Skip to main content

Distant Hybridization: A Tool for Interspecific Manipulation of Chromosomes

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Wide or distant hybridization has been widely used as an important tool of chromosome manipulation for crop improvement. The chromosome behaviors in F1 hybrids provide us with the essential genetic basis for chromosome manipulation. The induction of homoeologous pairing in F1 hybrid plants followed by the incorporation of a single-chromosome fragment from an alien or a wild species into an existing crop species by translocating chromosomes has been used in the production of translocation lines. Most efforts to transfer a beneficial trait from wild plants into crops so far have bridged the species gap via alien chromosome translocation lines. Chromosome doubling in somatic cells or gametes of F1 hybrids followed by the incorporation of all alien chromosomes has been used in the production of amphidiploids. Amphidiploidy can be used for a bridge to move a single chromosome from one species to another or for the development of new crops. Chromosome elimination of a uniparental genome during the development of F1 hybrid embryos has been used in the production of haploids. Haploids are very useful in double-haploid breeding of a true-breeding crop such as wheat and rice since this method can quickly replace genetic recombination while enhancing breeding efficiency or facilitating genetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase HC (1930) Cytology of Triticum, Secale, and Aegilops hybrids with reference to phylogeny. Res Stud State Coll Wash 2:5–60

    Google Scholar 

  • Alfares W, Bouguennec A, Balfourier F, Gay G, Bergès H, Vautrin S, Sourdille P, Bernard M, Feuillet C (2009) Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 183:469–483

    PubMed  CAS  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot (Lond) 101:863–872

    CAS  Google Scholar 

  • Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: Old dogs, new tricks? Nat Rev Genet 9:923–937

    PubMed  CAS  Google Scholar 

  • Almouslem AB, Bommineni VR, Jauhar PP, Peterson TS, Rao MB (1998) Haploid durum wheat production via hybridization with maize. Crop Sci 38:1080–1087

    Google Scholar 

  • Anderson E (1953) Introgressive hybridization. Biol Rev 28:280–307

    Google Scholar 

  • Andreuzza S, Siddiqi I (2008) Spindle positioning, meiotic nonreduction, and polyploidy in plants. PLoS Genet 4:e1000274

    Google Scholar 

  • Arnold MA (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411

    Google Scholar 

  • Bennett MD, Barclay IR, Finch RA (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200

    Google Scholar 

  • Bertin I, Fish L, Foote TN, Knight E, Snape J, Moore G (2009) Development of consistently crossable wheat genotypes for alien wheat gene transfer through fine-mapping of the Kr1 locus. Theor Appl Genet 119:1371–1381

    PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Tanzarella OA (1983) Morphology and chromosome pairing of a hybrid between Triticum durum Desf. and Haynaldia villosa (L.) Schur. Theor Appl Genet 64: 333–337

    Google Scholar 

  • Boden SA, Langridge P, Spangenberg G, Able JA (2009) TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1. Plant J 57:487–497

    PubMed  CAS  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Google Scholar 

  • Brownfield L, Kohler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    PubMed  CAS  Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585

    PubMed  CAS  Google Scholar 

  • Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Curr Genomics 8:151–161

    PubMed  CAS  Google Scholar 

  • Cai X, Xu SS, Zhu XW (2010) Mechanism of haploidy-dependent unreductional meiotic cell division in polyploidy wheat. Chromosoma 119:275–285

    PubMed  Google Scholar 

  • Ceoloni C, Donini P (1993) Combining mutations for two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome 36:377–386

    PubMed  CAS  Google Scholar 

  • Chan SWL (2010) Chromosome engineering: power tools for plant genetics. Trends Biotechnol 28:650–710

    Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013) Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica- mediated chromosome elimination approach. Plant Breed. doi:10.1111/pbr.12036

    Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    CAS  Google Scholar 

  • Cheng BF, Séguin-Swartz G, Somers DJ (2002) Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome 45:110–115

    PubMed  CAS  Google Scholar 

  • Choo TM, Reinbergs E, Kasha KJ (1985) Use of haploids in barley breeding. Plant Breed Rev 3:219–252

    Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum: grasses of the World. Royal Botanic Garden, Kew

