Skip to main content

Fluorescence Lifetime Imaging (FLIM): Basic Concepts and Recent Applications

  • Chapter
  • First Online:
Advanced Time-Correlated Single Photon Counting Applications

Abstract

Fluorescence lifetime imaging (FLIM) is a key fluorescence microscopy technique to map the environment and interaction of fluorescent probes. It can report on photo physical events that are difficult or impossible to observe by fluorescence intensity imaging, because FLIM is independent of the local fluorophore concentration and excitation intensity. A FLIM application relevant for biology concerns the identification of FRET to study protein interactions and conformational changes, and FLIM can also be used to image viscosity, temperature, pH, refractive index and ion and oxygen concentrations, all at the cellular or sub-cellular level, as well as autofluorescence. The basic principles and some recent advances in the application of FLIM, FLIM instrumentation and molecular probe development will be discussed.

An erratum of this chapter can be found under DOI 10.1007/978-3-319-14929-5_21

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-14929-5_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Nature milestone website contains a wealth of information on the history and impact of optical microscopy: http://www.nature.com/milestones/milelight/index.html.

  2. 2.

    Free Photochem-CAD software to calculate R 0 from donor and acceptor spectra can be downloaded from http://photochemcad.com [96, 99].

  3. 3.

    Equation (3.5) in [391] should be the same as (3.22) here.

References

  1. Z. Ahmed, C.C. Lin, K.M. Suen, F.A. Melo, J.A. Levitt, K. Suhling, J.E. Ladbury, Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. J. Cell Biol. 200, 493–504 (2013)

    Article  CAS  Google Scholar 

  2. W.B. Amos, J.G. White, How the confocal laser scanning microscope entered biological research. Biol. Cell 95, 335–342 (2003)

    Article  CAS  Google Scholar 

  3. F. Arginelli, M. Manfredini, S. Bassoli, C. Dunsby, P. French, K. König, C. Magnoni, G. Ponti, C. Talbot, S. Seidenari, High resolution diagnosis of common nevi by multiphoton laser tomography and fluorescence lifetime imaging. Skin Res. Technol. 19, 194–204 (2013)

    Article  Google Scholar 

  4. J. Arlt, D. Tyndall, B.R. Rae, D.D.U. Li, J.A. Richardson, R.K. Henderson, A study of pile-up in integrated time-correlated single photon counting systems. Rev. Sci. Instrum. 84, 103105 (2013)

    Article  CAS  Google Scholar 

  5. E. Auksorius, B.R. Boruah, C. Dunsby, P.M.P. Lanigan, G. Kennedy, M.A.A. Neil, P.M.W. French, Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt. Lett. 33, 113–115 (2008)

    Article  Google Scholar 

  6. D. Axelrod, Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–573 (1979)

    Article  CAS  Google Scholar 

  7. D. Axelrod, Fluorescence polarization microscopy. Methods Cell Biol. 30, 333–352 (1989)

    Article  CAS  Google Scholar 

  8. B.J. Bacskai, J. Skoch, G.A. Hickey, R. Allen, B.T. Hyman, Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques. J. Biomed. Opt. 8, 368–375 (2003)

    Article  CAS  Google Scholar 

  9. A.N. Bader, S. Hoetzl, E.G. Hofman, J. Voortman, P.M.P.V.E. Henegouwen, G. van Meer, H.C. Gerritsen, Homo-FRET imaging as a tool to quantify protein and lipid clustering. ChemPhysChem 12, 475–483 (2011)

    Article  CAS  Google Scholar 

  10. A.N. Bader, E.G. Hofman, P.M.P.V.E. Henegouwen, H.C. Gerritsen, Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy. Opt. Express 15, 6934–6945 (2007)

    Article  CAS  Google Scholar 

  11. A.N. Bader, E.G. Hofman, J. Voortman, P.M.P.V.E. Henegouwen, H.C. Gerritsen, Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys. J. 97, 2613–2622 (2009)

    Article  CAS  Google Scholar 

  12. P.R. Barber, S.M. Ameer-Beg, S. Pathmananthan, M. Rowley, A.C.C. Coolen, A Bayesian method for single molecule, fluorescence burst analysis. Biomed. Opt. Express 1, 1148–1158 (2010)

    Article  CAS  Google Scholar 

  13. W.L. Barnes, Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998)

    Article  CAS  Google Scholar 

  14. A. Battisti, S. Panettieri, G. Abbandonato, E. Jacchetti, F. Cardarelli, G. Signore, F. Beltram, R. Bizzarri, Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime. Anal. Bioanal. Chem. 405, 6223–6233 (2013)

    Article  CAS  Google Scholar 

  15. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics, vol. 81 (Springer, Berlin, Heidelberg, New York, 2005)

