic contrast-enhanced magnetic resonance imaging: are signal intensity-time curves adequate? Breast Cancer Res Treat. 2014;147:335–43. doi:10.1007/s10549-014-3072-x.

    Article  CAS  PubMed  Google Scholar 

  143. Schipper R-J, Paiman M-L, Beets-Tan RGH, et al. Diagnostic performance of dedicated axillary T2- and diffusion-weighted MR imaging for nodal staging in breast cancer. Radiology. 2015;275:345–55. doi:10.1148/radiol.14141167.

    Article  PubMed  Google Scholar 

  144. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34. doi:10.1158/1078-0432.CCR-06-1109.

    Article  CAS  PubMed  Google Scholar 

  145. Fernández-Morales LA, Seguí MA, Andreu X, et al. Analysis of the pathologic response to primary chemotherapy in patients with locally advanced breast cancer grouped according to estrogen receptor, progesterone receptor, and HER2 status. Clin Breast Cancer. 2007;7:559–64. doi:10.3816/CBC.2007.n.012.

    Article  PubMed  Google Scholar 

  146. Bufi E, Belli P, Di Matteo M, et al. Effect of breast cancer phenotype on diagnostic performance of MRI in the prediction to response to neoadjuvant treatment. Eur J Radiol. 2014;83:1631–8. doi:10.1016/j.ejrad.2014.05.002.

    Article  PubMed  Google Scholar 

  147. Hayashi Y, Takei H, Nozu S, et al. Analysis of complete response by MRI following neoadjuvant chemotherapy predicts pathological tumor responses differently for molecular subtypes of breast cancer. Oncol Lett. 2013;5:83–9. doi:10.3892/ol.2012.1004.

    PubMed  Google Scholar 

  148. Kuzucan A, Chen J-H, Bahri S, et al. Diagnostic performance of magnetic resonance imaging for assessing tumor response in patients with HER2-negative breast cancer receiving neoadjuvant chemotherapy is associated with molecular biomarker profile. Clin Breast Cancer. 2012;12:110–8. doi:10.1016/j.clbc.2012.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Schrading S, Kuhl CK. Breast cancer: influence of taxanes on response assessment with dynamic contrast-enhanced MR imaging. Radiology. 2015;277(3):687–96. doi:10.1148/radiol.2015150006.

    Article  PubMed  Google Scholar 

  150. Baltzer PA, Renz DM, Herrmann K-H, et al. Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur Radiol. 2009;19:1612–20. doi:10.1007/s00330-009-1326-5.

    Article  CAS  PubMed  Google Scholar 

  151. Marini C, Iacconi C, Giannelli M, et al. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol. 2007;17:2646–55. doi:10.1007/s00330-007-0621-2.

    Article  CAS  PubMed  Google Scholar 

  152. Guo Y, Cai Y-Q, Cai Z-L, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging. 2002;16:172–8. doi:10.1002/jmri.10140.

    Article  PubMed  Google Scholar 

  153. Woodhams R, Kakita S, Hata H, et al. Identification of residual breast carcinoma following neoadjuvant chemotherapy: diffusion-weighted imaging – comparison with contrast-enhanced MR imaging and pathologic findings. Radiology. 2010;254:357–66. doi:10.1148/radiol.2542090405.

    Article  PubMed  Google Scholar 

  154. Pinker K, Stadlbauer A, Bogner W, et al. Molecular imaging of cancer: MR spectroscopy and beyond. Eur J Radiol. 2012;81:566–77. doi:10.1016/j.ejrad.2010.04.028.

    Article  CAS  PubMed  Google Scholar 

  155. Sinha S, Sinha U. Recent advances in breast MRI and MRS. NMR Biomed. 2009;22:3–16. doi:10.1002/nbm.1270.

    Article  CAS  PubMed  Google Scholar 

  156. Costantini M, Belli P, Rinaldi P, et al. Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol. 2010;65:1005–12. doi:10.1016/j.crad.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  157. Bogner W, Gruber S, Pinker K, et al. Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology. 2009;253:341–51. doi:10.1148/radiol.2532081718.

    Article  PubMed  Google Scholar 

  158. Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE. Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol. 2014;24:2835–47. doi:10.1007/s00330-014-3338-z.

    Article  PubMed  Google Scholar 

  159. Partridge SC, DeMartini WB, Kurland BF, et al. Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol. 2009;193:1716–22. doi:10.2214/AJR.08.2139.

    Article  PubMed  Google Scholar 

  160. Kul S, Cansu A, Alhan E, et al. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol. 2011;196:210–7. doi:10.2214/AJR.10.4258.

    Article  PubMed  Google Scholar 

  161. Schmitz AMT, Veldhuis WB, Menke-Pluijmers MBE, et al. Multiparametric MRI with dynamic contrast enhancement, diffusion-weighted imaging, and 31-phosphorus spectroscopy at 7 T for characterization of breast cancer. Invest Radiol. 2015;50:766–71. doi:10.1097/RLI.0000000000000183.

    Article  CAS  PubMed  Google Scholar 

  162. Ei Khouli RH, Jacobs MA, Mezban SD, et al. Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology. 2010;256:64–73. doi:10.1148/radiol.10091367.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Yabuuchi H, Matsuo Y, Okafuji T, et al. Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging. 2008;28:1157–65. doi:10.1002/jmri.21570.

    Article  PubMed  Google Scholar 

  164. Yabuuchi H, Matsuo Y, Kamitani T, et al. Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur J Radiol. 2010;75:e126–32. doi:10.1016/j.ejrad.2009.09.013.

    Article  PubMed  Google Scholar 

  165. Pinker K, Bickel H, Helbich TH, et al. Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “Breast Imaging Reporting and Data System” for multiparametric 3-T imaging of breast lesions. Eur Radiol. 2013;23:1791–802. doi:10.1007/s00330-013-2771-8.

    Article  CAS  PubMed  Google Scholar 

  166. Baltzer A, Dietzel M, Kaiser CG, Baltzer PA. Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score. Eur Radiol. 2015;26:884–91. doi:10.1007/s00330-015-3886-x.