    Google Scholar 

  • Crouch JH, Payne TS, Dreisigacker S, Wu H, Braun HJ (2009) Improved discovery and utilization of new traits for breeding. In: Dixon J, Braun HJ, Kosina P, Crouch J (eds) Wheat facts and futures. CIMMYT, Mexico, D.F., pp 42–51

    Google Scholar 

  • David JL, Benavente E, Brès-Patry C, Dusautoir JC, Echaide M (2004) Are neopolyploids a likely route for a transgene walk to the wild? The Aegilops ovata × Triticum turgidum durum case. Biol J Linn Soc 82:503–510

    Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4(11):e1000274

    PubMed  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7(6):e1000124

    PubMed  Google Scholar 

  • Devaux P, Pickering RA (2005) Haploids in the improvement of Poaceae. In: Palmer D, Keller W, Kasha KJ (eds) Haploids in crop improvement II. Springer, Heidelberg, Germany, pp 215–242

    Google Scholar 

  • Doré C, Prigent J, Desprez B (1996) In situ gynogenetic haploid plants of chicory (Cichorium intybus L.) after intergeneric hybridization with Cicerbita alpina Walbr. Plant Cell Rep 15:758–761

    Google Scholar 

  • Driscoll CJ, Quinn CJ (1970) Genetic variation in Triticum affecting the level of chromosome pairing in intergenetic hybrids. Can J Genet Cytol 12:278–282

    Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    PubMed  CAS  Google Scholar 

  • Dvorak J, McGuire PE (1981) Nonstructural chromosome differentiation among wheat cultivars, with special reference to differentiation of chromosomes in related species. Genetics 97: 391–414

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with Scleroderma. Chromosoma 91:313–321

    PubMed  CAS  Google Scholar 

  • Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. John Hopkins University Press, Baltimore, MA

    Google Scholar 

  • Farqoo S, Iqbal N, Shah TM (1990) Intergenetic hybridization for wheat improvement. III. Genetic variation in Triticum species affecting homoeologous chromosome pairing. Cereal Res Commun 18:233–237

    Google Scholar 

  • Fedak G (1980) Production, morphology and meiosis of reciprocal barley-wheat hybrids. Can J Genet Cytol 22:117–123

    Google Scholar 

  • Fedak G (1983) Haploids in Triticum ventricosum via intergeneric hybridization with Hordeum bulbosum. Can J Genet Cytol 25:104–106

    Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393

    Google Scholar 

  • Forster BP, Herberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    PubMed  CAS  Google Scholar 

  • Fukuda K, Sakamoto S (1992) Cytological studies on unreduced male gamete formation in hybrids between tetraploid emmer wheats and Ae. squarrosa L. Jpn J Breed 42:255–266

    Google Scholar 

  • Gernand D, Bruss C, Houben A, Kumlehn J, Matzk F, Prodanovic S, Rubtsova M, Rutten T, Varshney A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438

    PubMed  CAS  Google Scholar 

  • Greer E, Martín AC, Pendle A, Colas I, Jones AME, Moore G, Shaw P (2012) The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell 24:152–162

    PubMed  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    PubMed  CAS  Google Scholar 

  • Gupta PK, Priyadarshan PM (1982) Triticale, present status and future prospects. Adv Genet 21:255–345

    Google Scholar 

  • Hao M, Luo J, Yang M, Zhang L, Yan Z, Yuan Z, Zheng Y, Zhang H, Liu D (2011) Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 54:959–964

    PubMed  Google Scholar 

  • Hao M, Chen J, Zhang L, Luo J, Yuan Z, Yan Z, Zhang B, Chen W, Wei Y, Zhang H, Zheng Y, Liu D (2013) The genetic study utility of a hexaploid wheat DH population with non-recombinant A- and B-genomes. SpringerPlus 2:131

    PubMed  Google Scholar 

  • Harlan JR, De Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Google Scholar 

  • Henikoff S, Dalal Y (2005) Centromeric chromatin: what makes it unique? Curr Opin Genet Dev 15:177–184

    PubMed  CAS  Google Scholar 

  • Houben A, Sanei M, Pickering R (2011) Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell Tiss Org Cult 104:321–327