    Google Scholar 

  16. W. Becker, The bh TCSPC Handbook, 5th edition (2012)

    Google Scholar 

  17. W. Becker, Fluorescence lifetime imaging—techniques and applications. J Micros 247, 119–136 (2012)

    Article  CAS  Google Scholar 

  18. W. Becker, A. Bergmann, Lifetime-resolved imaging in nonlinear microscopy, in Handbook of Biomedical Nonlinear Optical Microscopy, ed by B.R. Masters, P.T.C. So (Oxford University Press, Oxford, 2008)

    Google Scholar 

  19. W. Becker, A. Bergmann, C. Biskup, Multispectral fluorescence lifetime imaging by TCSPC. Microsc. Res. Tech. 70, 403–409 (2007)

    Article  CAS  Google Scholar 

  20. W. Becker, A. Bergmann, C. Biskup, T. Zimmer, N. Klöcker, K. Benndorf, Multiwavelength TCSPC lifetime imaging SPIE Proc 4620 (2002), pp. 79–84

    Google Scholar 

  21. W. Becker, A. Bergmann, E. Haustein, Z. Petrášek, P. Schwille, C. Biskup, L. Kelbauskas, K. Benndorf, N. Klöcker, T. Anhut, I. Riemann, K. König, Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc. Res. Tech. 69, 186–195 (2006)

    Article  CAS  Google Scholar 

  22. W. Becker, V. Shcheslavskiy, S. Frere, I. Slutsky, Spatially resolved recording of transient fluorescence-lifetime effects by line-scanning TCSPC. Microsc. Res. Tech. 77, 216–224 (2014)

    Google Scholar 

  23. W. Becker, V. Shcheslavskiy, Fluorescence lifetime imaging with near-infrared dyes, SPIE Proc 8588, (2013) 85880R

    Google Scholar 

  24. W. Becker, B. Su, A. Bergmann, K. Weisshart, O. Holub, Simultaneous fluorescence and phosphorescence lifetime imaging, SPIE Proc 7903, (2011), 790320

    Google Scholar 

  25. W. Becker, B. Su, O. Holub, K. Weisshart, FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc. Res. Tech. 74, 804–811 (2011)

    CAS  Google Scholar 

  26. M.J. Behne, J.W. Meyer, K.M. Hanson, N.P. Barry, S. Murata, D. Crumrine, R.W. Clegg, E. Gratton, W.M. Holleran, P.M. Elias, NHE1 regulates the stratum corneum permeability barrier homeostasis. microenvironment acidification assessed with fluorescence lifetime imaging. J. Biol. Chem. 277, 47399–47406 (2002)

    Article  CAS  Google Scholar 

  27. B. Belardi, A. delaZerda, D.R. Spiciarich, S.L. Maund, D.M. Peehl, C.R. Bertozzi, Imaging the glycosylation state of cell surface glycoproteins by two-photon fluorescence lifetime imaging microscopy. Angewandte Chemie Int. Ed. 52, 14045–14049 (2013)

    Google Scholar 

  28. M.A. Bennet, P.R. Richardson, J. Arlt, A. McCarthy, G.S. Buller, A.C. Jones, Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy. Lab Chip 11, 3821–3828 (2011)

    Article  CAS  Google Scholar 

  29. R.K.P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M.A.A. Neil, A.J. deMello, P.M.W. French, Time-resolved fluorescence imaging of solvent interactions in microfluidic devices. Opt. Express 13, 6275–6285 (2005)

    Article  CAS  Google Scholar 

  30. R.K.P. Benninger, O. Hofmann, B. Önfelt, I. Munro, C. Dunsby, D.M. Davis, M.A.A. Neil, P.M.W. French, A.J. deMello, Fluorescence lifetime imaging of DNA-due interactions within continuous flow microfluidic systems. Angewandte Chemie Int. Ed. 46, 2228–2231(2007)

    Google Scholar 

  31. R.K.P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M.A.A. Neil, P.M.W. French, A. J. deMello, Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging. Anal. Chem. 78, 2272–2278 (2006)

    Google Scholar 

  32. R.K.P. Benninger, B. Önfelt, M.A.A. Neil, D.M. Davis, P.M.W. French, Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys. J. 88, 609–622 (2005)

    Article  CAS  Google Scholar 

  33. M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010)

    Article  CAS  Google Scholar 

  34. O. Berezovska, P. Ramdya, J. Skoch, M.S. Wolfe, B.J. Bacskai, B.T. Hyman, Amyloid precursor protein associates with a nicastrin-dependent docking site on the presenilin 1-gamma-secretase complex in cells demonstrated by fluorescence lifetime imaging. J. Neurosci. 23, 4560–4566 (2003)

    CAS  Google Scholar 

  35. M. Berndt, M. Lorenz, J. Enderlein, S. Diez, Axial nanometer distances measured by fluorescence lifetime imaging microscopy. Nano Lett. 10, 1497–1500 (2010)