    Article  PubMed  Google Scholar 

  167. Chen X, Li W, Zhang Y, et al. Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer. 2010;10:693. doi:10.1186/1471-2407-10-693.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Tsushima Y, Takahashi-Taketomi A, Endo K. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging. 2009;30:249–55. doi:10.1002/jmri.21854.

    Article  PubMed  Google Scholar 

  169. Hatakenaka M, Soeda H, Yabuuchi H, et al. Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci. 2008;7:23–9.

    Article  PubMed  Google Scholar 

  170. Woodhams R, Matsunaga K, Iwabuchi K, et al. Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr. 2005;29:644–9.

    Article  PubMed  Google Scholar 

  171. Stadlbauer A, Bernt R, Gruber S, et al. Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. Eur Radiol. 2009;19:2349–56. doi:10.1007/s00330-009-1426-2.

    Article  PubMed  Google Scholar 

  172. Spick C, Pinker-Domenig K, Rudas M, et al. MRI-only lesions: application of diffusion-weighted imaging obviates unnecessary MR-guided breast biopsies. Eur Radiol. 2014;24:1204–10. doi:10.1007/s00330-014-3153-6.

    Article  PubMed  Google Scholar 

  173. Bickel H, Pinker-Domenig K, Bogner W, et al. Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ. Invest Radiol. 2015;50:95–100. doi:10.1097/RLI.0000000000000104.

    Article  CAS  PubMed  Google Scholar 

  174. Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat. 2006;97:135–44. doi:10.1007/s10549-005-9101-z.

    Article  PubMed  Google Scholar 

  175. Martincich L, Deantoni V, Bertotto I, et al. Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol. 2012;22:1519–28. doi:10.1007/s00330-012-2403-8.

    Article  PubMed  Google Scholar 

  176. Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology. 2009;250:638–47. doi:10.1148/radiol.2503081054.

    Article  PubMed  Google Scholar 

  177. Dogan BE, Gonzalez-Angulo AM, Gilcrease M, et al. Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. AJR Am J Roentgenol. 2010;194:1160–6. doi:10.2214/AJR.09.2355.

    Article  PubMed  Google Scholar 

  178. Kawashima H. Imaging findings of triple-negative breast cancer. Breast Cancer. 2011;18:145. doi:10.1007/s12282-010-0247-0.

    Article  PubMed  Google Scholar 

  179. Woodhams R, Ramadan S, Stanwell P, et al. Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics. 2011;31:1059–84. doi:10.1148/rg.314105160.

    Article  PubMed  Google Scholar 

  180. Rahbar H, Partridge SC, Eby PR, et al. Characterization of ductal carcinoma in situ on diffusion weighted breast MRI. Eur Radiol. 2011;21:2011–9. doi:10.1007/s00330-011-2140-4.

    Article  PubMed  Google Scholar 

  181. Rahbar H, Partridge SC, Demartini WB, et al. In vivo assessment of ductal carcinoma in situ grade: a model incorporating dynamic contrast-enhanced and diffusion-weighted breast MR imaging parameters. Radiology. 2012;263:374–82. doi:10.1148/radiol.12111368.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging. 2006;24:843–7. doi:10.1016/j.mri.2005.11.005.

    Article  PubMed  Google Scholar 

  183. Sharma U, Danishad KKA, Seenu V, Jagannathan NR. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed. 2009;22:104–13. doi:10.1002/nbm.1245.

    Article  PubMed  Google Scholar 

  184. Park SH, Moon WK, Cho N, et al. Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology. 2010;257:56–63. doi:10.1148/radiol.10092021.

    Article  PubMed  Google Scholar 

  185. Richard R, Thomassin I, Chapellier M, et al. Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol. 2013;23:2420–31. doi:10.1007/s00330-013-2850-x.

    Article  PubMed  Google Scholar 

  186. Iacconi C, Giannelli M, Marini C, et al. The role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: a preliminary study. Eur Radiol. 2010;20:303–8. doi:10.1007/s00330-009-1550-z.

    Article  PubMed  Google Scholar 

  187. Cakir O, Arslan A, Inan N, et al. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Eur J Radiol. 2013;82:e801–6. doi:10.1016/j.ejrad.2013.09.001.

    Article  PubMed  Google Scholar 

  188. Eyal E, Shapiro-Feinberg M, Furman-Haran E, et al. Parametric diffusion tensor imaging of the breast. Invest Radiol. 2012;47:284–91. doi:10.1097/RLI.0b013e3182438e5d.

    Article  PubMed  Google Scholar 

  189. Partridge SC, Ziadloo A, Murthy R, et al. Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging. 2010;31:339–47. doi:10.1002/jmri.22045.

    Article  PubMed  Google Scholar 

  190. Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53:1432–40. doi:10.1002/mrm.20508.

    Article  PubMed  Google Scholar 

  191. Nogueira L, Brandão S, Matos E, et al. Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol. 2014;24:1197–203. doi:10.1007/s00330-014-3146-5.

    Article  PubMed  Google Scholar 

  192. Sun K, Chen X, Chai W, et al. Breast cancer: diffusion kurtosis mr imaging-diagnostic accuracy and correlation with clinical-pathologic factors. Radiology. 2015;277:46–55. doi:10.1148/radiol.15141625.

    Article  PubMed  Google Scholar 

  193. Katz-Brull R, Lavin PT, Lenkinski RE. Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst. 2002;94:1197–203.

    Article  CAS  PubMed  Google Scholar 

  194. Begley JK, Redpath TW, Bolan PJ, Gilbert FJ. In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res. 2012;14:207. doi:10.1186/bcr3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gruber S, Debski B-K, Pinker K, et al. Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology. 2011;261:752–61. doi:10.1148/radiol.11102096.

    Article  PubMed  Google Scholar 

  196. Meisamy S, Bolan PJ, Baker EH, et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology. 2005;236:465–75. doi:10.1148/radiol.2362040836.

    Article  PubMed  Google Scholar 

  197. Bartella L, Morris EA, Dershaw DD, et al. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology. 2006;239:686–92. doi:10.1148/radiol.2393051046.