    Google Scholar 

  • Inagaki MN, Mujeeb-Kazi A (1995) Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Breed Sci 45:157–161

    Google Scholar 

  • Inoue E, Sakuma F, Kasumi M, Hara H, Tsukihashi T (2004) Maternal haploidization of Japanese pear through intergeneric hybridization with apple. Acta Hortic 663:815–818

    Google Scholar 

  • Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res 18:821–831

    PubMed  CAS  Google Scholar 

  • Islam AKMR, Shepherd KW (1980) Meiotic restitution in wheat barley hybrids. Chromosoma 68:252–261

    Google Scholar 

  • Jauhar PP (2007) Meiotic restitution in wheat polyhaploid (amphihaploids): a potent evolutionary force. J Hered 98:188–193

    PubMed  CAS  Google Scholar 

  • Jauhar PP, Xu SS, Baenziger PS (2009) Haploidy in cultivated wheats: induction and utility in basic and applied research. Crop Sci 49:737–755

    Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Jin WW, Dawe RK, Henikoff S, Jiang JM, Melo JR, Nagaki K, Talbert PB (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    PubMed  CAS  Google Scholar 

  • Jorgensen RB, von Bothmer R (1988) Haploids of Hordeum vulgare and H. marinum from crosses between the two species. Hereditas 108:207–212

    Google Scholar 

  • Kang HY, Zhang HQ, Wang Y, Jiang Y, Yuan HJ, Zhou YH (2008) Comparative analysis of the homoeologous pairing effects of phKL gene in common wheat × Psathyrostachy huashanica Keng ex Kuo. Cereal Res Commun 36:429–440

    CAS  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    PubMed  CAS  Google Scholar 

  • Kihara H, Lilienfeld F (1949) A new synthesized 6×wheat. Hereditas suppl:307–319

    Google Scholar 

  • Kim NS, Armstrong KC, Fedak G, Ho K, Park NI (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45:165–174

    PubMed  CAS  Google Scholar 

  • Komeda N, Chaudhary HK, Suzuki G, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet Syst 82:241–248

    PubMed  Google Scholar 

  • Kostoff D (1934) A haploid plant of Nicotiana sylvestris. Nature 133:949–950

    Google Scholar 

  • Krowlow KD (1970) Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z Pflanzenzücht 64:44–72

    Google Scholar 

  • Kynast RG, Davis DW, Phillips RL, Rines HW (2012) Gamete formation via meiotic nuclear restitution generates fertile amphiploid F1 (oat × maize) plants. Sex Plant Reprod. doi:10.1007/s00497-012-0182-7

    PubMed  Google Scholar 

  • Laurie DA (1989) The frequency of fertilization in wheat × pearl millet crosses. Genome 32:1063–1067

    Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Google Scholar 

  • Laurie DA, Bennett MD (1988) Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breed 100:73–82

    Google Scholar 

  • Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961

    Google Scholar 

  • Li SP, Liu DJ (1993) Cytological analysis on mechanisms of functional gametes formation in Triticum hybrids between Aegilops tauschii and durum—Haynaldia villosa amphidiploid. Acta Genet Sin 20:68–73 (in Chinese with English abstract)

    Google Scholar 

  • Liu DC, Yen C, Yang JL, Lan XJ, Zheng YL (1998a) The chromosome distribution of crossability gene in durum wheat cv. Langdon. Wheat Inform Serv 87:1–4

    Google Scholar 

  • Liu DC, Yen C, Yang JL, Zheng YL (1998b) Chromosomal distribution of genes in diploid Lophopyrum elongatum (Host) A. Love that influences crossability of wheat with rye. Wheat Inform Serv 86:13–18

    Google Scholar 

  • Liu DC, Luo MC, Yen C, Yang JL, Yang WY (1998c) The promotion of homoeologous pairing in hybrids of common wheat cv Kaixianluohanmai with alien species. In: Slinkard AE (ed.) Proceedings of ninth international wheat genet symp. University Extension Press, University of Saskatchewan, Saskatoon, Canada, 4. pp. 377–378

    Google Scholar 

  • Liu DC, Yen C, Yang JL, Zheng YL, Lan XJ (1999) The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108:79–82

