Skip to main content

Advertisement

Log in

Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer

  • BREAST
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the accuracy of the apparent diffusion coefficient (ADC) provided by diffusion-weighted imaging (DWI) in predicting the response to neoadjuvant chemotherapy (NACT) at baseline in patients according to their breast tumour phenotypes.

Materials & methods

This retrospective study was approved by our institutional review board. One hundred eighteen consecutive women with locally advanced breast cancer who had undergone NACT followed by breast surgery were included. DWI was performed at 1.5 T less than 2 weeks before NACT. We studied the correlation between pretreatment ADC and response in pathology after surgery according to immunohistochemical features and intrinsic subtypes (luminal A, luminal B, HER2-enriched, and triple-negative tumours).

Results

After surgery, the pathologist recognized 24 complete responders (CRps) and 94 non-complete responders (NCRps). No difference was identified between the pretreatment ADCs of the CRp and NCRp patients. There were differences in pretreatment ADCs among the luminal A (1.001 ± 0.143 × 10−3 mm2/s), luminal B (0.983 ± 0.150 × 10−3 mm2/s), HER2-enriched (1.132 ± 0.216 × 10−3 mm2/s), and triple-negative (1.168 ± 0.245 × 10−3 mm2/s; P = 0.0003) tumour subtypes. In triple-negative tumours, the pretreatment ADC was higher in NCRp (1.060 ± 0.143 × 10−3 mm2/s) than in CRp patients (1.227 ± 0.271 × 10−3 mm2/s; P = 0.047).

Conclusion

Pretreatment ADC can predict the response of breast cancer to NACT if tumour subtypes are considered.

Key Points

Apparent diffusion coefficient helps clinicians to assess patients with breast cancer.

Pretreatment ADC is related to tumour grade and hormone receptor status.

Pretreatment ADC is lower in luminal A and B than in triple-negative tumours.

Pretreatment ADC is higher in complete than in non-complete responders to neoadjuvant chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davidson NE, Morrow M (2005) Sometimes a great notion—an assessment of neoadjuvant systemic therapy for breast cancer. J Natl Cancer Inst 97:159–161

    Article  PubMed  Google Scholar 

  2. Chia S, Swain SM, Byrd DR, Mankoff DA (2008) Locally advanced and inflammatory breast cancer. J Clin Oncol 26:786–790

    Article  PubMed  Google Scholar 

  3. Rastogi P, Anderson SJ, Bear HD et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26:778–785

    Article  PubMed  Google Scholar 

  4. Fisher ER, Wang J, Bryant J, Fisher B, Mamounas E, Wolmark N (2002) Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and Bowel (NSABP) protocol B-18. Cancer 95:681–695

    Article  PubMed  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  6. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747

    Article  PubMed  CAS  Google Scholar 

  7. Huober J, von Minckwitz G, Denkert C et al (2010) Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat 124:133–140

    Article  PubMed  CAS  Google Scholar 

  8. Martincich L, Montemurro F, Cirillo S et al (2003) Role of magnetic resonance imaging in the prediction of tumor response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy. Radiol Med 106:51–58

    PubMed  Google Scholar 

  9. Martincich L, Montemurro F, De Rosa G et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83:67–76

    Article  PubMed  Google Scholar 

  10. Partridge SC, Gibbs JE, Lu Y et al (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 184:1774–1781

    Article  PubMed  Google Scholar 

  11. Yu HJ, Chen JH, Mehta RS, Nalcioglu O, Su MY (2007) MRI measurements of tumor size and pharmacokinetic parameters as early predictors of response in breast cancer patients undergoing neoadjuvant anthracycline chemotherapy. J Magn Reson Imaging 26:615–623

    Article  PubMed  Google Scholar 

  12. Loo CE, Teertstra HJ, Rodenhuis S et al (2008) Dynamic contrast-enhanced MRI for prediction of breast cancer response to neoadjuvant chemotherapy: initial results. AJR Am J Roentgenol 191:1331–1338

