Skip to main content

Biocrusts in the Context of Global Change

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Abstract

A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD (2010) A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agric For Meteorol 150:497–498

    Article  Google Scholar 

  • Aronson EL, McNulty SG (2009) Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agric For Meteorol 149:1791–1799

    Article  Google Scholar 

  • Ault TR, Cole JE, Overpeck JT, Pederson GT, Meko DM (2014) Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J Clim 27:7529–7549

    Article  Google Scholar 

  • Austin AT, Sala OE, Jackson RB (2006) Inhibition of nitrification alters carbon turnover in the Patagonian steppe. Ecosystems 9:1257–1265

    Article  CAS  Google Scholar 

  • Ayres A, Wall DH, Simmons BL, Field CB, Milchunas DG, Morgan JA, Roy J (2008) Belowground nematode herbivores are resistant to elevated atmospheric CO2 concentrations in grassland ecosystems. Soil Biol Biochem 40:978–985

    Article  CAS  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Barker DH, Stark LR, Zimpfer JF, Mcletchie ND, Smith SD (2005) Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant Cell Environ 28:939–947

    Article  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crust from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Belnap J, Phillips SL, Miller ME (2004) Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–316

    Article  PubMed  Google Scholar 

  • Belnap J, Walker BJ, Munson SM, Gill RA (2014) Controls on sediment production in two U.S. deserts. Aeolian Res 14:15–24

    Article  Google Scholar 

  • Berdugo M, Soliveres S, Maestre FT (2014) Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17:1242–1256

    Article  CAS  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave desert soil exposed to elevated CO2. Soil Biol Biochem 34:1777–1784

    Article  CAS  Google Scholar 

  • Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565

    Article  PubMed  Google Scholar 

  • Blett TF, Lynch JA, Pardo LH, Huber C, Haeuber R, Pouyat R (2014) FOCUS: a pilot study for national-scale critical loads development in the United States. Environ Sci Policy 38:225–236

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  • Botting RS, Fredeen AL (2006) Net ecosystem CO2 exchange for moss and lichen dominated forest floors of old-growth sub-boreal spruce forests in central British Columbia, Canada. For Ecol Manage 235:240–251

    Article  Google Scholar 

  • Bowker MA, Belnap J, Rosentreter R, Graham B (2004) Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Appl Soil Ecol 26:41–52

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity–ecosystem function relationship in soils. Soil Biol Biochem 42:405–417

    Article  CAS  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique roles of various biological soil crust organisms in Spain. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Branquinho C, Pinho P, Dias T, Cruz C, Máguas C, Martins-Loução MA (2010) Lichen transplants at our service for measuring atmospheric NH3 deposition. Bibliotheca Lichenologica 105:103–112

    Google Scholar 

  • Brinda JC, Fernando C, Stark LR (2011) Ecology of bryophytes in Mojave Desert biological soil crusts: effects of elevated CO2 on sex expression, stress tolerance, and productivity in the moss Syntrichia caninervis Mitt. In: Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 169–191

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Buitink J, Hoekstra F, Leprince O (2002) Biochemistry and biophysics of tolerance systems. In: Desiccation and survival in plants: drying without dying. CAB International, Wallingford, UK, pp 293–318

    Google Scholar 

  • Cable JM, Huxman TE (2004) Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141:317–324

    Article  PubMed  Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979

    Article  Google Scholar 

  • Castillo-Monroy AP, Maestre FT (2011) La costra biologica del suelo: avances recientes en el conocimiento de su estructura y funcion ecologica. Revista Chilena de Historia Natural 84:1–21

    Article  Google Scholar 

  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  • Coe KK, Belnap J, Grote EE, Sparks JP (2012a) Physiological ecology of the desert moss Syntrichia caninervis after ten years exposure to elevated CO2: evidence for enhanced photosynthetic thermotolerance. Physiol Plant 144:346–356