    Article  CAS  Google Scholar 

  36. A. Biess, E. Korkotian, D. Holcman, Barriers to diffusion in dendrites and estimation of calcium spread following synaptic inputs. PLoS Comput. Biol. 7, e1002182 (2011)

    Article  CAS  Google Scholar 

  37. C.E. Bigelow, D.L. Conover, T.H. Foster, Confocal fluorescence spectroscopy and anisotropy imaging system. Opt. Lett. 28, 695–697 (2003)

    Article  Google Scholar 

  38. C.E. Bigelow, H.D. Vishwasrao, J.G. Frelinger, T.H. Foster, Imaging enzyme activity with polarization-sensitive confocal fluorescence microscopy. J. Microsc. 215, 24–33 (2004)

    Google Scholar 

  39. D.J.S. Birch, Fluorescence detections and directions. Meas. Sci. Technol. 22, 052002 (2011)

    Article  CAS  Google Scholar 

  40. D.J.S. Birch, Multiphoton excited fluorescence spectroscopy of biomolecular systems. Spectrochim. Acta A 57, 2313–2336 (2001)

    Article  CAS  Google Scholar 

  41. D.J.S. Birch, R.E. Imhof, Time-domain fluorescence spectroscopy using time-correlated single photon counting, in Topics in Fluorescence Spectroscopy: Techniques, ed by J.R. Lakowicz (Plenum Press, New York, 1991)

    Google Scholar 

  42. D.K. Bird, K.M. Agg, N.W. Barnett, T.A. Smith, Time-resolved fluorescence microscopy of gunshot residue: an application to forensic science. J. Microsc.-Oxf. 226, 18–25 (2007)

    Article  CAS  Google Scholar 

  43. D.K. Bird, K.W. Eliceiri, C.H. Fan, J.G. White, Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl. Opt. 43, 5173–5182 (2004)

    Article  Google Scholar 

  44. D.K. Bird, L. Yan, K.M. Vrotsos, K.W. Eliceiri, E.M. Vaughan, P.J. Keely, J.G. White, N. Ramanujam, Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res. 65, 8766–8773 (2005)

    Article  CAS  Google Scholar 

  45. R.H. Bisby, S.W. Botchway, G.M. Greetham, J.A. Hadfield, A.T. McGown, A.W. Parker, K.M. Scherer, M. Towrie, Time-resolved nanosecond fluorescence lifetime imaging and picosecond infrared spectroscopy of combretastatin A-4 in solution and in cellular systems. Meas. Sci. Technol. 23 (2012) 084001.

    Google Scholar 

  46. R.H. Bisby, S.W. Botchway, J.A. Hadfield, A.T. McGown, A.W. Parker, K.M. Scherer, Fluorescence lifetime imaging of E-combretastatin uptake and distribution in live mammalian cells. Eur. J. Cancer 48, 1896–1903 (2012)

    Article  CAS  Google Scholar 

  47. C. Biskup, T. Gensch, Fluorescence lifetime imaging of ions in biological tissues, in Fluorescence Lifetime Spectroscopy and Imaging. Principles and Applications in Biomedical Diagnostics, ed by D. Elson, P.W.M. French, L. Marcu (Taylor & Francis, Boca Raton, 2014)

    Google Scholar 

  48. C. Biskup, L. Kelbauskas, T. Zimmer, K. Benndorf, A. Bergmann, W. Becker, J.P. Ruppersberg, C. Stockklausner, N. Klöcker, Interaction of PSD-95 with potassium channels visualized by fluorescence lifetime-based resonance energy transfer imaging. J. Biomed. Opt. 9, 753–759 (2004)

    Article  CAS  Google Scholar 

  49. C. Biskup, T. Zimmer, K. Benndorf, FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol. 22, 220–224 (2004)

    Article  CAS  Google Scholar 

  50. M.J. Booth, T. Wilson, Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J. Micros. 214, 36–42 (2004)

    Article  CAS  Google Scholar 

  51. J.W. Borst, M.A. Hink, A. Hoek, A.J. Visser, Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J. Fluores. 15, 153–160 (2005)

    Article  CAS  Google Scholar 

  52. J.W. Borst, A.J.W.G. Visser, Fluorescence lifetime imaging microscopy in life sciences. Meas. Sci. Technol. 21, 102002 (2010)

    Article  CAS  Google Scholar 

  53. S.W. Botchway, A.M. Lewis, C.D. Stubbs, Development of fluorophore dynamics imaging as a probe for lipid domains in model vesicles and cell membranes. Eur. Biophys. J. Biophy. 40, 131–141 (2011)

    Article  CAS  Google Scholar 

  54. A.S. Brack, B.D. Brandmeier, R.E. Ferguson, S. Criddle, R.E. Dale, M. Irving, bifunctional rhodamine probes of myosin regulatory light chain orientation in relaxed skeletal muscle fibers. Biophys. J. 86, 2329–2341 (2004)

