Skip to main content

Advertisement

Log in

Nitrogen fixation in biological soil crusts from southeast Utah, USA

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract.

Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (<1°C) and high (>26°C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r 2=0.93 for Collema crusts; r 2=0.86 for dark crusts and r 2=0.83 for light crusts) for temperatures between 1°C and 26°C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha–1 year–1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha–1 year–1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha–1 year–1. The rates in light crusts are expected to be highly variable, as disturbance history will determine cyanobacterial biomass and therefore N fixation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belnap, J. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35, 128–135 (2002). https://doi.org/10.1007/s00374-002-0452-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-002-0452-x

Navigation