    Article  PubMed  Google Scholar 

  198. Bartella L, Thakur SB, Morris EA, et al. Enhancing nonmass lesions in the breast: evaluation with proton (1H) MR spectroscopy. Radiology. 2007;245:80–7. doi:10.1148/radiol.2451061639.

    Article  PubMed  Google Scholar 

  199. Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem. 2003;90:525–33. doi:10.1002/jcb.10659.

    Article  CAS  PubMed  Google Scholar 

  200. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11:835–48. doi:10.1038/nrc3162.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12:413–39.

    Article  CAS  PubMed  Google Scholar 

  202. Signs in MR-mammography.pdf.

    Google Scholar 

  203. Mountford C, Ramadan S, Stanwell P, Malycha P. Proton MRS of the breast in the clinical setting. NMR Biomed. 2009;22:54–64. doi:10.1002/nbm.1301.

    Article  CAS  PubMed  Google Scholar 

  204. Haddadin IS, McIntosh A, Meisamy S, et al. Metabolite quantification and high-field MRS in breast cancer. NMR Biomed. 2009;22:65–76. doi:10.1002/nbm.1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Magometschnigg HF, Helbich T, Brader P, et al. Molecular imaging for the characterization of breast tumors. Expert Rev Anticancer Ther. 2014;14:711–22. doi:10.1586/14737140.2014.885383.

    Article  CAS  PubMed  Google Scholar 

  206. Baltzer PAT, Dietzel M, Kaiser WA. MR-spectroscopy at 1.5 tesla and 3 tesla. Useful? A systematic review and meta-analysis. Eur J Radiol. 2012;81 Suppl 1:S6–9. doi:10.1016/S0720-048X(12)70003-7.

    Article  PubMed  Google Scholar 

  207. Stanwell P, Mountford C. In vivo proton MR spectroscopy of the breast. Radiographics. 2007;27 Suppl 1:S253–66. doi:10.1148/rg.27si075519.

    Article  PubMed  Google Scholar 

  208. Pinker K, Helbich TH, Magometschnigg H, et al. Molecular breast imaging. An update. Radiologe. 2014;54:241–53. doi:10.1007/s00117-013-2580-8.

    Article  CAS  PubMed  Google Scholar 

  209. Baltzer PAT, Dietzel M. Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T – systematic review and meta-analysis. Radiology. 2013;267:735–46. doi:10.1148/radiol.13121856.

    Article  PubMed  Google Scholar 

  210. Shin HJ, Baek H-M, Cha JH, Kim HH. Evaluation of breast cancer using proton MR spectroscopy: total choline peak integral and signal-to-noise ratio as prognostic indicators. AJR Am J Roentgenol. 2012;198:W488–97. doi:10.2214/AJR.11.7292.

    Article  PubMed  Google Scholar 

  211. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59:80–4.

    CAS  PubMed  Google Scholar 

  212. for the European Society of Breast Imaging (EUSOBI), Sardanelli F, Helbich TH. Mammography: EUSOBI recommendations for women’s information. Insights Imaging. 2012;3:7–10. doi:10.1007/s13244-011-0127-y.

    Article  Google Scholar 

  213. Sardanelli F, Boetes C, Borisch B, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. 2010;46:1296–316. doi:10.1016/j.ejca.2010.02.015.

    Article  PubMed  Google Scholar 

  214. Ramadan S, Arm J, Silcock J, et al. Lipid and metabolite deregulation in the breast tissue of women carrying BRCA1 and BRCA2 genetic mutations. Radiology. 2015;275:675–82. doi:10.1148/radiol.15140967.

    Article  PubMed  Google Scholar 

  215. Jagannathan NR, Kumar M, Seenu V, et al. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer. 2001;84:1016–22. doi:10.1054/bjoc.2000.1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Danishad KKA, Sharma U, Sah RG, et al. Assessment of therapeutic response of locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored using sequential magnetic resonance spectroscopic imaging (MRSI). NMR Biomed. 2010;23:233–41. doi:10.1002/nbm.1436.

    CAS  PubMed  Google Scholar 

  217. Sharma U, Baek HM, Su MY, Jagannathan NR. In vivo 1H MRS in the assessment of the therapeutic response of breast cancer patients. NMR Biomed. 2011;24:700–11. doi:10.1002/nbm.1654.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mercado CL, Moy L. Breast MRI. Preface. Magn Reson Imaging Clin N Am. 2010;18:xiii. doi:10.1016/j.mric.2010.02.014.

    Article  PubMed  Google Scholar 

  219. Watermann DO, Földi M, Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol. 2005;25:592–8. doi:10.1002/uog.1909.

    Article  CAS  PubMed  Google Scholar 

  220. Gruber R, Jaromi S, Rudas M, et al. Histologic work-up of non-palpable breast lesions classified as probably benign at initial mammography and/or ultrasound (BI-RADS category 3). Eur J Radiol. 2013;82:398–403. doi:10.1016/j.ejrad.2012.02.004.

    Article  CAS  PubMed  Google Scholar 

  221. Gartlehner G, Thaler KJ, Chapman A, et al. Adjunct ultrasonography for breast cancer screening in women at average risk: a systematic review. Int J Evid Based Healthc. 2013;11:87–93. doi:10.1111/1744-1609.12022.

    Article  PubMed  Google Scholar 

  222. Reisegger M, Schueller G, Gruber R, et al. Imaging of molecular structures of breasts with new sonography techniques. Radiologe. 2010;50:1014–21. doi:10.1007/s00117-010-2013-x.

    Article  CAS  PubMed  Google Scholar 

  223. Scaperrotta G, Ferranti C, Costa C, et al. Role of sonoelastography in non-palpable breast lesions. Eur Radiol. 2008;18:2381–9. doi:10.1007/s00330-008-1032-8.

    Article  PubMed  Google Scholar 

  224. Thomas A, Kümmel S, Fritzsche F, et al. Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol. 2006;13:1496–504. doi:10.1016/j.acra.2006.08.012.

    Article  PubMed  Google Scholar 

  225. Berg WA, Cosgrove DO, Doré CJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262:435–49. doi:10.1148/radiol.11110640.