    Google Scholar 

  • Liu DC, Lan XJ, Yang ZJ, Zheng YL, Wei YM, Zhou YH (2002) A unique Aegilops tauschii genotype needless to embryo rescue in cross with wheat. Acta Bot Sin 44:508–613

    Google Scholar 

  • Liu DC, Zheng YL, Yan ZH, Zhou YH, Wei YM, Lan XJ (2003) Combination of homoeologous pairing gene phKL and Ph2-deficiency in common wheat and its meiotic behaviors in hybrids with alien species. Acta Bot Sin 45:1121–1128

    CAS  Google Scholar 

  • Loureiro I, Escorial C, GarcÃ¥a-Baudin JM, Chueca MC (2009) Spontaneous wheat—Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference. Span J Agric Res 7:614–620

    Google Scholar 

  • Lu BR (1992) Dihaploids of Elymus from the interspecific crosses E. dolichatherus x E. tibeticus and E. brevipes x E. panormitanus. Theor Appl Genet 83:997–1002

    Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in Triticale x wheat hybrids. Theor Appl Genet 64:239–248

    Google Scholar 

  • Luo MC, Yang ZL, Yen C, Yang JL (1992) The cytogenetic investigation on F1 hybrid of Chinese wheat landrace. In: Ren ZL, Peng JH (eds) Exploration of crop breeding. Science and Technology Press of Sichuan, China, pp 169–176 (in Chinese)

    Google Scholar 

  • Ma R, Zheng DS, Fan L (1999) The possibility of ph genes existing spontaneously in common wheat. Acta Agron Sin 25:99–104 (in Chinese)

    Google Scholar 

  • Maan SS, Sasakuma T (1977) Fertility of amphihaploids in Triticinae. J Hered 57:76–83

    Google Scholar 

  • Mable BK (2004) Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol J Linn Soc 82:453–466

    Google Scholar 

  • Maine MJ (2003) Potato haploid technologies. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 241–247

    Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    PubMed  CAS  Google Scholar 

  • Martinez M, Cuadrado C, Laurie DA, Romero C (2005) Synaptic behaviour of hexaploid wheat haploids with different effectiveness of the diploidizing mechanism. Cytogenet Genome Res 109:210–214

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Moore G (2008) To check or not to check? The application of meiotic studies to plant breeding. Curr Opin Plant Biol 11:222–227

    PubMed  Google Scholar 

  • Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207

    PubMed  CAS  Google Scholar 

  • Mason AS, Nelson MN, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    PubMed  CAS  Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploidy Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717

    PubMed  Google Scholar 

  • Matzk F (1996) Hybrids of crosses between oat and andropogoneae or paniceae species. Crop Sci 36:17–21

    Google Scholar 

  • Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129

    Google Scholar 

  • Mello-Sampayo T (1971) Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nature New Biol 230:22–23

    PubMed  CAS  Google Scholar 

  • Miller TE, Reader SM, Shaw PJ, Moore G (1998) Towards an understanding of the biological action of the Ph1 locus in wheat. In: Slinkard AE (ed.) Proceedings of the ninth international wheat genetic symposium. University Extension Press, Saskatoon. pp.17–19

    Google Scholar 

  • Mishina K, Sato H, Manickavelu A, Sassa H, Koba T (2009) Molecular mapping of SKr for crossability in common wheat. Breed Sci 59:679–684

    CAS  Google Scholar 

  • Mochida K, Tsujimoto H (2001) Production of wheat double haploids by pollination with Job’s Tears (Coix lacrymajobi L.). Heredity 92:81–83

    CAS  Google Scholar 

  • Mochida K, Sasakuma T, Tsujimoto H (2004) Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 47:199–205

    PubMed  Google Scholar 

  • Okamoto M (1957) Asynapsis effect of chromosome V. Wheat Inform Serv 5:6

    Google Scholar 

  • Okura E (1933) A haploid plant in Portulacea grandiflora Hook. Jpn J Genet 8:251–260

    Google Scholar 

  • Ozkan H, Feldman M (2001) Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrine. Genome 44:1000–1006