    Article  CAS  PubMed  Google Scholar 

  • Coe KK, Belnap J, Sparks JP (2012b) Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93:1626–1636

    Article  PubMed  Google Scholar 

  • Dai A (2011a) Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900-2008. J Geophys Res 116:D12

    Google Scholar 

  • Dai A (2011b) Drought under global warming: a review. WIREs Clim Change 2:45–46

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Article  Google Scholar 

  • Darby BJ, Housman DC, Zaki AM, Shamout Y, Adl SM, Belnap J, Neher DA (2006) Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts. J Eukaryot Microbiol 53:507–514

    Article  PubMed  Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2010) Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant Soil 328:421–431

    Article  CAS  Google Scholar 

  • Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biol Biochem 43:1474–1481

    Article  CAS  Google Scholar 

  • Darrouzet-Nardi A, Reed SC, Grote EE, Belnap J (2015) Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils. Biogeochemistry 126:363–378. doi:10.1007/s10533-015-0163-7

    Google Scholar 

  • Delgado Baquerizo M, Gallardo A, Covelo F, Prado-Comesana A, Ochoa V, Maestre FT (2015) Differences in the chemistry of thalli determine species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29(8):1087–1098

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Quero JL, Ochoa V, Garcia-Gomez M, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Noumi Z, Derak M, Wallenstein MD (2013a) Aridity modulates N availability in arid and semiarid Mediterranean grasslands. Plos One 8:e59807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Morillas L, Maestre FT, Gallardo A (2013b) Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372:643–654

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado-Comesaña A (2014) Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of N cycle in dryland soils. J Ecol 102:1592–1605

    Article  CAS  Google Scholar 

  • Dermody O, Weltzin JF, Engel EC, Allen P, Norby RJ (2007) How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 301:255–266

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Escolar C, Martinez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc B Biol Sci 367:3087–3099

    Article  Google Scholar 

  • Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad S, Felix-Henningsen P (2014) Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23:1687–1708

    Article  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094

    Article  CAS  Google Scholar 

  • Ferrenberg S, Reed SC, Belnap J (2015) Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc Natl Acad Sci USA 112:12116–12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk FA, Loydi A, Peter G (2014) Effects of biological soil crusts and drought on emergence and survival of a Patagonian perennial grass in the Monte of Argentina. J Arid Land 6:735–741

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Garfin G, Franco G, Blanco H, Comrie A, Gonzalez P, Piechota T, Smyth R, Waskom R (2014) In: Melillo JM, Richmond TC, Yohe GW (eds) Ch. 20: Southwest. Climate change impacts in the United States: The third national climate assessment. U.S. Global Change Research Program, Washington, DC, pp 462–486

    Google Scholar 

  • González-Megías A, Menéndez R (2012) Climate change effects on above- and below-ground interactions in a dryland ecosystem. Philos Trans R Soc B Biol Sci 367:3115–3124

    Article  Google Scholar 

  • Gross KL, Mittelbach GG, Reynolds HL (2005) Grassland invasibility and diversity: responses to nutrients, seed input, and disturbance. Ecology 86:476–486

    Article  Google Scholar 

  • Grote EE, Belnap J, Housman DC, Sparks JP (2010) Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Change Biol 16:2763–2774

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Haimovich-Dayan M, Kahlon S, Hihara Y, Hagemann M, Ogawa T, Ohad I, Lieman-Hurwitz J, Kaplan A (2011) Cross-talk between photomixotrophic growth and CO2-concentrating mechanism in Synechocystis sp. strain PCC 6803. Environ Microbiol 13:1767–1777

    Article  CAS  PubMed  Google Scholar 

  • Hamerlynck EP, Tuba Z, Csintalan Z, Nagy Z, Henebry G, Goodin D (2000) Diurnal variation in photochemical dynamics and surface reflectance of the desiccation-tolerant moss, Tortula ruralis. Plant Ecol 151:55–63

    Article  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ Pollut 155:336–349