    Article  PubMed  Google Scholar 

  226. Cho N, Jang M, Lyou CY, et al. Distinguishing benign from malignant masses at breast US: combined US elastography and color doppler US--influence on radiologist accuracy. Radiology. 2012;262:80–90. doi:10.1148/radiol.11110886.

    Article  PubMed  Google Scholar 

  227. Calas MJG, Almeida RMVR, Gutfilen B, Pereira WCA. Interobserver concordance in the BI-RADS classification of breast ultrasound exams. Clinics (Sao Paulo). 2012;67:185–9.

    Article  Google Scholar 

  228. Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of physician-performed whole-breast US: lesion detection and characterization. Radiology. 2006;241:355–65. doi:10.1148/radiol.2412051710.

    Article  PubMed  Google Scholar 

  229. Weismann C, Mayr C, Egger H, Auer A. Breast sonography – 2D, 3D, 4D ultrasound or elastography? Breast Care (Basel). 2011;6:98–103. doi:10.1159/000327504.

    Article  Google Scholar 

  230. Parris T, Wakefield D, Frimmer H. Real world performance of screening breast ultrasound following enactment of Connecticut Bill 458. Breast J. 2013;19:64–70. doi:10.1111/tbj.12053.

    Article  PubMed  Google Scholar 

  231. Chang JM, Cha JH, Park JS, et al. Automated breast ultrasound system (ABUS): reproducibility of mass localization, size measurement, and characterization on serial examinations. Acta Radiol. 2015;56:1163–70. doi:10.1177/0284185114551565.

    Article  PubMed  Google Scholar 

  232. Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology. 2015;274:663–73. doi:10.1148/radiol.14132832.

    Article  PubMed  Google Scholar 

  233. Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol. 2015;204:234–40. doi:10.2214/AJR.13.12072.

    Article  PubMed  Google Scholar 

  234. Kettenbach J, Helbich TH, Huber S, et al. Computer-assisted quantitative assessment of power Doppler US: effects of microbubble contrast agent in the differentiation of breast tumors. Eur J Radiol. 2005;53:238–44. doi:10.1016/j.ejrad.2004.04.017.

    Article  PubMed  Google Scholar 

  235. Krestan CR, Riedl C, Memarsadeghi M, et al. 3D-power Doppler ultrasound of breast lesions with a microbubble contrast agent. Acad Radiol. 2002;9 Suppl 2:S384–5.

    Article  PubMed  Google Scholar 

  236. Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov. 2004;3:527–32. doi:10.1038/nrd1417.

    Article  CAS  PubMed  Google Scholar 

  237. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7:591–607. doi:10.1038/nrd2290.

    Article  CAS  PubMed  Google Scholar 

  238. Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50. doi:10.1148/radiol.2391041676.

    Article  PubMed  Google Scholar 

  239. Insana MF, Pellot-Barakat C, Sridhar M, Lindfors KK. Viscoelastic imaging of breast tumor microenvironment with ultrasound. J Mammary Gland Biol Neoplasia. 2004;9:393–404. doi:10.1007/s10911-004-1409-5.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Zhi H, Xiao X-Y, Yang H-Y, et al. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol. 2010;17:1227–33. doi:10.1016/j.acra.2010.05.004.

    Article  PubMed  Google Scholar 

  241. Ginat DT, Destounis SV, Barr RG, et al. US elastography of breast and prostate lesions. Radiographics. 2009;29:2007–16. doi:10.1148/rg.297095058.

    Article  PubMed  Google Scholar 

  242. Evans A, Whelehan P, Thomson K, et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res. 2010;12:R104. doi:10.1186/bcr2787.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Nightingale K, Bentley R, Trahey G. Observations of tissue response to acoustic radiation force: opportunities for imaging. Ultrason Imaging. 2002;24:129–38.

    Article  PubMed  Google Scholar 

  244. Hoyt K, Parker KJ, Rubens DJ. Real-time shear velocity imaging using sonoelastographic techniques. Ultrasound Med Biol. 2007;33:1086–97. doi:10.1016/j.ultrasmedbio.2007.01.009.

    Article  PubMed  Google Scholar 

  245. Nightingale K, Nightingale R, Stutz D, Trahey G. Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load. Ultrason Imaging. 2002;24:100–8.

    Article  PubMed  Google Scholar 

  246. Ophir J, Alam SK, Garra B, et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H. 1999;213:203–33.

    Article  CAS  PubMed  Google Scholar 

  247. Garra BS. Elastography: current status, future prospects, and making it work for you. Ultrasound Q. 2011;27:177–86. doi:10.1097/RUQ.0b013e31822a2138.

    Article  PubMed  Google Scholar 

  248. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:396–409.

    Article  PubMed  Google Scholar 

  249. Maeda M. New angiographic knowledge regarding the female breast (author’s transl). RoFo. 1979;130:711–5. doi:10.1055/s-0029-1231359.

    Article  CAS  PubMed  Google Scholar 

  250. Ianculescu V, Ciolovan LM, Dunant A, et al. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83:773–7. doi:10.1016/j.ejrad.2014.01.021.

    Article  PubMed  Google Scholar 

  251. Kapetas P, Woitek R, Clauser P, Marino MA, Mahajan MD, Pinker-Domenig K, Bernathova M, Helbich TH, Baltzer PA. Diagnostic performance and reproducibility of breast acoustic radiation force impulse (ARFI) imaging in the clinical setting-BR266-SD-WEB7.

    Google Scholar 

  252. Hayashi M, Yamamoto Y, Ibusuki M, et al. Evaluation of tumor stiffness by elastography is predictive for pathologic complete response to neoadjuvant chemotherapy in patients with breast cancer. Ann Surg Oncol. 2012;19:3042–9. doi:10.1245/s10434-012-2343-1.

    Article  PubMed  Google Scholar 

  253. Falou O, Sadeghi-Naini A, Prematilake S, et al. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography. Transl Oncol. 2013;6:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Athanasiou A, Latorre-Ossa H, Criton A, et al. Feasibility of imaging and treatment monitoring of breast lesions with three-dimensional shear wave elastography. Ultraschall Med. 2015. doi:10.1055/s-0034-1398980.