    PubMed  CAS  Google Scholar 

  • Pécrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot 62:3587–3597

    PubMed  Google Scholar 

  • Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499

    PubMed  CAS  Google Scholar 

  • Peloquin SJ, Gabert AC, Ortiz R (1996) Nature of ‘pollinator’ effect in potato (Solanum tuberosum L.) haploid production. Ann Bot 77:539–542

    Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through the chromosome elimination technique. Plant Breed 124:147–153

    Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150:339–345

    CAS  Google Scholar 

  • Pratap A, Choudhary AK, Kumar J (2010) In vitro techniques towards genetic enhancement of food legumes—a review. J Food Legumes 23:169–185

    Google Scholar 

  • Pratap A, Chaudhary HK (2012) Effect of auxins on induction of polyhaploids in triticale and triticale × wheat hybrids through the chromosome elimination technique. Indian J Agric Sci 82:66–70

    CAS  Google Scholar 

  • Prieto P, Shaw P, Moore G (2004) Homologue recognition during meiosis is associated with a change in chromatin structure. Nat Cell Biol 6:906–908

    PubMed  CAS  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    PubMed  CAS  Google Scholar 

  • Ramana MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133:3–18

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centreomere-mediated genome elimination. Nature 464:615–619

    PubMed  CAS  Google Scholar 

  • Ravi M, Marimuthu MPA, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–U1110

    PubMed  CAS  Google Scholar 

  • Ressurreição F, Barão A, Viegas W, Delgado M (2012) Haploid independent unreductional meiosis in hexaploid wheat. In: Swan A (ed) Meiosis - molecular mechanisms and cytogenetic diversity. Tech Press, Dublin, pp 321–330

    Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MA, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 13:713–715

    Google Scholar 

  • Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9:259–267

    Google Scholar 

  • Rines HW, Dahleen LS (1990) Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci 30:1073–1078

    Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108:13373–13374

    CAS  Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51

    PubMed  CAS  Google Scholar 

  • Sears ER (1982) A wheat mutant conditioning an intermediate level of homoeologous pairing. Can J Genet Cytol 24:715–719

    Google Scholar 

  • Silkova OG, Shchapova AI, Shumny VK (2011) Meiotic restitution in amphihaploids in the tribe Triticeae. Russ J Genet 47:383–393

    CAS  Google Scholar 

  • Sharma HC (1995) How wide can a wide cross be? Euphytica 82:43–64

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading, MA

    Google Scholar 

  • Storme ND, Geelen D (2011) The Arabidopsis mutant jason produces unreduced FDR male gametes through a parallel/fused spindle mechanism in meiosis II. Plant Physiol 155:1403–1415

    PubMed  Google Scholar 

  • Sun GL, Yen C (1994) The ineffectiveness of the ph1b gene on chromosome association in the F1 hybrid Triticum aestivum × Psathyrostachys huashanica. Wheat Inform Serv 79:28–32

    Google Scholar 

  • Sutton T, Whitford R, Baumann U, Dong CM, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    PubMed  CAS  Google Scholar 

  • Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulations in Imperata cylindrica-mediated chromosome elimination approach. Plant Breed. doi:10.1111/j.1439-0523.2012.01986.x

    Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    PubMed  CAS  Google Scholar 

  • Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97:1076–1082

    CAS  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2008) Development of Triticum turgidum subsp. durum—Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F1 hybrids. Genome 51:757–766

    PubMed  CAS  Google Scholar 

  • Tu YQ, Sun J, Ge XH, Li ZY (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot 103:1039–1048

    PubMed  CAS  Google Scholar 

  • Uijtewaal BA, Huigen DJ, Hermsen JGT (1987) Production of potato monohaploids (2n = x = 12) through prickle pollination. Theor Appl Genet 73:751–758

    Google Scholar 

  • Veilleux R (1985) Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding. Plant Breed Rev 3:252–288

    Google Scholar 

  • Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res 18:311–328

    Google Scholar 

  • Wang CJ, Zhang LQ, Dai SF, Zheng YL, Zhang HG, Liu DC (2010) Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum × Aegilops tauschii hybrids. Euphytica 175:323–329

    Google Scholar 

  • Wang DW (2009) Wide hybridization: engineering the next leap in wheat yield. J Genet Genomics 36:509–510