    Article  PubMed  Google Scholar 

  13. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    PubMed  CAS  Google Scholar 

  14. Park SH, Moon WK, Cho N et al (2012) Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 22:18–25

    Article  PubMed  Google Scholar 

  15. Woodhams R, Kakita S, Hata H et al (2010) Identification of residual breast carcinoma following neoadjuvant chemotherapy: diffusion-weighted imaging–comparison with contrast-enhanced MR imaging and pathologic findings. Radiology 254:357–366

    Article  PubMed  Google Scholar 

  16. Martincich L, Deantoni V, Bertotto I et al (2012) Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol. doi:10.1007/s00330-012-2403-8

    PubMed  Google Scholar 

  17. Bogner W, Gruber S, Pinker K et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351

    Article  PubMed  Google Scholar 

  18. Pereira FP, Martins G, Figueiredo E et al (2009) Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values. AJR Am J Roentgenol 193:1030–1035

    Article  PubMed  Google Scholar 

  19. Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351

    Article  PubMed  Google Scholar 

  20. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  21. Bloom HJ, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11:359–377

    Article  PubMed  CAS  Google Scholar 

  22. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  PubMed  CAS  Google Scholar 

  23. Flaman JM, Frebourg T, Moreau V et al (1995) A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci U S A 92:3963–3967

    Article  PubMed  CAS  Google Scholar 

  24. Waridel F, Estreicher A, Bron L et al (1997) Field cancerisation and polyclonal p53 mutation in the upper aero-digestive tract. Oncogene 14:163–169

    Article  PubMed  CAS  Google Scholar 

  25. Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  PubMed  CAS  Google Scholar 

  26. Hugh J, Hanson J, Cheang MC et al (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 27:1168–1176

    Article  PubMed  CAS  Google Scholar 

  27. Penault-Llorca F, Andre F, Sagan C et al (2009) Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27:2809–2815

    Article  PubMed  CAS  Google Scholar 

  28. Chevallier B, Roche H, Olivier JP, Chollet P, Hurteloup P (1993) Inflammatory breast cancer. Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am J Clin Oncol 16:223–228

    Article  PubMed  CAS  Google Scholar 

  29. Sataloff DM, Mason BA, Prestipino AJ, Seinige UL, Lieber CP, Baloch Z (1995) Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J Am Coll Surg 180:297–306

    PubMed  CAS  Google Scholar 

  30. Curigliano G, Goldhirsch A (2011) The triple-negative subtype: new ideas for the poorest prognosis breast cancer. J Natl Cancer Inst Monogr 2011:108–110

    Article  PubMed  Google Scholar 

  31. Iacconi C, Giannelli M, Marini C et al (2010) The role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: a preliminary study. Eur Radiol 20:303–308

    Article  PubMed  Google Scholar 

  32. Park SH, Moon WK, Cho N et al (2010) Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology 257:56–63

    Article  PubMed  Google Scholar 

  33. Li XR, Cheng LQ, Liu M et al (2012) DW-MRI ADC values can predict treatment response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Med Oncol 29:425–431

    Article  PubMed  CAS  Google Scholar 

  34. Fangberget A, Nilsen LB, Hole KH et al (2011) Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging. Eur Radiol 21:1188–1199

    Article  PubMed  CAS  Google Scholar 

  35. Nilsen L, Fangberget A, Geier O, Olsen DR, Seierstad T (2010) Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Acta Oncol 49:354–360

    Article  PubMed  Google Scholar 

  36. Prevos R, Smidt ML, Tjan-Heijnen VC et al (2012) Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review. Eur Radiol 22:2607–2616

    Article  PubMed  CAS  Google Scholar 

  37. Park S, Koo JS, Kim MS et al (2012) Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 21:50–57

    Article  PubMed  Google Scholar 

  38. Carey LA, Dees EC, Sawyer L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334

    Article  PubMed  CAS  Google Scholar 

  39. Wang S, Yang H, Tong F et al (2009) Response to neoadjuvant therapy and disease free survival in patients with triple-negative breast cancer. Gan To Kagaku Ryoho 36:255–258

    PubMed  Google Scholar 

  40. Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    Article  PubMed  CAS  Google Scholar 

  41. Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  42. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC (2010) A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res 12:R85

    Article  PubMed  Google Scholar 

  43. Kuo WH, Chang YY, Lai LC et al (2012) Molecular characteristics and metastasis predictor genes of triple-negative breast cancer: a clinical study of triple-negative breast carcinomas. PLoS One 7:e45831

    Article  PubMed  CAS  Google Scholar 

  44. Wenkel E, Geppert C, Schulz-Wendtland R et al (2007) Diffusion weighted imaging in breast MRI: comparison of two different pulse sequences. Acad Radiol 14:1077–1083

    Article  PubMed  Google Scholar 

  45. Woodhams R, Ramadan S, Stanwell P et al (2011) Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics 31:1059–1084

    Article  PubMed  Google Scholar 

  46. Razek AA, Gaballa G, Denewer A, Nada N (2010) Invasive ductal carcinoma: correlation of apparent diffusion coefficient value with pathological prognostic factors. NMR Biomed 23:619–623

    Article  PubMed  Google Scholar 

  47. Sasaki Y, Tsuda H (2009) Clinicopathological characteristics of triple-negative breast cancers. Breast Cancer 16:254–259

    Article  PubMed  Google Scholar 

  48. Tokunaga E, Okada S, Yamashita N et al (2012) High incidence and frequency of LOH are associated with aggressive features of high-grade HER2 and triple-negative breast cancers. Breast Cancer 19:161–169

    Article  PubMed  Google Scholar 

  49. Goble S, Bear HD (2003) Emerging role of taxanes in adjuvant and neoadjuvant therapy for breast cancer: the potential and the questions. Surg Clin N Am 83:943–971

    Article  PubMed  Google Scholar 

  50. Von Minckwitz G, Loibl S, Untch M (2012) What is the current standard of care for anti-HER2 neoadjuvant therapy in breast cancer? Oncology (Williston Park) 26:20–26

    Google Scholar 

  51. Caudle AS, Gonzalez-Angulo AM, Hunt KK et al (2011) Impact of progression during neoadjuvant chemotherapy on surgical management of breast cancer. Ann Surg Oncol 18:932–938

    Article  PubMed  Google Scholar 

  52. Pickles MD, Gibbs P, Lowry M, Turnbull LW (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  53. Sharma U, Danishad KK, Seenu V, Jagannathan NR (2009) Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 22:104–113

    Article  PubMed  Google Scholar 

  54. de Bazelaire C, Calmon R, Thomassin I et al (2011) Accuracy of perfusion MRI with high spatial but low temporal resolution to assess invasive breast cancer response to neoadjuvant chemotherapy: a retrospective study. BMC Cancer 11:361

    Article  PubMed  Google Scholar 

  55. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed  Google Scholar 

  56. Ah-See ML, Makris A, Taylor NJ et al (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14:6580–6589

    Article  PubMed  CAS  Google Scholar 

  57. Partridge SC, Murthy RS, Ziadloo A, White SW, Allison KH, Lehman CD (2010) Diffusion tensor magnetic resonance imaging of the normal breast. Magn Reson Imaging 28:320–328

    Article  PubMed  Google Scholar 

  58. Partridge SC, Ziadloo A, Murthy R et al (2010) Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging 31:339–347

    Article  PubMed  Google Scholar 

  59. Baltzer PA, Schafer A, Dietzel M et al (2011) Diffusion tensor magnetic resonance imaging of the breast: a pilot study. Eur Radiol 21:1–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric de Bazelaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, R., Thomassin, I., Chapellier, M. et al. Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 23, 2420–2431 (2013). https://doi.org/10.1007/s00330-013-2850-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2850-x

Keywords

Navigation