Skip to main content

Advertisement

Log in

Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

This study was performed to assess the sensitivity and specificity for malignant and benign mass lesions of a diagnostic approach combining DWI with T2-weighted images (unenhanced MR mammography, ueMRM) and compare the results with contrast-enhanced MR mammography (ceMRM).

Materials and methods

Consecutive patients undergoing histopathological verification of mass lesions after MR mammography without prior breast interventions (contrast-enhanced T1-weighted, T2-weighted and DWI sequences) were eligible for this retrospective investigation. Two blinded observers first rated ueMRM and then ceMRM according to the BIRADS scale. Lesion size, ADC values and T2-weighted TSE descriptors were assessed.

Results

This study examined 81 lesions (27 benign, 54 malignant). Sensitivity of ueMRM was 93% (observer 1) and 86% (observer 2), respectively. Sensitivity of ceMRM was 96.5% (observer 1) and 98.3% (observer 2). Specificity was 85.2% (ueMRM) and 92.6% (ceMRM) for both observers. The differences between both methods and observers were not significant (P ≥ 0.09). Lesion size measurements did not differ significantly among all sequences analyzed. Tumor visibility was worse using ueMRM for both benign (P < 0.001) and malignant lesions (P = 0.004).

Conclusion

Sensitivity and specificity of ueMRM in mass lesions equal that of ceMRM. However, a reduced lesion visibility in ueMRM may lead to more false-negative findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378

    Article  PubMed  Google Scholar 

  2. Kuhl CK (2007) Current status of breast MR imaging. Part 2. Clinical applications. Radiology 244:672–691

    Article  PubMed  Google Scholar 

  3. Kuhl CK, Schrading S, Weigel S et al (2005) [The “EVA” Trial: Evaluation of the efficacy of diagnostic methods (mammography, ultrasound, MRI) in the secondary and tertiary prevention of familial breast cancer. Preliminary results after the first half of the study period]. Rofo 177:818–827

    CAS  PubMed  Google Scholar 

  4. Leach MO, Boggis CR, Dixon AK et al (2005) Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365:1769–1778

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal R, Brunelli SM, Williams K et al (2008) Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant doi:10.1093/ndt/gfn593

    PubMed  Google Scholar 

  6. Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167

    Article  PubMed  Google Scholar 

  7. Baltzer PA, Renz DM, Herrmann KH et al (2009) Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur Radiol doi:10.1007/s00330–009–1326–5

    Google Scholar 

  8. Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  9. Hatakenaka M, Soeda H, Yabuuchi H et al (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29

    Article  PubMed  Google Scholar 

  10. Kinoshita T, Yashiro N, Ihara N et al (2002) Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 26:1042–1046

    Article  PubMed  Google Scholar 

  11. Kuroki Y, Nasu K, Kuroki S et al (2004) Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 3:79–85

    Article  PubMed  Google Scholar 

  12. Kuroki-Suzuki S, Kuroki Y, Nasu K et al (2007) Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 6:21–27

    Article  PubMed  Google Scholar 

  13. Luo JD, Liu YY, Zhang XL et al (2007) [Application of diffusion weighted magnetic resonance imaging to differential diagnosis of breast diseases]. Ai zheng = Aizheng = Chinese Journal of Cancer 26:168–171

    PubMed  Google Scholar 

  14. Marini C, Iacconi C, Giannelli M et al (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655

    Article  CAS  PubMed  Google Scholar 

  15. Matsuoka A, Minato M, Harada M et al (2008) Comparison of 3.0-and 1.5-tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med 26:15–20

    Article  PubMed  Google Scholar 

  16. Park MJ, Cha ES, Kang BJ et al (2007) The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Korean J Radiol 8:390–396

    Article  PubMed  Google Scholar 

  17. Rubesova E, Grell AS, De Maertelaer V et al (2006) Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 24:319–324

    Article  PubMed  Google Scholar 

  18. Wenkel E, Geppert C, Schulz-Wendtland R et al (2007) Diffusion weighted imaging in breast MRI: comparison of two different pulse sequences. Acad Radiol 14:1077–1083

    Article  PubMed  Google Scholar 

  19. Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649

    Article  PubMed  Google Scholar 

  20. Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42

    Article  PubMed  Google Scholar 

  21. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed  Google Scholar 

  22. Kuroki Y, Nasu K (2008) Advances in breast MRI: diffusion-weighted imaging of the breast. Breast cancer (Tokyo, Japan) 15:212–217

    Google Scholar 

  23. Ikeda DM, Hylton NM, Kuhl CK et al (2003) MRI breast imaging reporting and data system atlas, 1st edn. American College of Radiology, Reston

    Google Scholar 

  24. Malich A, Fischer DR, Wurdinger S et al (2005) Potential MRI interpretation model: differentiation of benign from malignant breast masses. AJR 185:964–970

    Article  PubMed  Google Scholar 

  25. Altman DG, Bland JM (1994) Diagnostic tests. 1: Sensitivity and specificity. BMJ 308:1552

    CAS  PubMed  Google Scholar 

  26. Altmann DG (1991) Practical statistics for medical research. Chapman & Hall, New York

    Google Scholar 

  27. Liberman L, Morris EA, Lee MJ et al (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR 179:171–178

    PubMed  Google Scholar 

  28. Tozaki M, Fukuda K (2006) High-spatial-resolution MRI of non-masslike breast lesions: interpretation model based on BI-RADS MRI descriptors. AJR 187:330–337

    Article  PubMed  Google Scholar 

  29. Chen G, Jespersen SN, Pedersen M et al (2005) Intravenous administration of Gd-DTPA prior to DWI does not affect the apparent diffusion constant. Magn Reson Imaging 23:685–689

    Article  CAS  PubMed  Google Scholar 

  30. Fitzek C, Mentzel HJ, Fitzek S et al (2003) Echoplanar diffusion-weighted MRI with intravenous gadolinium-DTPA. Neuroradiology 45:592–597

    Article  CAS  PubMed  Google Scholar 

  31. Yamada K, Kubota H, Kizu O et al (2002) Effect of intravenous gadolinium-DTPA on diffusion-weighted images: evaluation of normal brain and infarcts. Stroke 33:1799–1802

    Article  PubMed  Google Scholar 

  32. Yuen S, Yamada K, Goto M et al (2009) Microperfusion-induced elevation of ADC is suppressed after contrast in breast carcinoma. J Magn Reson Imaging 29:1080–1084

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal A. T. Baltzer.

Electronic supplementary material

Below is the link to the Electronic supplementary material

Supplemental material 1

(DOC 32.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltzer, P.A.T., Benndorf, M., Dietzel, M. et al. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 20, 1101–1110 (2010). https://doi.org/10.1007/s00330-009-1654-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1654-5

Keywords

Navigation