    Article  CAS  Google Scholar 

  55. H.G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M.E. Darvin, W. Sterry, K. König, Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber. Laser Phys. Lett. 10, 025604 (2013)

    Article  CAS  Google Scholar 

  56. S.Y. Breusegem, M. Levi, N.P. Barry, Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy. Nephron J. 103, e41–e49 (2006)

    Google Scholar 

  57. T. Bruns, W.S.L. Strauss, H. Schneckenburger, Total internal reflection fluorescence lifetime and anisotropy screening of cell membrane dynamics. J. Biomed. Opt. 13, 041317 (2008)

    Article  CAS  Google Scholar 

  58. I. Bugiel, K. König, H. Wabnitz, Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution. Lasers Life Sci. 3, 47–53 (1989)

    Google Scholar 

  59. G.S. Buller, R.J. Collins, Single-photon generation and detection. Meas. Sci. Technol. 21, 012002 (2010)

    Article  CAS  Google Scholar 

  60. E.P. Buurman, R. Sanders, A. Draaijer, H.C. Gerritsen, J.J.F. van Ween, P.M. Houpt, Y.K. Levine, Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14, 155–159 (1992)

    Article  Google Scholar 

  61. N.I. Cade, G. Fruhwirth, S.J. Archibald, T. Ng, D. Richards, A cellular screening assay using analysis of metal-modified fluorescence lifetime. Biophys. J. 98, 2752–2757 (2010)

    Article  CAS  Google Scholar 

  62. N.I. Cade, G.O. Fruhwirth, T. Ng, D. Richards, Plasmon-assisted super-resolution axial distance sensitivity in fluorescence cell imaging. J. Phys. Chem. Lett. 4, 3402–3406 (2013)

    Article  CAS  Google Scholar 

  63. Z. Cao, C.C. Huang, W. Tan, Nuclease resistance of telomere-like oligonucleotides monitored in live cells by fluorescence anisotropy imaging. Anal. Chem. 78, 1478–1484 (2006)

    Article  CAS  Google Scholar 

  64. K. Carlsson, A. Liljeborg, Simultaneous confocal lifetime imaging of multiple fluorophores using the intensity-modulated multiple-wavelength scanning (IMS) technique. J. Micros. 191, 119–127 (1998)

    Article  CAS  Google Scholar 

  65. K. Carlsson, A. Liljeborg, R.M. Andersson, H. Brismar, Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance. J Micros 199, 106–114 (2000)

    Article  CAS  Google Scholar 

  66. A. Celli, S. Sanchez, M. Behne, T. Hazlett, E. Gratton, T. Mauro, The epidermal Ca2+ gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys. J. 98, 911–921 (2010)

    Article  CAS  Google Scholar 

  67. F.T.S. Chan, C.F. Kaminski, G.S. Kaminski Schierle, HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. ChemPhysChem 12, 500–509 (2011)

    Google Scholar 

  68. A. Chatterjee, B. Maity, D. Seth, Torsional dynamics of thioflavin T in room-temperature ionic liquids: an effect of heterogeneity of the medium. ChemPhysChem 14, 3400–3409 (2013)

    Article  CAS  Google Scholar 

  69. Y. Chen, J.D. Mills, A. Periasamy, Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71, 528–541 (2003)

    Article  CAS  Google Scholar 

  70. S.N. Cheng, R.M. Cuenca, B.A. Liu, B.H. Malik, J.M. Jabbour, K.C. Maitland, J. Wright, Y.S.L. Cheng, J.A. Jo, Handheld multispectral fluorescence lifetime imaging system for in vivo applications. Biomed. Opt. Express 5, 921–931 (2014)

    Article  Google Scholar 

  71. A.I. Chizhik, J. Rother, I. Gregor, A. Janshoff, J. Enderlein, Metal-induced energy transfer for live cell nanoscopy. Nat. Photon 8, 124–127 (2014)

    Article  CAS  Google Scholar 

  72. H. Choi, D.S. Tzeranis, J.W. Cha, P. Clemenceau, S.J.G. de Jong, L.K. van Geest, J.H. Moon, I.V. Yannas, P.T.C. So, 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation. Opt. Express 20, 26219–26235 (2012)

    Article  Google Scholar 

  73. D. Chorvat, A. Chorvatova, Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Laser Phys. Lett. 6, 175–193 (2009)

    Article  CAS  Google Scholar 

  74. D. Chorvat, A. Chorvatova, Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur. Biophys. J. Biophy. 36, 73–83 (2006)

    Article  Google Scholar 

  75. D.M. Chudakov, M.V. Matz, S. Lukyanov, K.A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010)

    Article  CAS  Google Scholar 

  76. R. Cicchi, F.S. Pavone, Non-linear fluorescence lifetime imaging of biological tissues. Anal. Bioanal. Chem. 400, 2687–2697 (2011)