    PubMed  Google Scholar 

  255. del Cura JL, Elizagaray E, Zabala R, et al. The use of unenhanced Doppler sonography in the evaluation of solid breast lesions. AJR Am J Roentgenol. 2005;184:1788–94. doi:10.2214/ajr.184.6.01841788.

    Article  PubMed  Google Scholar 

  256. Svensson WE, Pandian AJ, Hashimoto H. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity. Ultraschall Med. 2010;31:466–74. doi:10.1055/s-0028-1109478.

  257. Svensson WE, Pandian AJ, Hashimoto H. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity. Ultraschall Med. 2010;31:466–74. doi:10.1055/s-0028-1109478.

    Article  CAS  PubMed  Google Scholar 

  258. Delorme S, Zuna I, Huber S, et al. Colour Doppler sonography in breast tumours: an update. Eur Radiol. 1998;8:189–93. doi:10.1007/s003300050361.

    Article  CAS  PubMed  Google Scholar 

  259. Delorme S, Weisser G, Zuna I, et al. Quantitative characterization of color Doppler images: reproducibility, accuracy, and limitations. J Clin Ultrasound. 1995;23:537–50.

    Article  CAS  PubMed  Google Scholar 

  260. Bruening W, Uhl S, Fontanarosa J, et al. Noninvasive diagnostic tests for breast abnormalities: update of a 2006 review. Rockville: Agency for Healthcare Research and Quality; 2012.

    Google Scholar 

  261. Ozdemir A, Ozdemir H, Maral I, et al. Differential diagnosis of solid breast lesions: contribution of Doppler studies to mammography and gray scale imaging. J Ultrasound Med. 2001;20:1091–101; quiz 1102.

    CAS  PubMed  Google Scholar 

  262. Moon WK, Im JG, Noh DY, Han MC. Nonpalpable breast lesions: evaluation with power Doppler US and a microbubble contrast agent-initial experience. Radiology. 2000;217:240–6. doi:10.1148/radiology.217.1.r00oc03240.

    Article  CAS  PubMed  Google Scholar 

  263. Huber S, Helbich T, Kettenbach J, et al. Effects of a microbubble contrast agent on breast tumors: computer-assisted quantitative assessment with color Doppler US – early experience. Radiology. 1998;208:485–9. doi:10.1148/radiology.208.2.9680580.

    Article  CAS  PubMed  Google Scholar 

  264. Kedar RP, Cosgrove D, McCready VR, et al. Microbubble contrast agent for color Doppler US: effect on breast masses. Work in progress. Radiology. 1996;198:679–86. doi:10.1148/radiology.198.3.8628854.

    Article  CAS  PubMed  Google Scholar 

  265. Kumar A, Singh S, Pradhan S, et al. Doppler ultrasound scoring to predict chemotherapeutic response in advanced breast cancer. World J Surg Oncol. 2007;5:99. doi:10.1186/1477-7819-5-99.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Huber S, Medl M, Helbich T, et al. Locally advanced breast carcinoma: computer assisted semiquantitative analysis of color Doppler ultrasonography in the evaluation of tumor response to neoadjuvant chemotherapy (work in progress). J Ultrasound Med. 2000;19:601–7.

    CAS  PubMed  Google Scholar 

  267. Catalano O, Nunziata A, Lobianco R, Siani A. Real-time harmonic contrast material-specific US of focal liver lesions. Radiographics. 2005;25:333–49. doi:10.1148/rg.252045066.

    Article  PubMed  Google Scholar 

  268. Balleyguier C, Opolon P, Mathieu MC, et al. New potential and applications of contrast-enhanced ultrasound of the breast: own investigations and review of the literature. Eur J Radiol. 2009;69:14–23. doi:10.1016/j.ejrad.2008.07.037.

    Article  PubMed  Google Scholar 

  269. Wan C, Du J, Fang H, et al. Evaluation of breast lesions by contrast enhanced ultrasound: qualitative and quantitative analysis. Eur J Radiol. 2012;81:e444–50. doi:10.1016/j.ejrad.2011.03.094.

    Article  PubMed  Google Scholar 

  270. Dayton PA, Rychak JJ. Molecular ultrasound imaging using microbubble contrast agents. Front Biosci. 2007;12:5124–42.

    Article  CAS  PubMed  Google Scholar 

  271. Sorace AG, Saini R, Mahoney M, Hoyt K. Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med. 2012;31:1543–50.

    PubMed  PubMed Central  Google Scholar 

  272. Pochon S, Tardy I, Bussat P, et al. BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol. 2010;45:89–95. doi:10.1097/RLI.0b013e3181c5927c.

    Article  CAS  PubMed  Google Scholar 

  273. Anderson CR, Hu X, Zhang H, et al. Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol. 2011;46:215–24. doi:10.1097/RLI.0b013e3182034fed.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Warram JM, Sorace AG, Saini R, et al. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med. 2011;30:921–31.

    PubMed  PubMed Central  Google Scholar 

  275. Rix A, Palmowski M, Kiessling F. Molecular ultrasound imaging: clinical applications. Radiologe. 2015;55:956–63. doi:10.1007/s00117-015-0023-4.

    Article  CAS  PubMed  Google Scholar 

  276. Wan CF, Du J, Fang H, et al. Enhancement patterns and parameters of breast cancers at contrast-enhanced US: correlation with prognostic factors. Radiology. 2012;262:450–9. doi:10.1148/radiol.11110789.

    Article  PubMed  Google Scholar 

  277. Caproni N, Marchisio F, Pecchi A, et al. Contrast-enhanced ultrasound in the characterisation of breast masses: utility of quantitative analysis in comparison with MRI. Eur Radiol. 2010;20:1384–95. doi:10.1007/s00330-009-1690-1.

