Skip to main content

Advertisement

Log in

Biomarkers in abdominal imaging

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Imaging biomarkers are parameters measurable with imaging methods used to detect, stage or grade disease or assess the response to treatment. Compared with biochemical or histological markers, imaging biomarkers have the advantage of remaining non-invasive and being spatially and temporally resolved. Imaging biomarkers are used in multiple abdominal diseases, including cancer. Anatomical imaging biomarkers such as the RECIST criteria are often insufficient for the early assessment of treatment response. Molecular imaging biomarkers may be used when targeting a receptor or enzyme overexpressed in a given disease. Their use remains limited because of their narrow target specificity. Functional biomarkers are increasingly used with positron-emission tomography, perfusion MRI, diffusion-weighted MRI and MR spectroscopy. They have an important potential to help in selecting the patients and assessing the response to new treatments. However, important efforts of validation and standardization remain to be done before the wide use of imaging biomarkers in abdominal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  2. Smith JJ, Sorensen AG, Thrall JH (2003) Biomarkers in imaging: realizing radiology’s future. Radiology 227:633–638

    Article  PubMed  Google Scholar 

  3. Rudin M (2007) Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol 17:2441–2457

    Article  PubMed  Google Scholar 

  4. Stephen RM, Gillies RJ (2007) Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res 24:1172–1185

    Article  PubMed  CAS  Google Scholar 

  5. Blasberg RG (2007) Imaging update: new windows, new views. Clin Cancer Res 13:3444–3448

    Article  PubMed  Google Scholar 

  6. Huwart L, Sempoux C, Vicaut E, et al. (2008) Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 135:32–40

    Article  PubMed  Google Scholar 

  7. Workman P, Aboagye EO, Chung YL, et al. (2006) Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst 98:580–598

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  9. Garrett MD, Workman P (1999) Discovering novel chemotherapeutic drugs for the third millennium. Eur J Cancer 35:2010–2030

    Article  PubMed  CAS  Google Scholar 

  10. Newell DR (2003) The drug development process: from target discovery to the clinic. Clin Med 3:23–26

    Google Scholar 

  11. Pepe MS, Etzioni R, Feng Z, et al. (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93:1054–1061

    Article  PubMed  CAS  Google Scholar 

  12. Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1741

    Article  PubMed  CAS  Google Scholar 

  13. Cunningham D, Humblet Y, Siena S, et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  14. Zhu AX (2008) Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 112:250–259

    Article  PubMed  CAS  Google Scholar 

  15. Phillips KA, Van Bebber S, Issa AM (2006) Diagnostics and biomarker development: priming the pipeline. Nat Rev Drug Discov 5:463–469

    Article  PubMed  CAS  Google Scholar 

  16. Altar CA (2008) The Biomarkers Consortium: on the critical path of drug discovery. Clin Pharmacol Ther 83:361–364

    Article  PubMed  CAS  Google Scholar 

  17. Richter WS (2006) Imaging biomarkers as surrogate endpoints for drug development. Eur J Nucl Med Mol Imaging 33(suppl 1):6–10

    Article  PubMed  Google Scholar 

  18. Kola I, Hazuda D (2005) Innovation and greater probability of success in drug discovery and development—from target to biomarkers. Curr Opin Biotechnol 16:644–646

    Article  PubMed  CAS  Google Scholar 

  19. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  20. Llovet JM, Di Bisceglie AM, Bruix J, et al. (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100:698–711

    Article  PubMed  Google Scholar 

  21. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 47:793–796

    PubMed  CAS  Google Scholar 

  22. Solit DB, Ivy SP, Kopil C, et al. (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13:1775–1782

    Article  PubMed  CAS  Google Scholar 

  23. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  Google Scholar 

  24. Kwekkeboom DJ, Bakker WH, Kam BL, et al. (2003) Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA(0),Tyr3]octreotate. Eur J Nucl Med Mol Imaging 30:417–422

    PubMed  CAS  Google Scholar 

  25. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  PubMed  CAS  Google Scholar 

  26. Herve J, Cunha AS, Liu B, et al. (2008) Internal radiotherapy of liver cancer with rat hepatocarcinoma-intestine-pancreas gene as a liver tumor-specific promoter. Hum Gene Ther 19:915–926

    Article  PubMed  CAS  Google Scholar 

  27. Pang RW, Poon RT (2007) From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 72(suppl 1):30–44

    Article  PubMed  CAS  Google Scholar 

  28. Hopfner M, Schuppan D, Scherubl H (2008) Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J Gastroenterol 14:1–14

    Article  PubMed  CAS  Google Scholar 

  29. Filmus J, Selleck SB (2001) Glypicans: proteoglycans with a surprise. J Clin Invest 108:497–501

    PubMed  CAS  Google Scholar 

  30. Wang XY, Degos F, Dubois S, et al. (2006) Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol 37:1435–1441

    Article  PubMed  CAS  Google Scholar 

  31. Llovet JM, Chen Y, Wurmbach E, et al. (2006) A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131:1758–1767

    Article  PubMed  CAS  Google Scholar 

  32. Baumhoer D, Tornillo L, Stadlmann S, et al. (2008) Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol 129:899–906

    Article  PubMed  Google Scholar 

  33. Newell DR (2005) How to develop a successful cancer drug-molecules to medicines or targets to treatments? Eur J Cancer 41:676–682

    Article  PubMed  CAS  Google Scholar 

  34. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  35. Kelloff GJ, Krohn KA, Larson SM, et al. (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985

    Article  PubMed  CAS  Google Scholar 

  36. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26:4012–4021

    Article  PubMed  Google Scholar 

  37. Lucignani G (2008) PET-MRI synergy in molecular, functional and anatomical cancer imaging. Eur J Nucl Med Mol Imaging 35:1550–1553

    Article  PubMed  Google Scholar 

  38. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606

    Article  PubMed  Google Scholar 

  39. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  PubMed  CAS  Google Scholar 

  40. Leach MO, Brindle KM, Evelhoch JL, et al. (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  41. Tofts PS, Brix G, Buckley DL, et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  42. Van Beers BE, Materne R, Annet L, et al. (2003) Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med 49:692–699

    Article  PubMed  Google Scholar 

  43. Zechmann CM, Woenne EC, Brix G, et al. (2007) Impact of stroma on the growth, microcirculation, and metabolism of experimental prostate tumors. Neoplasia 9:57–67

    Article  PubMed  CAS  Google Scholar 

  44. Morgan B, Thomas AL, Drevs J, et al. (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

  45. Lee KC, Sud S, Meyer CR, et al. (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67:3524–3528

    Article  PubMed  CAS  Google Scholar 

  46. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  47. Taouli B, Vilgrain V, Dumont E, et al. (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  48. Kwee TC, Takahara T, Ochiai R, Nievelstein RA, Luijten PR (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952

    Article  PubMed  Google Scholar 

  49. Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552

    Article  PubMed  CAS  Google Scholar 

  50. Zerhouni EA, Sanders CA, von Eschenbach AC (2007) The Biomarkers Consortium: public and private sectors working in partnership to improve the public health. Oncologist 12:250–252

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard E. Van Beers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Beers, B.E., Vilgrain, V. Biomarkers in abdominal imaging. Abdom Imaging 34, 663–667 (2009). https://doi.org/10.1007/s00261-008-9480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-008-9480-9

Keywords

Navigation