    Article  CAS  Google Scholar 

  77. A.H. Clayton, Q.S. Hanley, P.J. Verveer, Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J. Micros. 213, 1–5 (2004)

    Article  CAS  Google Scholar 

  78. A.H.A. Clayton, Q.S. Hanley, D.J. Arndt-Jovin, V. Subramaniam, T.M. Jovin, Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 83, 1631–1649 (2002)

    Article  CAS  Google Scholar 

  79. P.B. Coates, Origins of afterpulses in photomultipliers. J. Phys. D-Appl. Phys. 6, 1159–1166 (1973)

    Article  CAS  Google Scholar 

  80. M.J. Cole, J. Siegel, S.E.D. Webb, R. Jones, K. Dowling, P.M.W. French, M.J. Lever, L.O.D. Sucharov, M.A.A. Neil, R. Juškaitis, T. Wilson, Whole-field optically sectioned fluorescence lifetime imaging. Opt. Lett. 25, 1361–1363 (2000)

    Article  CAS  Google Scholar 

  81. D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, L. Toniolo, Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. Appl. Opt. 43, 2175–2183 (2004)

    Article  Google Scholar 

  82. D. Comelli, G. Valentini, R. Cubeddu, L. Toniolo, Fluorescence lifetime imaging and fourier transform infrared spectroscopy of Michelangelo’s David. Appl. Spectrosc. 59, 1174–1181 (2005)

    Article  CAS  Google Scholar 

  83. M.W. Conklin, P.P. Provenzano, K.W. Eliceiri, R. Sullivan, P.J. Keely, Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem. Biophys. 53, 145–157 (2009)

    Article  CAS  Google Scholar 

  84. M. Cotlet, J. Hofkens, M. Maus, T. Gensch, M. van der Auweraer, J. Michiels, G. Dirix, M. van Guyse, J. Vanderleyden, A.J.W.G. Visser, F.C. de Schryver, Excited state dynamics in the enhanced green fluorescent protein mutant probed by picosecond time-resolved single photon counting spectroscopy. J. Phys. Chem. B 105, 4999–5006 (2001)

    Article  CAS  Google Scholar 

  85. S. Cox, G.E. Jones, Imaging cells at the nanoscale. Int. J. Biochem. Cell B 45, 1669–1678 (2013)

    Article  CAS  Google Scholar 

  86. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, Fluorescence lifetime imaging: an application to the detection of skin tumors. IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999)

    Article  CAS  Google Scholar 

  87. T.T. Cui-Wang, C. Hanus, T. Cui, T. Helton, J. Bourne, D. Watson, K.M. Harris, M.D. Ehlers, Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 148, 309–321 (2012)

    Article  CAS  Google Scholar 

  88. R.E. Dale, J. Eisinger, W.E. Blumberg, The orientational freedom of molecular probes. Biophys. J. 26, 161–194 (1979)

    Article  CAS  Google Scholar 

  89. Y. Dancik, A. Favre, C.J. Loy, A.V. Zvyagin, M.S. Roberts, Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo. J. Biomed. Opt. 18, 26022 (2013)

    Article  CAS  Google Scholar 

  90. P. De Beule, D.M. Owen, H.B. Manning, C.B. Talbot, J. Requejo-Isidro, C. Dunsby, J. McGinty, R.K.P. Benninger, D.S. Elson, I. Munro, M.J. Lever, P. Anand, M.A.A. Neil, P.M.W. French, Rapid hyperspectral fluorescence lifetime imaging. Microsc. Res. Tech. 70, 481–484 (2007)

    Article  Google Scholar 

  91. H. Deschout, K. Raemdonck, J. Demeester, S. De Smedt, K. Braeckmans, FRAP in pharmaceutical research: practical guidelines and applications in drug delivery. Pharm. Res. 31, 255–270 (2014)

    Article  CAS  Google Scholar 

  92. V. Devauges, C. Marquer, S. Lecart, J.C. Cossec, M.C. Potier, E. Fort, K. Suhling, S. Lévêque-Fort, Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS ONE 7, e44434 (2012)

    Article  CAS  Google Scholar 

  93. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  94. M.A. Digman, V.R. Caiolfa, M. Zamai, E. Gratton, The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–L16 (2008)

    Article  CAS  Google Scholar 

  95. J.A. Dix, A.S. Verkman, Mapping of fluorescence anisotropy in living cells by ratio imaging. Applications to cytoplasmic viscosity. Biophys. J. 57, 231–240 (1990)

    Article  CAS  Google Scholar 

  96. J.M. Dixon, M. Taniguchi, J.S. Lindsey, PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations. Photochem. Photobiol. 81, 212–213 (2005)

    Article  CAS  Google Scholar 

  97. C.G. Dos Remedios, P.D.J. Moens, Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J. Struct. Biol. 115, 175–185 (1995)