    Article  CAS  PubMed  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634

    Article  Google Scholar 

  • Hu R, Wang X, Pan Y, Zhang Y, Zhang H (2014) The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. Eur J Soil Biol 62:66–73

    Article  CAS  Google Scholar 

  • Huxman TE, Hamerlynck EP, Moore BD, Smith SD, Jordan DN, Zitzer SF, Nowak RS, Coleman JS, Seemann JR (1998) Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO2: interaction with drought under glasshouse and field (FACE) exposure. Plant Cell Environ 21:1153–1161

    Article  Google Scholar 

  • IPCC (2013) Intergovernmental Panel on Climate Change 5th Assessment Report

    Google Scholar 

  • Jauhiainen J, Silvola J (1999) Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations. Annales Botanici Fennici 36:11–19

    Google Scholar 

  • Johnson SL, Kuske CR, Carney TD, Housman DC, Gallegos-Graves LV, Belnap J (2012) Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob Change Biol 18(8):2583–2593. doi:10.1111/j.1365-2486.2012.02709.x

    Google Scholar 

  • Kimball B (2011) Comment on the comment by Amthor et al. on “Appropriate experimental ecosystem warming methods” by Aronson and McNulty. Agric For Meteorol 151:420–424

    Article  Google Scholar 

  • Ladron de Guevara M, Lázaro R, Quero JL, Ochoa V, Gozalo B, Berdugo M, Ucles O, Escolar C, Maestre FT (2014) Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodivers Conserv 23:1787–1807

    Article  Google Scholar 

  • Lane RW, Menona M, McQuaida JB, Adams DG, Thomas AD, Hoon SR, Dougill AJ (2013) Laboratory analysis of the effects of elevated atmospheric carbon dioxide on respiration in biological soil crusts. J Arid Environ 98:52–59

    Article  Google Scholar 

  • Lang SI, Cornelissen JHC, Shaver GR, Ahrens M, Callaghan TV, Molau U, Ter Braak CJF, Hölzer A, Aerts R (2012) Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Glob Change Biol 18:1096–1107

    Article  Google Scholar 

  • Lange OL (2002) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation. I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora 197:233–249

    Article  Google Scholar 

  • Lange OL, Green TGA (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142:11–19

    Article  PubMed  Google Scholar 

  • Lange OL, Green TGA (2008) Diel and seasonal courses of ambient carbon dioxide concentration and their effect on productivity of the epilithic lichen Lecanora muralis in a temperate suburban habitat. Lichenologist 40:449–462

    Article  Google Scholar 

  • Lange OL, Green TGA, Reichenberger H (1999) The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water-status. J Plant Physiol 154:157–166

    Article  CAS  Google Scholar 

  • LeJeune K, Seastedt T (2001) Centaurea species: the forb that won the west. Conserv Biol 15:1568–1574

    Article  Google Scholar 

  • Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F (2015) Nitrous oxide and methane emissions from cryptogamic covers. Glob Change Biol 21:3889–3900

    Article  Google Scholar 

  • Li SX, Wang ZH, Hu TT, Gao YJ, Stewart BA (2009) Nitrogen in dryland soils of China and its management. Adv Agron 101:123–181

    Article  Google Scholar 

  • Livina VN, Kwasniok F, Lohmann G, Kantelhardt JW, Lenton TM (2011) Changing climate states and stability: from Pliocene to present. Clim Dyn 37:2437–2453

    Article  Google Scholar 

  • Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266

    Article  Google Scholar 

  • Maestre FT, Martinez I, Escolar C, Escudero A (2009) On the relationship between abiotic stress and co-occurrence patterns: an assessment at the community level using soil lichen communities and multiple stress gradients. Oikos 118:1015–1022

    Article  Google Scholar 

  • Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, García-Palacios P, Castillo-Monroy AP, Martínez I, Escudero A (2010) Do biotic interactions modulate ecosystem functioning along abiotic stress gradients? Insights from semi-arid Mediterranean plant and biological soil crust communities. Philos Trans R Soc B Biol Sci 365:2057–2070

    Article  Google Scholar 

  • Maestre FT, Salguero-Gómez R, Quero JL (2012) It’s getting hotter in here: determining and projecting the impacts of global change on drylands. Philos Trans R Soc B Biol Sci 3062–3075

    Google Scholar 

  • Maestre FT, Escolar C, Ladrón de Guevara M, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol 19:3835–3847

    Article  Google Scholar 

  • Maphangwa KW, Musil CF, Raitt L, Zedda L (2012) Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. Oecologia 169:257–268

    Article  PubMed  Google Scholar 

  • Marschall M, Proctor MC (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840

    Article  CAS  PubMed  Google Scholar 

  • McHugh TA, Morrissey EM, Reed SC, Hungate BA, Schwartz E (2015) Water from air: an overlooked source of moisture in arid and semiarid regions. Sci Rep 5:13767

    Article  PubMed  PubMed Central  Google Scholar 

  • Miralles I, Domingo F, García-Campos E, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012) Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biol Biochem 55:113–121

    Article  CAS  Google Scholar 

  • Miralles I, Trasar-Cepeda C, Leiros MC, Gil-Sotres F (2013) Labile carbon in biological soil crusts in the Tabernas desert, SE Spain. Soil Biol Biochem 58:1–8

    Article  CAS  Google Scholar 

  • Miranda JD, Padilla FM, Pugnaire FI (2009) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect Plant Ecol Evol Syst 11:255–266

    Article  Google Scholar 

  • Mishler BD, Oliver MJ (2009) Putting Physcomitrella patens on the tree of life: the evolution and ecology of mosses. Annu Plant Rev 36:1–15

    CAS  Google Scholar 

  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205

    Article  CAS  PubMed  Google Scholar 

  • Munson SM, Belnap J, Schelz CD, Moran M, Carolin TW (2011) On the brink of change: plant responses to climate on the Colorado Plateau. Ecosphere 2:Art 68

    Article  Google Scholar 

  • Neher DA, Weicht TR, Moorhead DL, Sinsabaugh RL (2004) Elevated CO2 alters functional attributes of nematode communities in forest soils. Funct Ecol 18:584–591

    Article  Google Scholar 

  • Neher DA, Lewins SA, Weicht TR, Darby BJ (2009) Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. J Arid Environ 73:672–677

    Article  Google Scholar 

  • Norby RJ, Sigal LL (1989) Nitrogen fixation in the lichen Lobaria pulmonaria in elevated atmospheric carbon dioxide. Oecologia 79:566–568

    Article  Google Scholar 

  • Nowak RS, Zitzer SF, Babcock D, Smith-Longozo V, Charlet TN, Coleman JS, Seemann JR, Smith SD (2004) Elevated atmospheric CO2 does not conserve soil water in the Mojave Desert. Ecology 85:93–99

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Evol Syst 4:25–51

    Article  Google Scholar 

  • Ochoa-Hueso R, Manrique E (2010) Nitrogen fertilization and water supply affect germination and plant establishment of the soil seed bank present in a semi-arid Mediterranean scrubland. Plant Ecol 210:263–273

    Article  Google Scholar 

  • Ochoa-Hueso R, Manrique E (2013) Effects of nitrogen deposition on growth and physiology of Pleurochaete squarrosa (Brid.) Lindb., a terricolous moss from Mediterranean ecosystems. Water Air Soil Pollut 224:1492

    Article  CAS  Google Scholar 

  • Ochoa-Hueso R, Manrique E (2014) Impacts of altered precipitation, nitrogen deposition and plant competition on a Mediterranean seedbank. J Veg Sci 25:1289–1298

    Article  Google Scholar 

  • Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME, Manrique E, Pérez-Corona ME, Sheppard LJ, Stock WD (2011a) Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environ Pollut 159:2265–2279

