Skip to main content
Log in

Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Human activities are causing imbalances in the nutrient cycles in natural ecosystems. However, we have limited knowledge of how these changes will affect the soil microbial functional diversity and the nitrogen (N) cycle in drylands, the biggest biome on Earth. Communities dominated by lichens, mosses and cyanobacteria (biocrusts) influence multiple processes from the N cycle such as N fixation and mineralization rates. We evaluated how biocrusts modulate the effects of different N, carbon (C) and phosphorus (P) additions on theN availability, the dominance of different available N forms and the microbial functional diversity in dryland soils.

Methods

Soil samples from bare ground (BG) and biocrust-dominated areas were gathered from the center of Spain and incubated during seven or 21 days under different combinations of N, C and P additions (N, C, P, N + C, N + P, P + C, and C + N + P).

Results

The relative dominance of dissolved organic N (DON) and the microbial functional diversity were higher in biocrust than in BG microsites when C or P were added. Changes in the C to N ratio, more than N availability, seem to modulate N transformation processes in the soils studied. In general, biocrusts increased the resilience to N impacts (N, C + N, N + P, C + N + P) of the total available N, ammonium, nitrate and DON when C was present.

Conclusions

Our results suggest that biocrusts may buffer the effects of changes in nutrient ratios on microbial functional diversity and DON dominance in dryland soils. Thus, these organisms may have an important role in increasing the resilience of the N cycle to imbalances in C, N and P derived from human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell Scientific, Oxford, pp 285–344

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46

    Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Barger NN, Belnap J, Ojima DS, Mosier A (2005) NO gas loss from biologically crusted soils in Canyonlands National Park, Utah. Biogeochemistry 75:373–391

    Article  CAS  Google Scholar 

  • Bates ST, Nash TH, Sweat KG, Garcia-pichel F (2010) Fungal communities of lichen-dominated biological soil crusts, diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ 74:1192–1199

    Article  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crust from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL (2003) Biological soil crusts, structure, function, and management. Springer-Verlag, Berlin, pp 3–30

    Book  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 3178:3159–3178

    Article  Google Scholar 

  • Bottomley PJ, Myrold DD (2007) Biological N inputs. In: Paul EA (ed) Soil microbiology, biochemistry, and ecology. Springer, New York, pp 341–364

    Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique roles of various biological soil crust organisms in Spain. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Monroy AP, Delgado-Baquerizo M, Maestre FT, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems, insights from a Mediterranean grassland. Plant Soil 333:21–34

    Article  CAS  Google Scholar 

  • Castillo-monroy AP, Bowker MA, Maestre FT, Rodríguez-Echeverría S, Martinez I, Barraza-Zepeda CE, Escolar C (2011a) Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning, insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–174

    Article  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Rey A, Soliveres S, García-Palacios P (2011b) Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosystems 14:835–847

    Article  CAS  Google Scholar 

  • Chantigny MH, Angers DA, Kaiser K, Kalbitz K (2006) Extraction and characterization of dissolved organic matter. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. Can Soil Soc Sci 617–635

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a nonmycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  • Cookson WR, Müller C, O’Brien PA, Murphy DV, Grierson PF (2006) Nitrogen dynamics in an australian semiarid grassland soil. Ecology 87:2047–2057

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology. A review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A (2011) Depolymerization and mineralization rates at 12 Mediterranean sites with varying soil N availability: a test for the Schimel and Bennett model. Soil Biol Biochem 43:693–696

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Castillo-Monroy AP, Maestre FT, Gallardo A (2010) Change in the dominance of N forms within a semiarid ecosystem. Soil Biol Biochem 42:376–378

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Covelo F, Gallardo A (2011) Dissolved organic nitrogen in Mediterranean ecosystems. Pedosphere 21:309–318

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A (2013a) Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem. Plant Soil 366:35–47

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Covelo F, Maestre FT, Gallardo A (2013b) Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean grassland. J Arid Environ 91:147–150

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013c) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Finzi AC, Austin AT, Cleland EE, Frey SD, Houlton BZ, Wallenstein MD (2011) Coupled biochemical cycles, responses and feedbacks of coupled biogeochemical cycles to climate change, examples from terrestrial ecosystems. Front Ecol Environ 9:61–67

    Article  Google Scholar 

  • Garcia-Palacios P, Bowker MA, Chapman SJ, Maestre FT, Soliveres S, Gallardo A, Valladares F, Guerrero C, Escudero A (2011) Early-successional vegetation changes after roadside prairie restoration modify processes related with soil functioning by changing microbial functional diversity. Soil Biol Biochem 43:1245–1253