    Article  PubMed  Google Scholar 

  278. Willmann JK, Lutz AM, Paulmurugan R, et al. Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology. 2008;248:936–44. doi:10.1148/radiol.2483072231.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Bachawal SV, Jensen KC, Lutz AM, et al. Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model. Cancer Res. 2013;73:1689–98. doi:10.1158/0008-5472.CAN-12-3391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Bachawal SV, Jensen KC, Wilson KE, et al. Breast cancer detection by B7-H3-targeted ultrasound molecular imaging. Cancer Res. 2015;75:2501–9. doi:10.1158/0008-5472.CAN-14-3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Jung EM, Jungius K-P, Rupp N, et al. Contrast enhanced harmonic ultrasound for differentiating breast tumors – first results. Clin Hemorheol Microcirc. 2005;33:109–20.

    PubMed  Google Scholar 

  282. Hoyt K, Warram JM, Umphrey H, et al. Determination of breast cancer response to bevacizumab therapy using contrast-enhanced ultrasound and artificial neural networks. J Ultrasound Med. 2010;29:577–85.

    PubMed  PubMed Central  Google Scholar 

  283. Wang J-W, Zheng W, Liu J-B, et al. Assessment of early tumor response to cytotoxic chemotherapy with dynamic contrast-enhanced ultrasound in human breast cancer xenografts. PLoS One. 2013;8:e58274. doi:10.1371/journal.pone.0058274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. van de Bank BL, Voogt IJ, Italiaander M, et al. Ultra high spatial and temporal resolution breast imaging at 7T. NMR Biomed. 2013;26:367–75. doi:10.1002/nbm.2868.

    Article  PubMed  Google Scholar 

  285. Klomp DWJ, van de Bank BL, Raaijmakers A, et al. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer. NMR Biomed. 2011;24:1337–42. doi:10.1002/nbm.1696.

    Article  PubMed  Google Scholar 

  286. Stehouwer BL, Klomp DWJ, Korteweg MA, et al. 7 T versus 3T contrast-enhanced breast magnetic resonance imaging of invasive ductulolobular carcinoma: first clinical experience. Magn Reson Imaging. 2013;31:613–7. doi:10.1016/j.mri.2012.09.005.

    Article  PubMed  Google Scholar 

  287. Brown R, Storey P, Geppert C, et al. Breast MRI at 7 Tesla with a bilateral coil and robust fat suppression. J Magn Reson Imaging. 2014;39:540–9. doi:10.1002/jmri.24205.

    Article  PubMed  Google Scholar 

  288. Brown R, Storey P, Geppert C, et al. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla. Eur Radiol. 2013;23:2969–78. doi:10.1007/s00330-013-2972-1.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Pinker K, Bogner W, Baltzer P, et al. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T. Eur Radiol. 2014;24:913–20. doi:10.1007/s00330-013-3075-8.

    Article  CAS  PubMed  Google Scholar 

  290. Pinker K, Grabner G, Bogner W, et al. A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results. Invest Radiol. 2009;44:553–8. doi:10.1097/RLI.0b013e3181b4c127.

    Article  PubMed  Google Scholar 

  291. Bogner W, Pinker K, Zaric O, et al. Bilateral diffusion-weighted MR imaging of breast tumors with submillimeter resolution using readout-segmented echo-planar imaging at 7 T. Radiology. 2015;274:74–84. doi:10.1148/radiol.14132340.

    Article  PubMed  Google Scholar 

  292. Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging. 2013;38:511–29. doi:10.1002/jmri.24168.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Ouwerkerk R. Sodium MRI. Methods Mol Biol. 2011;711:175–201. doi:10.1007/978-1-61737-992-5_8.

    Article  CAS  PubMed  Google Scholar 

  294. Ouwerkerk R, Jacobs MA, Macura KJ, et al. Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Res Treat. 2007;106:151–60. doi:10.1007/s10549-006-9485-4.

    Article  CAS  PubMed  Google Scholar 

  295. Zaric O, Pinker K, Zbyn S, Strasser S, Robinson S, Minarikova L, Gruber S, Farr A, Singer C, Helbich TH, Trattnig S, Bogner W. Quantitative sodium MR imaging at 7 Tesla – initial results and comparison with diffusion-weighted imaging in patients with breast tumors. Radiology. 2015;280(1):39–48.

    Article  Google Scholar 

  296. Arias-Mendoza F, Payne GS, Zakian KL, et al. In vivo 31P MR spectral patterns and reproducibility in cancer patients studied in a multi-institutional trial. NMR Biomed. 2006;19:504–12. doi:10.1002/nbm.1057.

    Article  CAS  PubMed  Google Scholar 

  297. Barzilai A, Horowitz A, Geier A, Degani H. Phosphate metabolites and steroid hormone receptors of benign and malignant breast tumors. A Nuclear Magnetic Resonance study. Cancer. 1991;67:2919–25.

    Article  CAS  PubMed  Google Scholar 

  298. Wijnen JP, van der Kemp WJM, Luttje MP, et al. Quantitative 31P magnetic resonance spectroscopy of the human breast at 7 T. Magn Reson Med. 2012;68:339–48. doi:10.1002/mrm.23249.

    Article  PubMed  Google Scholar 

  299. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143:79–87. doi:10.1006/jmre.1999.1956.

    Article  CAS  PubMed  Google Scholar 

  300. Schmitt B, Trattnig S, Schlemmer H-P. CEST-imaging: a new contrast in MR-mammography by means of chemical exchange saturation transfer. Eur J Radiol. 2012;81 Suppl 1:S144–6. doi:10.1016/S0720-048X(12)70060-8.

    Article  PubMed  Google Scholar 

  301. Desmond KL, Moosvi F, Stanisz GJ. Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T. Magn Reson Med. 2014;71:1841–53. doi:10.1002/mrm.24822.

    Article  PubMed  Google Scholar 

  302. Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep. 2013;3:3045. doi:10.1038/srep03045.

    Article  PubMed  Google Scholar 

  303. Chan KWY, McMahon MT, Kato Y, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med. 2012;68:1764–73. doi:10.1002/mrm.24520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Walker-Samuel S, Ramasawmy R, Torrealdea F, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19:1067–72. doi:10.1038/nm.3252.