    PubMed  Google Scholar 

  • Watson L, Dallwitz MJ (1994) The Grass Genera of the World, 2nd edn. CAB International, Oxforshire, UK

    Google Scholar 

  • Weissmann S, Feldman M, Gressel J (2005) Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol Biol Evol 22:2055–2062

    PubMed  CAS  Google Scholar 

  • Wilson AS (1876) On wheat and rye hybrids. Trans Proc Bot Soc Edinburgh 12:286–288

    Google Scholar 

  • Xiang ZG, Liu DC, Zheng YL, Zhang LQ, Yan ZH (2005) The effect of phKL gene on homoeologous pairing of wheat-alien hybrids is situated between gene mutants of Phl and Ph2. Hereditas (Beijing) 27:935–940 (in Chinese)

    Google Scholar 

  • Xu SJ, Dong YS (1992) Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome 35:379–384

    Google Scholar 

  • Xu SJ, Joppa LR (1995) Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome 38:607–615

    PubMed  CAS  Google Scholar 

  • Xu SJ, Joppa LR (2000) First division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed 119:233–241

    Google Scholar 

  • Yang WY, Liu DC, Li J, Zhang LQ, Wei HT, Hu XR, Zheng YL, He ZH, Zou YC (2009) Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 36:539–546

    PubMed  CAS  Google Scholar 

  • Yang YW, Zhang LQ, Yen Y, Zheng YL, Liu DC (2010) Cytological evidence on meiotic restitution in pentaploid F1 hybrids between synthetic hexaploid wheat and Aegilops variabilis. Caryologia 63:354–358

    Google Scholar 

  • Yousafzai FK, Al-Kaff N, Moore G (2010a) Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals. Funct Integr Genomics 10:157–166

    PubMed  CAS  Google Scholar 

  • Yousafzai FK, Al-Kaff N, Moore G (2010b) The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference. Funct Integr Genomics 10:147–156

    PubMed  CAS  Google Scholar 

  • Zhang L, Wang J, Zhou R, Jia J (2011a) Discovery of quantitative trait loci for crossability from a synthetic wheat genotype. J Genet Genomics 38:373–378

    PubMed  Google Scholar 

  • Zhang L, Luo J, Hao M, Zhang L, Yuan Z, Yan Z, Liu Y, Zhang B, Liu B, Liu C, Zhang H, Zheng Y, Liu D (2012) Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genet 13:69

    PubMed  Google Scholar 

  • Zhang LQ, Yen Y, Zheng YL, Liu DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20:159–166

    Google Scholar 

  • Zhang LQ, Yan ZH, Dai SF, Chen QJ, Yuan ZW, Zheng YL, Liu DC (2008a) The crossability of Triticum turgidum with Aegilops tauschii. Cereal Res Commun 37:417–427

    Google Scholar 

  • Zhang LQ, Liu DC, Lan XJ, Zheng YL, Yan ZH (2008b) A synthetic wheat with 56 chromosomes derived from Triticum turgidum and Aegilops tauschii. J Appl Genet 49:41–44

    PubMed  Google Scholar 

  • Zhang LQ, Chen QJ, Yuan ZW, Xiang ZG, Zheng YL, Liu DC (2008c) Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J Genet Genomics 35:617–623

    PubMed  Google Scholar 

  • Zhang LQ, Liu DC, Zheng YL, Yan ZH, Dai SF, Li YF, Jiang Q, Ye YQ, Yen Y (2010) Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172:285–294

    Google Scholar 

  • Zhang LQ, Zhang L, Luo JT, Chen WJ, Hao M, Liu BL, Yan ZH, Zhang B, Zhang HG, Zheng YL, Liu DC, Yen Y (2011b) Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics 38:89–94

    PubMed  Google Scholar 

  • Zheng YL, Luo MC, Yen C, Yang JL (1992) Chromosome location of a new crossability gene in common wheat. Wheat Inform Serv 75:36–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengcai Liu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, D., Zhang, H., Zhang, L., Yuan, Z., Hao, M., Zheng, Y. (2014). Distant Hybridization: A Tool for Interspecific Manipulation of Chromosomes. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_2

Download citation

Publish with us

Policies and ethics