    Article  Google Scholar 

  98. K. Dowling, S.C.W. Hyde, J.C. Dainty, P.M.W. French, J.D. Hares, 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt. Commun. 135, 27–31 (1997)

    Article  CAS  Google Scholar 

  99. H. Du, R.C.A. Fuh, J. Li, L.A. Corkan, J.S. Lindsey, PhotochemCAD: a computer-aided design and research tool in photochemistry. Photochem. Photobiol. 68, 141–142 (1998)

    CAS  Google Scholar 

  100. R.R. Duncan, Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells. Biochem. Soc. Trans. 34, 679–682 (2006)

    Article  CAS  Google Scholar 

  101. C. Dunsby, P.M.P. Lanigan, J. McGinty, D.S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Önfelt, D.M. Davis, M.A.A. Neil, P.M.W. French, An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy. J. Phys. D-Appl. Phys. 37, 3296–3303 (2004)

    Article  CAS  Google Scholar 

  102. A.M. Edmonds, M.A. Sobhan, V.K.A. Sreenivasan, E.A. Grebenik, J.R. Rabeau, E.M. Goldys, A.V. Zvyagin, Nano-Ruby: a promising fluorescent probe for background-free cellular imaging. Part Part Syst. Char. 30, 506–513 (2013)

    Article  CAS  Google Scholar 

  103. A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, M. Alden, Fluorescence lifetime imaging in a flame. P. Combust. Inst. 33, 807–813 (2011)

    Article  CAS  Google Scholar 

  104. A. Einstein, Strahlungsemission und -absorption nach der Quantentheorie. Berichte der Deutschen Physikalischen Gesellschaft 13–14, 3128–3323 (1916)

    Google Scholar 

  105. A. Einstein, Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18, 121–128 (1917)

    CAS  Google Scholar 

  106. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)

    Article  CAS  Google Scholar 

  107. J. Eisinger, R.E. Dale, Interpretation of intramolecular energy transfer experiments. J. Mol. Biol. 84, 643–647 (1974)

    Article  CAS  Google Scholar 

  108. A.D. Elder, C.F. Kaminski, J.H. Frank, φ2 FLIM: a technique for alias-free frequency domain fluorescence lifetime imaging. Opt. Express 17, 23181–23203 (2009)

    Article  CAS  Google Scholar 

  109. A.D. Elder, S.M. Matthews, J. Swartling, K. Yunus, J.H. Frank, C.M. Brennan, A.C. Fisher, C.F. Kaminski, The application of frequency-domain fluorescence lifetime imaging microscopy as a quantitative analytical tool for microfluidic devices. Opt. Express 14, 5456–5467 (2006)

    Article  CAS  Google Scholar 

  110. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, P. French, Time-domain fluorescence lifetime imaging applied to biological tissue. Photoch. Photobio. Sci. 3, 795–801 (2004)

    Article  CAS  Google Scholar 

  111. D.S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G.W. Stamp, M.A.A. Neil, M.J. Lever, P.A. Kellett, A. Dymoke-Bradshaw, J. Hares, P.M.W. French, Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier. New J. Phys. 6, 180 (2004)

    Article  Google Scholar 

  112. E.L. Elson, Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011)

    Article  CAS  Google Scholar 

  113. V. Emiliani, D. Sanvitto, M. Tramier, T. Piolot, Z. Petrášek, K. Kemnitz, C. Duneux, M. Coppey-Moisan, Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Appl. Phys. Lett. 83, 2471–2473 (2003)

    Article  CAS  Google Scholar 

  114. A. Esposito, Beyond range: innovating fluorescence microscopy. Remote Sens-Basel 4, 111–119 (2012)

    Article  Google Scholar 

  115. A. Esposito, A.N. Bader, S.C. Schlachter, D.J. van den Heuvel, G.S. Kaminski Schierle, A.R. Venkitaraman, C.F. Kaminski, H.C. Gerritsen, Design and application of a confocal microscope for spectrally resolved anisotropy imaging. Opt. Express 19, 2546–2555 (2011)

    Google Scholar 

  116. A. Esposito, H.C. Gerritsen, F.S. Wouters, Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. J. Opt. Soc. Am. A 24, 3261 (2007)

    Article  Google Scholar 

  117. A.D. Estrada, A. Ponticorvo, T.N. Ford, A.K. Dunn, Microvascular oxygen quantification using two-photon microscopy. Opt. Lett. 33, 1038–1040 (2008)

    Article  CAS  Google Scholar 

  118. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.C. Arnault, A. Thorel, J.P. Boudou, P.A. Curmi, F. Treussart, Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009)

    Article  CAS  Google Scholar 

  119. S.M. Fernandez, R.D. Berlin, Cell-surface distribution of lectin receptors determined by resonance energy-transfer. Nature 264, 411–415 (1976)

    Article  CAS  Google Scholar 

  120. F. Festy, S.M. Ameer-Beg, T. Ng, K. Suhling, Imaging proteins in vivo using fluorescence lifetime microscopy. Mol. BioSyst. 3, 381–391 (2007)

    Article  CAS  Google Scholar 

  121. O.S. Finikova, A.Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R.M. Hochstrasser, S.A. Vinogradov, Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9, 1673–1679 (2008)

    Article  CAS  Google Scholar 

  122. E. Fiserova, M. Kubala, Mean fluorescence lifetime and its error. J. Lumines. 132, 2059–2064 (2012)

    Article  CAS  Google Scholar 

  123. J.J. Fisz, Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy. J. Phys. Chem. A 111, 12867–12870 (2007)

    Article  CAS  Google Scholar 

  124. J.J. Fisz, Another treatment of fluorescence polarization microspectroscopy and imaging. J. Phys. Chem. A 113, 3505–3516 (2009)

    Article  CAS  Google Scholar 

  125. J.J. Fisz, Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy. J. Phys. Chem. A 111, 8606–8621 (2007)

    Article  CAS  Google Scholar 

  126. D. Fixler, Y. Namer, Y. Yishay, M. Deutsch, Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments. IEEE Trans. Biomed. Eng. 53, 1141–1152 (2006)

    Article  Google Scholar 

  127. T. Förster, Energiewanderung und Fluoreszenz, Naturwissenschaften 33, 166–175, translated into English by K. Suhling, J. Biomed. Opt. 17, 011002 (2012)

    Google Scholar 

  128. T. Förster, G. Hoffmann, Die Viskositätsabhängigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme. Zeitschrift für Physikalische Chemie Neue Folge 75, 63–76 (1971)

    Article  Google Scholar 

  129. E. Fort, S. Gresillon, Surface enhanced fluorescence. J. Phys. D-Appl. Phys. 41, 013001 (2008)

    Article  CAS  Google Scholar 

  130. T.H. Foster, B.D. Pearson, S. Mitra, C.E. Bigelow, Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope. Photochem. Photobiol. 81, 1544–1547 (2005)

    Article  CAS  Google Scholar 

  131. T. French, P.T.C. So, D.J. Weaver, T. Coelho-Sampaio, E. Gratton, E.W. Voss, J. Carrero, Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Micros. 185, 339–353 (1997)

    Article  CAS  Google Scholar 

  132. G.O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, F. Festy, Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells. Opt. Express 18, 11148–11158 (2010)

    Article  CAS  Google Scholar 

  133. K. Funk, A. Woitecki, C. Franjic-Wurtz, T. Gensch, F. Mohrlen, S. Frings, Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol. Pain 4, 32 (2008)

    Article  CAS  Google Scholar 

  134. B.M. Gadella, T.W.J. Gadella, B. Colenbrander, L.M.G. Van Golde, Visualization and quantification of glycolipid polarity dynamics in the plasma membrane of the mammalian spermatozoon. J. Cell Sci. 107, 2151–2163 (1994)

    CAS  Google Scholar 

  135. B.M. Gadella, M. Lopez-Cardozo, L.M.G. Van Golde, B. Colenbrander, Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event in boar spermatozoa. J. Cell Sci. 108, 935–945 (1995)

    CAS  Google Scholar 

  136. T.W.J. Gadella, T.M. Jovin, R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM)—spatial resolution of structures on the nanosecond timescale. Biophys. Chem. 48, 221–239 (1993)

    Article  CAS  Google Scholar 

  137. C.G. Galbraith, J.A. Galbraith, Super-resolution microscopy at a glance. J. Cell Sci. 124, 1607–1611 (2011)

    Article  CAS  Google Scholar 

  138. N.P. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D.S. Elson, M.A.A. Neil, A.C. Chu, P.M.W. French, G.W. Stamp, Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Brit. J. Dermatol. 159, 152–161 (2008)

    Article  CAS  Google Scholar 

  139. S. Ganguly, A.H.A. Clayton, A. Chattopadhyay, Fixation alters fluorescence lifetime and anisotropy of cells expressing EYFP-tagged serotonin(1A) receptor. Biochem. Biophys. Res. Commun. 405, 234–237 (2011)

    Article  CAS  Google Scholar 

  140. I. Gautier, M. Tramier, C. Durieux, J. Coppey, R.B. Pansu, J.C. Nicolas, K. Kemnitz, M. Coppey-Moisan, Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys. J. 80, 3000–3008 (2001)

    Article  CAS  Google Scholar 

  141. E. Gaviola, Die Abklingungszeiten der Fluoreszenz von Farbstofflösungen. Ann. Phys.-Berlin 386, 681–710 (1926)

    Google Scholar 

  142. M.L. Gee, L. Lensun, T.A. Smith, C.A. Scholes, Time-resolved evanescent wave-induced fluorescence anisotropy for the determination of molecular conformational changes of proteins at an interface. Eur. Biophys. J. Biophy. 33, 130–139 (2004)