    Article  CAS  Google Scholar 

  • Hook PB, Burke IC (1995) Evaluation of methods for estimating net nitrogen mineralization in a semiarid grassland. Soil Sci Soc Am J 59:831–837

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge HD, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning, a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci U S A 104:8902–8906

    Article  PubMed  CAS  Google Scholar 

  • Jalali M (2007) Phosphorous status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environ Geol 53:365–374

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Maestre FT, Bautista S, Cortina J, Díaz G, Honrubia M, Vallejo VR (2002) Microsite and mycorrhizal inoculum effects on the establishment of Quercus coccifera in a semi-arid degraded steppe. Ecol Eng 19:289–295

    Article  Google Scholar 

  • Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 2:317–330

    Article  Google Scholar 

  • Nordin A, Hogberg P, Nasholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132

    Article  Google Scholar 

  • Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME, Manrique E, Pérez-Corona ME, Sheppard L, Stock W (2011) Nitrogen deposition effects on Mediterranean-type ecosystems, An ecological assessment. Environ Pollut 159:2265–2279

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Steinberger Y (2008) Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol Biochem 40:2578–2587

    Article  CAS  Google Scholar 

  • Orwin KH, Wardle DA (2004) New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol Biochem 36:1907–1912

    Google Scholar 

  • Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments a review. Ecol Lett 3:236–251

    Article  Google Scholar 

  • Paulding EM, Baker AJM, Warren CR (2010) Competition for nitrogen by three sympatric species of Eucalyptus. Ann For Sci 67:406

    Article  Google Scholar 

  • Peñuelas J, Sarands J, Rivas-Ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Chang Biol 18:3–6

    Article  Google Scholar 

  • Qiu S, McComb AJ, Bell RW (2008) Ratios of C, N and P in soil water direct microbial immobilisation–mineralisation and N availability in nutrient amended sandy soils in southwestern Australia Agriculture. Ecosyst Environ 127:93–99

    Article  CAS  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755

    Article  CAS  Google Scholar 

  • Reynolds JF, Smith DM, Lambin EF, Turner BL, Mortimore M, Batterbury S, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification, building a science for dryland development. Science 316:847–851

    Article  PubMed  CAS  Google Scholar 

  • Robertson GP, Groffman PM (2007) In: Paul EA (ed) Soil microbiology, biochemistry, and ecology. Springer, New York, pp 341–364

    Chapter  Google Scholar 

  • Schimel DS (2010) Drylands in the earth system. Science 327:418–419

    Article  PubMed  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization, challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schimel, JP, Bennett, J, Fierer, N (2005) Microbial community composition and soil N cycling, is there really a connection? In: Bardgett RD, Hopkins DW, Usher MB (eds) Biological diversity and function in soils. Cambridge University Press 171–188

  • Schlesinger WH (1996) Biogeochemistry, an analisys of global change. Academic, San Diego

    Google Scholar 

  • Schlesinger WH, Reynolds J, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of Comunication Univ of Illinois Press 117

  • Sharma S, Rangger A, von Lutzow M, Insam H (1998) Functional diversity of soil bacterial communities increases after maize litter amendment. Eur J Soil Biol 34:53–60

    Article  Google Scholar 

  • USDA (2003) Key to soil taxonomy handbook 436, 9th edn. Soil Survey Staff, NRCS, Washington, p 332

    Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2008) Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil 304:21–33

    Article  CAS  Google Scholar 

  • Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531

    Google Scholar 

  • Warren CR (2009) Does nitrogen concentration affect relative uptake rates of nitrate, ammonium, and glycine? J Plant Nutr Soil Sci 172:224–229

    Article  CAS  Google Scholar 

  • Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-pichel F, Housman DC, Belnap J, Kuske CR (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 60:85–97

    Article  PubMed  CAS  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities, a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

  • Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mataix-Beneyto J (2009) Storage effects on biochemical properties of air-dried soil samples from southeastern Spain. Arid Land Res Manag 23:213–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ana Prado and Cristina Allely for their help with lab analysis and Melissa S. Martín for her linguistic contributions to this manuscript. We thank the Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA) for allowing us to work in the Aranjuez Experimental Station (Finca de Sotomayor). This research is supported by the European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n° 242658 (BIOCOM) and by the Ministry of Science and Innovation of the Spanish Government, Grant n° CGL2010-21381. M.D.B was supported by a PhD grand from Universidad Pablo de Olavide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Delgado-Baquerizo.

Additional information

Responsible Editor: Jeff R. Powell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado-Baquerizo, M., Morillas, L., Maestre, F.T. et al. Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372, 643–654 (2013). https://doi.org/10.1007/s11104-013-1779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1779-9

Keywords

Navigation