    Article  CAS  PubMed  Google Scholar 

  305. Nasrallah FA, Pagès G, Kuchel PW, et al. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab. 2013;33:1270–8. doi:10.1038/jcbfm.2013.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100:10158–63. doi:10.1073/pnas.1733835100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI. Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med. 2011;66:505–19. doi:10.1002/mrm.22999.

    Article  PubMed  Google Scholar 

  308. Jóhannesson H, Macholl S, Ardenkjaer-Larsen JH. Dynamic Nuclear Polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson. 2009;197:167–75. doi:10.1016/j.jmr.2008.12.016.

    Article  PubMed  CAS  Google Scholar 

  309. Golman K, Ardenkjaer-Larsen JH, Petersson JS, et al. Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A. 2003;100:10435–9. doi:10.1073/pnas.1733836100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Golman K, Zandt RI, Lerche M, et al. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res. 2006;66:10855–60. doi:10.1158/0008-5472.CAN-06-2564.

    Article  CAS  PubMed  Google Scholar 

  311. Park I, Larson PEZ, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol. 2010;12:133–44. doi:10.1093/neuonc/nop043.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Chen AP, Albers MJ, Cunningham CH, et al. Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn Reson Med. 2007;58:1099–106. doi:10.1002/mrm.21256.

    Article  CAS  PubMed  Google Scholar 

  313. Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB. Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med. 2008;49:341–4. doi:10.2967/jnumed.107.045112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Albers MJ, Bok R, Chen AP, et al. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 2008;68:8607–15. doi:10.1158/0008-5472.CAN-08-0749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Zierhut ML, Yen Y-F, Chen AP, et al. Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson. 2010;202:85–92. doi:10.1016/j.jmr.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  316. Keshari KR, Sai V, Wang ZJ, et al. Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J Nucl Med. 2013;54:922–8. doi:10.2967/jnumed.112.115402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Asghar Butt S, Søgaard LV, Ardenkjaer-Larsen JH, et al. Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-(13) C]pyruvate. Magn Reson Med. 2014;73(1):51–8. doi:10.1002/mrm.25095.

    Article  PubMed  CAS  Google Scholar 

  318. Taillefer R. Clinical applications of 99mTc-sestamibi scintimammography. Semin Nucl Med. 2005;35:100–15. doi:10.1053/j.semnuclmed.2004.11.002.

    Article  PubMed  Google Scholar 

  319. Helbich TH, Becherer A, Trattnig S, et al. Differentiation of benign and malignant breast lesions: MR imaging versus Tc-99m sestamibi scintimammography. Radiology. 1997;202:421–9. doi:10.1148/radiology.202.2.9015068.

    Article  CAS  PubMed  Google Scholar 

  320. Scopinaro F, Schillaci O, Ussof W, et al. A three center study on the diagnostic accuracy of 99mTc-MIBI scintimammography. Anticancer Res. 1997;17:1631–4.

    CAS  PubMed  Google Scholar 

  321. Arslan N, Oztürk E, Ilgan S, et al. 99Tcm-MIBI scintimammography in the evaluation of breast lesions and axillary involvement: a comparison with mammography and histopathological diagnosis. Nucl Med Commun. 1999;20:317–25.

    Article  CAS  PubMed  Google Scholar 

  322. Maffioli L, Agresti R, Chiti A, et al. Prone scintimammography in patients with non-palpable breast lesions. Anticancer Res. 1996;16:1269–73.

    CAS  PubMed  Google Scholar 

  323. Brem RF, Rapelyea JA, Zisman G, et al. Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology. 2005;237:274–80. doi:10.1148/radiol.2371040758.

    Article  PubMed  Google Scholar 

  324. Brem RF, Shahan C, Rapleyea JA, et al. Detection of occult foci of breast cancer using breast-specific gamma imaging in women with one mammographic or clinically suspicious breast lesion. Acad Radiol. 2010;17:735–43. doi:10.1016/j.acra.2010.01.017.

    Article  PubMed  Google Scholar 

  325. Coover LR, Caravaglia G, Kuhn P. Scintimammography with dedicated breast camera detects and localizes occult carcinoma. J Nucl Med. 2004;45:553–8.

    PubMed  Google Scholar 

  326. Rhodes DJ, O’Connor MK, Phillips SW, et al. Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clin Proc. 2005;80:24–30. doi:10.1016/S0025-6196(11)62953-4.

    Article  PubMed  Google Scholar 

  327. Brem RF, Floerke AC, Rapelyea JA, et al. Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247:651–7. doi:10.1148/radiol.2473061678.

    Article  PubMed  Google Scholar 

  328. Brem RF, Fishman M, Rapelyea JA. Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: a comparative study. Acad Radiol. 2007;14:945–50. doi:10.1016/j.acra.2007.04.004.

    Article  PubMed  Google Scholar 

  329. Sun Y, Wei W, Yang H-W, Liu J-L. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40:450–63. doi:10.1007/s00259-012-2279-5.

    Article  PubMed  Google Scholar 

  330. Kalles V, Zografos GC, Provatopoulou X, et al. The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer. 2013;20:123–30. doi:10.1007/s12282-012-0433-3.

    Article  PubMed  Google Scholar 

  331. Avril N, Adler LP. F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin North Am. 2007;45:645–57. doi:10.1016/j.rcl.2007.05.004, vi.

    Article  PubMed  Google Scholar 

  332. Quon A, Gambhir SS. FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol. 2005;23:1664–73. doi:10.1200/JCO.2005.11.024.

    Article  CAS  PubMed  Google Scholar 

  333. Avril N, Rosé CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18:3495–502.

    CAS  PubMed  Google Scholar 

  334. Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics. 2007;27 Suppl 1:S215–29. doi:10.1148/rg.27si075517.

    Article  PubMed  Google Scholar 

  335. Samson DJ, Flamm CR, Pisano ED, Aronson N. Should FDG PET be used to decide whether a patient with an abnormal mammogram or breast finding at physical examination should undergo biopsy? Acad Radiol. 2002;9:773–83.

    Article  PubMed  Google Scholar 

  336. Magometschnigg HF, Baltzer PA, Fueger B, et al. Diagnostic accuracy of (18)F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T. Eur J Nucl Med Mol Imaging. 2015;42:1656–65. doi:10.1007/s00259-015-3099-1.