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Hueso R, Hernandez RR, Pueyo JJ, Manrique E (2011b) Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover. Soil Biol Biochem 43:1894–1901

    Article  CAS  Google Scholar 

  • Ochoa-Hueso R, Maestre FT, de los Ríos A, Valea S, Theobald MR, Vivanco MG, Manrique E, Bowker MA (2013a) Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems. Environ Pollut 179:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Hueso R, Mejías-Sánz V, Pérez-Corona ME, Manrique E (2013b) Nitrogen deposition effects on tissue chemistry and phosphatase activity in Cladonia foliacea (Huds.) Willd., a common terricolous lichen of semiarid Mediterranean shrublands. J Arid Environ 88:78–81

    Article  Google Scholar 

  • Ochoa-Hueso R, Bell MD, Manrique E (2014) Impacts of increased nitrogen deposition and altered precipitation regimes on soil fertility and functioning in semiarid Mediterranean shrublands. J Arid Environ 104:106–115

    Article  Google Scholar 

  • Ojima DS, Dirks BOM, Glenn EP, Owensby CE, Scurlock JO (1993) Assessment of carbon budget for grasslands and drylands of the world. Water Air Soil Pollut 70:95–109

    Article  Google Scholar 

  • Oliver MJ, Velten J, Wood AJ (2000) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation tolerance in mosses. Plant Ecol 151:73–84

    Article  Google Scholar 

  • Oliver M, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats. Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, Liu L, Lynch JA, Nadelhoffer KJ, Perakis SS, Robin-Abbott MJ, Stoddard JL, Weathers KC, Dennis RL (2011) Effects of nitrogen deposition and empirical critical loads for nitrogen for ecological regions of the United States. Ecol Appl 21:3049–3082

    Article  Google Scholar 

  • Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA (2004) Stimulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytol 161:279–289

    Article  CAS  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476

    Article  Google Scholar 

  • Pinho P, Augusto S, Martins-Loução MA, Pereira MJ, Soares A, Máguas C, Branquinho C (2008) Causes for change in nitrophytic and oligotrophic lichens species in Mediterranean climate: impact of land-cover and atmospheric pollutants. Environ Pollut 154:380–389

    Article  CAS  PubMed  Google Scholar 

  • Pinho P, Branquinho C, Cruz C, Tang YS, Dias T, Rosa AP, Máguas C, Martins-Loução MA, Sutton MA (2009) Assessment of critical levels of atmospheric ammonia for lichen diversity in cork-oak Woodland, Portugal. In: Reis S, Baker S (eds) Atmospheric ammonia. Detecting emission changes and environmental impacts. Results of an Expert Workshop under the Convention on long-range transboundary air pollution. Springer Science, Sutton, MA, pp 109–119

    Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104–105:77–97

    Article  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2013) Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10:6989–7033

    Article  CAS  Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2014) Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Glob Biogeochem Cycles 28:71–85

    Article  CAS  Google Scholar 

  • Potts DL, Huxman TE, Enquist BJ, Weltzin JF, Williams DG (2006) Resilience and resistance of ecosystem functional responses to a precipitation pulse in a semi-arid grassland. J Ecol 94:23–30

    Article  Google Scholar 

  • Proctor MC, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 51:1695–1704

    Article  CAS  PubMed  Google Scholar 

  • Proctor MC, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Pumpanen J, Ilvesniemi H, Perämäki M, Hari P (2003) Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Glob Change Biol 9:371–382

    Article  Google Scholar 

  • Rao LE, Parker DR, Bytnerowicz A, Allen EB (2010) Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts. J Arid Environ 73:920–930

    Article  Google Scholar 

  • Reed SC, Seastedt TR, Mann CM, Suding KN, Townsend AR, Cherwin KL (2007) Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl Soil Ecol 36:238–242

