Skip to main content

Heterosis and Interspecific Hybridization

  • Chapter
  • First Online:
Plant Breeding in the Omics Era

Abstract

The release of hybrid cultivars is among the main achievements of plant breeding. The exploitation of heterosis led to a significant increase in edible yield in seed crops. There are single-, three-way-, and double-cross hybrids. In the F1 hybrid, the undesirable (often deleterious) recessive alleles from one parent are suppressed by the dominant allele of the other parent. Overdominance is the alternative theory regarding this outbreeding enhancement or hybrid vigor, that is, the heterozygote being superior to either homozygote parent. The biochemical, physiological, and molecular basis of hybrid vigor remain however elusive. Advances in functional genomics, transcriptomics, proteomics, and metabolomics research are helping in understanding heterosis in plants using a system-level approach. Genetic diversity and distance among breeding lines and their correlation with hybrid performance may define heterotic groups and assist predicting hybrid yield. When combining ability information lacks, knowledge on the relationship among genotypes aids to select parents for further crossing. Genetic distance will not be enough to account for heterosis, because population features, genotype by environment interactions, and the trait itself affect hybrid vigor. There are some selfing species with successful F1 hybrid cultivars, for example, rice among cereals and tomato among vegetables. Their use depends on the added value given by heterosis and efficient pollination mechanisms to justify the development and production costs of hybrid seed. Cytoplasmic and genic male sterility provide means for producing hybrid seed in various selfing species. Genomic selection may further enhance the efficiency of hybrid breeding because the inbred parents determine hybrid genotypes. Heterosis in polyploidy species seems to be more complex than in diploid species. Interspecific hybrids result from mating two species and are very often sterile. Translocation lines ensue by incorporating a single chromosome segment from an alien or wild species into a crop, while chromosome doubling in somatic cells or gametes of F1 hybrids lead to amphidiploids that are “bridges” for moving single chromosomes from one species to another or for developing new crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MF, Khan MR, Nuruzzaman M, Parvez S, Swaraz AM, Alam I, Ahsan N (2004) Genetic basis of heterosis and inbreeding depression in rice (Oryza sativa L.). J Zhejiang Univ Sci 5:406–411

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Copeland LO, Elias SG, Kelly JD (1995) Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor Appl Genet 91:118–121

    Article  CAS  PubMed  Google Scholar 

  • Andorf S, Selbig, Altmann T, Poos K, Witucka-Wall H, Repsilber D (2010) Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana): a systems biological approach towards the molecular basis of heterosis. Theor Appl Genet 120:249–259

    Google Scholar 

  • Bansal P, Banga S, Banga SS (2012) Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLos One 7(2):e29607. doi:10.1371/journal.pone.0029607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baranwal VK, Mikkilineni V, Barwale Zehr U, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigor. J Exp Bot 63:6309–6314

    Article  CAS  PubMed  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beche E, da Silva CL, Pagliosa ES, Capelin MA, Franke J, Matei G, Benin G (2013) Hybrid performance and heterosis in early segregant populations of Brazilian spring wheat. Aust J Crop Sci 7:51–57

    Google Scholar 

  • Benavente E, Cifuentes O, Dusautoir JC, David J (2008) The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genome Res 120:384–395

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (1992) Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet 83:628–634

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41:1–4

    Article  CAS  Google Scholar 

  • Bertan I, de Carvalho FIF, Costa de Oliveira A (2007) Parental selection strategies in plant breeding programs. J Crop Sci Biotechnol 10:211–222

    Google Scholar 

  • Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010) Heterosis. Plant Cell 22:2105–2112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng S-H, Zhuang J-Y, Fan Y-Y, Du J-H, Cao L-Y (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966

    Article  PubMed Central  PubMed  Google Scholar 

  • Chodavarapu RK, Feng S, DingB, Simon SA, Lopez L, Jia Y, Wang G-L, Meyers BC, Jacobsen SE, Pellegrini M (2012) Transcriptome and methylome interactions in rice hybrids. Proc Natl Acad Sci U S A 109:12040–12045

    Google Scholar 

  • Dieckmann S, Link W (2010) Quantitative genetic analysis of embryo heterosis in faba bean (Vicia faba L.). Theor Appl Genet 120:261–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiévet JB, Dillmann C, de Vienne D (2010) Systemic properties of metabolic networks lead to an epistasis-based model for heterosis. Theor Appl Genet 120:463–473