    Article  CAS  PubMed  Google Scholar 

  337. Kumar R, Lal N, Alavi A. 18F-FDG PET in detecting primary breast cancer. J Nucl Med. 2007;48:1751. doi:10.2967/jnumed.107.043265; author reply 1752.

    Article  PubMed  Google Scholar 

  338. Tatsumi M, Cohade C, Mourtzikos KA, et al. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging. 2006;33:254–62. doi:10.1007/s00259-005-1835-7.

    Article  PubMed  Google Scholar 

  339. Escalona S, Blasco JA, Reza MM, et al. A systematic review of FDG-PET in breast cancer. Med Oncol. 2010;27:114–29. doi:10.1007/s12032-009-9182-3.

    Article  CAS  PubMed  Google Scholar 

  340. Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266:388–405. doi:10.1148/radiol.12110853.

    Article  PubMed  Google Scholar 

  341. Smith-Jones PM, Solit D, Afroze F, et al. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med. 2006;47:793–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Pinker K, Bickel H, Magometschnigg H, et al. Molecular imaging of breast tumours with PET-MRI – proof of concept. In: ISMRM 2011 (Eds). European Journal of Cancer, Montreal.

    Google Scholar 

  343. Fueger BJ, Weber WA, Quon A, et al. Performance of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography and integrated PET/CT in restaged breast cancer patients. Mol Imaging Biol. 2005;7:369–76. doi:10.1007/s11307-005-0013-4.

    Article  PubMed  Google Scholar 

  344. Radan L, Ben-Haim S, Bar-Shalom R, et al. The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer. 2006;107:2545–51. doi:10.1002/cncr.22292.

    Article  PubMed  Google Scholar 

  345. Kalinyak JE, Berg WA, Schilling K, et al. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging. 2014;41:260–75. doi:10.1007/s00259-013-2553-1.

    Article  PubMed  Google Scholar 

  346. Moy L, Ponzo F, Noz ME, et al. Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med. 2007;48:528–37.

    Article  PubMed  Google Scholar 

  347. Domingues RC, Carneiro MP, Lopes FCR, et al. Whole-body MRI and FDG PET fused images for evaluation of patients with cancer. AJR Am J Roentgenol. 2009;192:1012–20. doi:10.2214/AJR.08.1498.

    Article  PubMed  Google Scholar 

  348. Cheng J, Lei L, Xu J, et al. 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med. 2013;54:333–40. doi:10.2967/jnumed.112.111963.

    Article  CAS  PubMed  Google Scholar 

  349. Blankenberg FG. In vivo detection of apoptosis. J Nucl Med. 2008;49 Suppl 2:81S–95. doi:10.2967/jnumed.107.045898.

    Article  CAS  PubMed  Google Scholar 

  350. Whisenant JG, Peterson TE, Fluckiger JU, et al. Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO MicroPET studies in a murine model of HER2+ breast cancer. Mol Imaging Biol. 2013;15:87–96. doi:10.1007/s11307-012-0564-0.

    Article  PubMed  PubMed Central  Google Scholar 

  351. Sharma R, Tripathi M, Panwar P, et al. 99mTc-methionine scintimammography in the evaluation of breast cancer. Nucl Med Commun. 2009;30:338–42. doi:10.1097/MNM.0b013e32832999dc.

    Article  PubMed  Google Scholar 

  352. Lindholm P, Lapela M, Någren K, et al. Preliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Commun. 2009;30:30–6.

    Article  CAS  PubMed  Google Scholar 

  353. Yang Z, Sun Y, Zhang Y, et al. Can fluorine-18 fluoroestradiol positron emission tomography-computed tomography demonstrate the heterogeneity of breast cancer in vivo? Clin Breast Cancer. 2013;13:359–63. doi:10.1016/j.clbc.2013.02.012.

    Article  CAS  PubMed  Google Scholar 

  354. van Kruchten M, de Vries EGE, Brown M, et al. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013;14:e465–75. doi:10.1016/S1470-2045(13)70292-4.

    Article  PubMed  CAS  Google Scholar 

  355. Smith-Jones PM, Solit DB, Akhurst T, et al. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol. 2004;22:701–6. doi:10.1038/nbt968.

    Article  CAS  PubMed  Google Scholar 

  356. Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med. 2013;54:1869–75. doi:10.2967/jnumed.112.118612.

    Article  CAS  PubMed  Google Scholar 

  357. Mortimer JE, Bading JR, Colcher DM, et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J Nucl Med. 2014;55:23–9. doi:10.2967/jnumed.113.122630.

    Article  CAS  PubMed  Google Scholar 

  358. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8:215. doi:10.1186/gb-2007-8-5-215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Bach-Gansmo T, Danielsson R, Saracco A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med. 2006;47:1434–9.

    CAS  PubMed  Google Scholar 

  360. Haubner R, Wester HJ, Weber WA, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61:1781–5.

    CAS  PubMed  Google Scholar 

  361. Gaertner FC, Kessler H, Wester H-J, et al. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S126–38. doi:10.1007/s00259-011-2028-1.

    Article  PubMed  CAS  Google Scholar 

  362. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. 2001;220:13–30. doi:10.1148/radiology.220.1.r01jl3113.

    Article  CAS  PubMed  Google Scholar 

  363. Davis PL, McCarty KS. Sensitivity of enhanced MRI for the detection of breast cancer: new, multicentric, residual, and recurrent. Eur Radiol. 1997;7 Suppl 5:289–98.

    Article  PubMed  Google Scholar 

  364. Heywang-Köbrunner SH, Viehweg P, Heinig A, Küchler C. Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol. 1997;24:94–108.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Helbich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marino, M.A., Pinker, K., Baltzer, P., Helbich, T.H. (2017). Use Case III: Imaging Biomarkers in Breast Tumours. Development and Clinical Integration. In: Martí-Bonmatí, L., Alberich-Bayarri, A. (eds) Imaging Biomarkers. Springer, Cham. https://doi.org/10.1007/978-3-319-43504-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43504-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43502-2

  • Online ISBN: 978-3-319-43504-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics