Skip to main content
Log in

Precipitation pulse size effects on Sonoran Desert soil microbial crusts

  • Pulse Events and Arid Ecosystems
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Deserts are characterized by low productivity and substantial unvegetated space, which is often covered by soil microbial crust communities. Microbial crusts are important for nitrogen fixation, soil stabilization and water infiltration, but their role in ecosystem production is not well understood. This study addresses the following questions: what are the CO2 exchange responses of crusts to pulses of water, does the contribution of crusts to ecosystem flux differ from the soil respiratory flux, and is this contribution pulse size dependent? Following water application to crusts and soils, CO2 exchange was measured and respiration was partitioned through mixing model analysis of Keeling plots across treatments. Following small precipitation pulse sizes, crusts contributed 80% of soil-level CO2 fluxes to the atmosphere. However, following a large pulse event, roots and soil microbes contributed nearly 100% of the soil-level flux. Rainfall events in southern Arizona are dominated by small pulse sizes, suggesting that crusts may frequently contribute to ecosystem production. Carbon cycle studies of arid land systems should consider crusts as important contributors because of their dynamic responses to different pulse sizes as compared to the remaining ecosystem components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amundson R, Stern L, Baisden T, Wang Y (1998) The isotopic composition of soil and soil-respired CO2. Geoderma 82:83–114

    Article  Google Scholar 

  • Belnap J (2001) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange O (eds) Ecological studies. Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 167–176

    Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol 1:181–189

    Google Scholar 

  • Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biol 7:127–145

    Article  Google Scholar 

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391

    Google Scholar 

  • Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboek AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  CAS  PubMed  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    CAS  PubMed  Google Scholar 

  • Ehleringer J (1985) Annuals and perennials of warm deserts. In: Chabot BF, Mooney HA (eds) Physiological ecology of North American plant communities. Chapman and Hall, New York, pp 162–180

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Google Scholar 

  • Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80:150–160

    Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225

    Article  Google Scholar 

  • Evans DR, Lange OL (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange O (eds) Ecological studies. Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 263–280

    Google Scholar 

  • Fernandez-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N-2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42:338–349

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microbial Ecol 25:51–69

    CAS  Google Scholar 

  • Frolking S (1997) Sensitivity of spruce/moss boreal forest net ecosystem productivity to seasonal anomalies in weather. J Geophys Res Atmos 102:29053–29064

    CAS  Google Scholar 

  • Grant RF, Goulden ML, Wofsy SC, Berry JA (2001) Carbon and energy exchange by a black spruce-moss ecosystem under changing climate: Testing the mathematical model ecosys with data from the BOREAS experiment. J Geophys Res Atmos 106:33605–33621

    CAS  Google Scholar 

  • Guilbault MR, Matthias AD (1998) Emissions of N2O from Sonoran desert and effluent-irrigated grass ecosystems. J Arid Environ 38:87–98

    Article  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald L, Montagnani L, Dore S, Rebmann C, Moors J, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen O, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol 7:269–278

    Article  Google Scholar 

  • Keeling CD (1961) A mechanism for cyclic enrichment of carbon-12 by terrestrial plants. Geochim Cosmochim Acta 24:299–313

    Article  CAS  Google Scholar 

  • Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental-change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  • Lange OL (2001) Photosynthesis of soil-crust biota. In: Belnap J, Lange O (eds) Ecological studies. Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 217–240

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as photobionts. Oecologia 71:104–110

    Google Scholar 

  • Lin G, Ehleringer JR (1997) Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiol 114:391–394

    CAS  Google Scholar 

  • Mayland HF, McIntosh TH, Fuller WH (1966) Fixation of isotopic nitrogen in a semi-arid soil by algal crust organisms. Soil Sci Soc Am Proc 30:56–60

    CAS  Google Scholar 

  • McIlvanie SK (1942) Grass seedling establishment and productivity – overgrazed vs protected range soils. Ecology 23:228–231

    Google Scholar 

  • Moren AS, Lindroth A (2000) CO2 exchange at the floor of a boreal forest. Agric For Meteorol 101: 1–14

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Rapalee G, Trumbore SE, Davidson EA, Harden JW, Veldhuis H (1998) Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochem Cycles 12:687–701

    CAS  Google Scholar 

  • Rochette P, Flanagan LB, Gregorich EG (1999) Separating soil respiration into plant and soil components using analyses of the natural abundance of Carbon-13. Soil Sci Soc Am J 63:1207–1213

    CAS  Google Scholar 

  • Rosentreter R, Belnap J (2001) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin Heidelberg New York, pp 31–50

  • Rustad LE, Huntington TG, Boone RD (2000) Controls on soil respiration: Implications for climate change. Biogeochemistry 48:1–6

    Article  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Google Scholar 

  • Schweizer M, Fear J, Cadisch G (1999) Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Communic Mass Spectrom 13:1284–1290

    Article  CAS  Google Scholar 

  • Smith DC, Molesworth S (1973) Lichen physiology. XIII. Effects of rewetting dry lichens. New Phytol 72:525–533

    Google Scholar 

  • Smith SD, Nowak RS (1990) Ecophysiology of plants in the intermountain lowlands. In: Osmond CB, Pitelka LF, Hidy M (eds) Plant biology of the basin and range. Springer, Berlin Heidelberg New York, pp 179–241

  • Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American desert plants. Springer, Berlin Heidelberg New York

  • Smith S, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seeman JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive success in an arid ecosystem. Nature 408:79–82

    PubMed  Google Scholar 

  • Takeuchi N, Kohshima S, Seko K (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122

    Google Scholar 

  • Thompson JN, Reichman OJ, Morin PJ, Polis GA, Power ME, Sterner RW, Couch CA, Gough L, Holt R, Hooper DU, Keesing F, Lovell CR, Milne BT, Molles MC, Roberts DW, Strauss SY (2001) Frontiers of ecology. BioScience 51:15–24

    Google Scholar 

  • Townsend AR, Vitousek PM, Desmarais DJ, Tharpe A (1997) Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry 38:1–17

    Article  CAS  Google Scholar 

  • Tu KP, Brooks PD, Dawson TE (2001) Using septum-capped vials with continuous-flow isotope ratio mass spectrometric analysis of atmospheric CO2 for Keeling plot applications. Rapid Communic Mass Spectrom 15:952–956

    Article  CAS  Google Scholar 

  • Ullman I, Budel B (2001) Ecological determinants of species composition of biological soil crusts on a landscape scale. In: Belnap J, Lange O (eds) Ecological studies. Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 203–216

    Google Scholar 

  • Warren SD (2001) Synopsis: Influence of biological soil crusts on arid land hydrology and soil stability. In: Belnap J, Lange O (eds) Ecological studies. Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 349–362

    Google Scholar 

Download references

Acknowledgements

The authors thank Danielle Ignace for help in data collection, Bill Cable for help with gas collection, Dr. David Dettman for mass spectrometer assistance, and Dr. Alfredo Huete for discussion and critique. We are especially grateful for the assistance provided by Dr. Jayne Belnap and Bernadette Graham in analyzing samples for crust identification and chlorophyll content. The authors acknowledge support from the University of Arizona and the USDA Forest Service through an International Arid Lands Consortium grant (02R-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Cable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cable, J.M., Huxman, T.E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141, 317–324 (2004). https://doi.org/10.1007/s00442-003-1461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1461-7

Keywords

Navigation