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer S, Melchinger AE, Korzun V, Wilde P, Schmiedchen P, Möhring J, Piepho H-P, Dhillon BS, Würschum T, Reif JC (2010) Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor Appl Genet 120:291–299

    Article  PubMed  Google Scholar 

  • Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLos One 4(10):e7433. doi:10.1371/journal.pone.0007433

    Article  PubMed Central  PubMed  Google Scholar 

  • Frisch M, Thiemann A, Fu J, Schrag TA, Scholten S, Melchinger AE (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120:441–450

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Xiao M, Hayward A, Fu Y, Liu G, Jiang G, Zhang H (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173

    Article  Google Scholar 

  • Gallais A (1984) An analysis of heterosis vs. inbreeding effects with an autetraploid cross-fertilized plant: Medicago sativa L. Genetics 106:123–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallais A (1988) Heterosis: its genetic basis and its utilisation in plant breeding. Euphytica 39:95–104

    Article  Google Scholar 

  • Girke A, Schierholt A, Becker HC (2012) Extending the rapeseed gene pool with resynthesized Brassica napus II: heterosis. Theor Appl Genet 124:1017–1026

    Article  PubMed Central  PubMed  Google Scholar 

  • Goff SA, Zhang Q (2013) Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms. Curr Opin Plant Biol 16:221–227

    Article  CAS  PubMed  Google Scholar 

  • Gornicki P, Faris JD (2014) Rewiring the wheat reproductive system to harness heterosis for the next wave of yield improvement. Proc Natl Acad Sci U S A 111:9025–9026

    Article  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Jahnke S, Sarholz B, Thiemann A, Kühr V, Gutiérrez-Marcos J-F, Geiger HH, Piepho H-P, Scholten S (2010) Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues 6 days after fertilization. Theor Appl Genet 120:389–400

    Article  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci U S A 3:310–312

    Google Scholar 

  • Keller B, Piepho HP (2005) Is heterosis an artefact governed by the choice of scale? Euphytica 145:113–121

    Article  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2014) Split-gene system for hybrid wheat seed production. Proc Natl Acad Sci U S A 111:9097–9102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kingsbury N (2009) Hybrid. The history and science of plant breeding. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Krystkowiak K, Adamski T, Surma M, Kaczmarek Z (2009) Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica 165:419–434

    Article  Google Scholar 

  • Lamkey KR, Staub JE (eds) (1998) Concepts and breeding of heterosis in crop plants. CSSA Special Publication 25. Crop Science Society of America, Madison

    Google Scholar 

  • Liu D, Zhang H, Zhang L, Yuan Z, Hao M, Zheng Y (2014) Distant hybridization: a tool for interspecific manipulation of chromosomes. In Pratap S, Kumar J (eds) Alien gene transfer in crop plants, vol 1. Springer Science + Business Media, New York, pp 25–42

    Chapter  Google Scholar 

  • Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. doi:10.1016/j.tplants.2014.06.012

    Google Scholar 

  • Maenhout S, De Baets B, Haesaert G (2010) Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction. Theor Appl Genet 120:415–427

    Article  PubMed  Google Scholar 

  • Malvar RA, Revilla P, Butrón A, Gouesnard B, Boyat A, Soengas P, Álvarez A, Ordás A (2005) Performance of crosses among French and Spanish maize populations across environments. Crop Sci 45:1052–1057

    Article  Google Scholar 

  • Melchinger AE, Utz HF, Piepho H-P, Zeng Z-B, Schön CC (2007a) The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Genetics 177:1815–1825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melchinger AE, Piepho H-P, Utz HF, Muminović J, Wegenast T, Törjék O, Altmann T, Kusterer B (2007b) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:1827–1837

    Article  PubMed Central  PubMed  Google Scholar 

  • Melchinger AE, Dhillon BS, Mi X (2010) Variation of the parental genome contribution in segregating populations derived from biparental crosses and its relationship with heterosis of their Design III progenies. Theor Appl Genet 120:311–319

    Article  PubMed  Google Scholar 

  • Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T (2010) QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet 120:227–237

    Article  PubMed Central  PubMed  Google Scholar 

  • Mickelson HE, Cordova H, Pixley KV, Bjarnason MS (2001) Heterotic relationships among nine temperate and subtropical maize populations. Crop Sci 41:1012–1020

    Article  Google Scholar 

  • Moghaddam AMB, Fuchs J, Czauderna T, Houben A, Mette MF (2010) Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theor Appl Genet 120:215–226