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change 2:752–755. doi:10.1038/NCLIMATE1596

    Google Scholar 

  • Rey A (2015) Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Change Biol 21:1752–1761

    Article  Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF, Turner BL II, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Lauenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–304

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Rodà F, Peñuelas J (2006) Effects of a nutrient pulse supply on nutrient status on the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees 20:619–632

    Article  Google Scholar 

  • Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004) Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141:191–193

    Article  PubMed  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Reynolds JF, Hui D (2009) Responses of dryland soil respiration and soil carbon pool size to abrupt versus gradual and individual versus combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob Change Biol 15:2274–2294

    Article  Google Scholar 

  • Sheridan RP (1979) Effects of airborne particulates on nitrogen fixation in legumes and algae. Phytopathology 69:1011–1018

    Article  CAS  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Yeager CM, Belnap J, Evans RD, Kuske CR (2012) Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 14(12):3247–3258. doi:10.1111/1462-2920.12011

    Google Scholar 

  • Steven B, Kuske CR, Gallegos-Graves V, Reed SC, Belnap J (2015) Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl Environ Microbiol 81:7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Zhao X, Li A, Li X, Huang G (2011) Nitrogen fixation in biological soil crusts from the Tengger desert, northern China. Eur J Soil Biol 47:182–187

    Article  CAS  Google Scholar 

  • Suding KN, LeJeune KD, Seastedt TR (2004) Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141:526–535

    Article  PubMed  Google Scholar 

  • Toet S, Cornelissen JHC, Aerts R, van Logtestijn RSP, de Beus M, Stoevelaar R (2006) Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. Plant Ecol 182:27–40

    Article  Google Scholar 

  • Tuba Z, Csintalan Z, Szente K, Nagy Z, Grace J (1998) Carbon gains by desiccation-tolerant plants at elevated CO2. Funct Ecol 12:39–44

    Article  Google Scholar 

  • Van den Berg LJL, Gomassen HBM, Roelofs JGM, Bobbink R (2005) Effects of nitrogen enrichment on a coastal dune grassland: a mesocosm study. Environ Pollut 138:77–85

    Article  PubMed  CAS  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B Biol Sci 272:2561–2569

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B Biol Sci 368:20130119

    Article  CAS  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5:723–741

    Article  Google Scholar 

  • Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, Meusel H, Elbert W, Behrendt T, Sörgel M, Cheng Y, Crutzen PJ, Su H, Pöschl U (2015) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci U S A 112:15384–15389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57:66–72

    Article  CAS  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53:941–952

    Article  Google Scholar 

  • Wertin TM, Phillips SL, Reed SC, Belnap J (2012) Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts. Biol Fertil Soils 48:797–805

    Article  CAS  Google Scholar 

  • Wertin TM, Reed SC, Belnap J (2015) C3 and C4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. Oecologia 177:997–1013

    Article  PubMed  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J (2012) Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA. Front Microbiol 3:1–14

    Article  Google Scholar 

  • Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J (2012) Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SCR and JB were supported by the USGS Ecosystems Mission Area. A significant portion of the studies of biocrust bacterial communities under warming, altered precipitation, and elevated CO2 conditions described here was supported by the US Department of Energy Office of Science, Office of Biological and Environmental Research Terrestrial Ecosystem Sciences Program grants to JB, CRK, and SCR (e.g., Award Number DE-SC-0008168), and research grants to CRK from the Climate and Environmental and the Biological and System Science Divisions. FTM was supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement 242658 (BIOCOM), and LGS was supported by the Spanish grant CTM2012-3822-C01-02 during the writing of this chapter. We are grateful to Burkhard Büdel and Bettina Weber for their insightful comments on previous drafts of this chapter and to E. Geiger, L. Allred, and M. Moats for their help with chapter preparation. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasha C. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Reed, S.C. et al. (2016). Biocrusts in the Context of Global Change. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_22

Download citation

Publish with us

Policies and ethics