    Article  Google Scholar 

  • Nakamura S, Hosaka K (2010) DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis. Theor Appl Genet 120:205–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parvez S (2006) Recent advances in understanding genetic basis of heterosis in rice (Oryza sativa L.). Rev Cient UDO Agríc 6:1–10

    Google Scholar 

  • Paschold A, Marcon C, Hoecker N, Hochholdinger F (2010) Molecular dissection of heterosis manifestation during early maize root development. Theor Appl Genet 120:383–388

    Article  PubMed  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patters in maize. Maydica 50:215–223

    Google Scholar 

  • Reif JC, Fischer S, Schrag TA, Lamkey KR, Klein D, Dhillon BS, Utz HF, Melchinger AE (2010) Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theor Appl Genet 120:301–310

    Article  PubMed  Google Scholar 

  • Riddle NC, Jiang H, An L, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–222

    Article  CAS  PubMed  Google Scholar 

  • Römisch-Margl L, Spielbauer G, Schützenmeister, Schwab W, Piepho H-P, Genschel U, Gierl A (2010) Heterotic patterns of sugar and amino acid components in developing maize kernels. Theor Appl Genet 120:369–381

    Google Scholar 

  • Schnable PS, Springer NM (2013) Progress towards understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Schön CC, Dhillon BS, Utz H, Melchinger AE (2010) A high congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120:321–332

    Article  PubMed  Google Scholar 

  • Schrag TA, Möhring J, Melchinger AE, Kusterer B, Dhillon BS, Piepho H-P, Frisch M (2010) Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor Appl Genet 120:451–461

    Article  CAS  PubMed  Google Scholar 

  • Sellis D, Callahan BJ, Petrov DA, Messer PW (2011) Heterozygote advantage as a natural consequence of adaptation in diploids. Proc Natl Acad Sci U S A 108:20666–20671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2010) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci U S A 103:12981–12986

    Article  Google Scholar 

  • Shull GH (1948) What is “heterosis”. Genetics 33:439–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinfath M, Gärtner T, Lisec J, Meyer RC, Altmann T, Willmitzer L, Selbig J (2010) Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers. Theor Appl Genet 120:239–247

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    Article  PubMed  Google Scholar 

  • Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, Scholten S (2010) Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Theor Appl Genet 120:401–413

    Article  CAS  PubMed  Google Scholar 

  • Thiemann A, Fu J, Seifert J, Grant-Downton RT, Schrag TA, Pospisil H, Frisch M, Melchinger AE, Scholten S (2014) Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. BMC Plant Biol 14:88. doi:10.1186/1471-2229-14-88

    Article  PubMed Central  PubMed  Google Scholar 

  • Troyer AF (2009) Development of hybrid corn and the seed corn industry. In: Bennetzen JL, Hake S (eds) Maize handbook-vol II: genetics and genomics. Springer Science + Business Media, New York, pp 8–114

    Google Scholar 

  • Troyer AF, Wellin EJ (2009) Heterosis decreasing in hybrids: yield test inbreds. Crop Sci 49:1969–1976

    Article  Google Scholar 

  • van Eeuwijk FA, Boer M, Totir LR, Bink, Wright D, Winkler CR, Podlich D, Boldman K, Baumgarten A, Smalley M, Arbelbide M, ter Braak CJF, Cooper M (2010) Mixed model approaches for the identification of QTLs within a maize hybrid breeding program. Theor Appl Genet 120:429–440

    Google Scholar 

  • Washburn JD, Birchler JA (2013) Polyploids as a ‘‘model system’’ for the study of heterosis. Plant Reprod 27:1–5

    Article  PubMed  Google Scholar 

  • Wu J-W, Hu C-Y, Shahid MQ, Guo H-B, Zeng Y-Z, Liu X-D, Lu Y-G (2013) Analysis on genetic diversification and heterosis in autotetraploid rice. SpringerPlus 2:439. http://www.springerplus.com/content/2/1/439

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Y (2003) Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breed Rev 23:73–174

    CAS  Google Scholar 

  • Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci U S A 111:12456–12461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodomiro Ortiz Ríos .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz Ríos, R. (2015). Heterosis and Interspecific Hybridization. In: Plant Breeding in the Omics Era. Springer, Cham. https://doi.org/10.1007/978-3-319-20532-8_5

Download citation

Publish with us

Policies and ethics