    Article  CAS  Google Scholar 

  143. H.C. Gerritsen, N.A.H. Asselbergs, A.V. Agronskaia, W.G.J.H.M. Van Sark, Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Micros. 206, 218–224 (2002)

    Google Scholar 

  144. H.C. Gerritsen, R. Sanders, A. Draaijer, C. Ince, Y.K. Levine, Fluorescence lifetime imaging of oxygen in living cells. J. Fluores. 7, 11–16 (1997)

    Article  CAS  Google Scholar 

  145. K.P. Ghiggino, J.A. Hutchison, S.J. Langford, M.J. Latter, M.A.P. Lee, P.R. Lowenstern, C. Scholes, M. Takezaki, B.E. Wilman, Porphyrin-based molecular rotors as fluorescent probes of nanoscale environments. Adv. Funct. Mater. 17, 805–813 (2007)

    Article  CAS  Google Scholar 

  146. V.V. Ghukasyan, F.J. Kao, Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide. J. Phys. Chem. C 113, 11532–11540 (2009)

    Article  CAS  Google Scholar 

  147. D. Gilbert, C. Franjic-Wurtz, K. Funk, T. Gensch, S. Frings, F. Mohrlen, Differential maturation of chloride homeostasis in primary afferent neurons of the somatosensory system. Int. J. Dev. Neurosci. 25, 479–489 (2007)

    Article  CAS  Google Scholar 

  148. A.V. Gohar, R.F. Cao, P. Jenkins, W.Y. Li, J.P. Houston, K.D. Houston, Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry. Biomed. Opt. Express 4, 1390–1400 (2013)

    Article  CAS  Google Scholar 

  149. E.M. Goldys, Fluorescence Applications in Biotechnology and Life Sciences (Wiley-Backwell, Hoboken, 2009)

    Google Scholar 

  150. O. Golfetto, E. Hinde, E. Gratton, Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013)

    Article  CAS  Google Scholar 

  151. A.H. Gough, D.L. Taylor, Fluorescence anisotropy imaging microscopy maps calmodulin-binding during cellular contraction and locomotion. J. Cell Biol. 121, 1095–1107 (1993)

    Article  CAS  Google Scholar 

  152. C.C. Gradinaru, D.O. Marushchak, M. Samim, U.J. Krull, Fluorescence anisotropy: from single molecules to live cells. Analyst 135, 452–459 (2010)

    Article  CAS  Google Scholar 

  153. E.M. Graham, K. Iwai, S. Uchiyama, A.P. de Silva, S.W. Magennis, A.C. Jones, Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy. Lab Chip 10, 1267–1273 (2010)

    Article  CAS  Google Scholar 

  154. D.M. Grant, W. Zhang, E.J. McGhee, T.D. Bunney, C.B. Talbot, S. Kumar, I. Munro, C. Dunsby, M.A.A. Neil, M. Katan, P.M.W. French, Multiplexed FRET to image multiple signaling events in live cells. Biophys. J. 95, L69–L71 (2008)

    Article  CAS  Google Scholar 

  155. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, N. Barry, Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt. 8, 381–390 (2003)

    Article  Google Scholar 

  156. H.E. Grecco, K.A. Lidke, R. Heintzmann, D.S. Lidke, C. Spagnuolo, O.E. Martinez, E.A. Jares-Erijman, T.M. Jovin, Ensemble and single particle photophysical proper-ties (Two-Photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Tech. 65, 169–179 (2004)

    Article  CAS  Google Scholar 

  157. M. Green, Semiconductor quantum dots as biological imaging agents. Angew. Chem. 43, 4129–4131 (2004)

    Article  CAS  Google Scholar 

  158. M. Green, P. Howes, C. Berry, O. Argyros, M. Thanou, Simple conjugated polymer nanoparticles as biological labels. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 2751–2759 (2009)

    Article  CAS  Google Scholar 

  159. K. Greger, M.J. Neetz, E.G. Reynaud, E.H.K. Stelzer, Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt. Express 19, 20743–20750 (2011)

    Article  CAS  Google Scholar 

  160. J. Gu, C.Y. Fu, B.K. Ng, S. Gulam Razul, S.K. Lim, Quantitative diagnosis of cervical neoplasia using fluorescence lifetime imaging on haematoxylin and eosin stained tissue sections, J. Biophotonics 7, 483–491 (2013)

    Article  CAS  Google Scholar 

  161. K.I. Gutkowski, M.L. Japas, P.F. Aramendia, Fluorescence of dicyanovinyl julolidine in a room-temperature ionic liquid. Chem. Phys. Lett. 426, 329–333 (2006)

    Article  CAS  Google Scholar 

  162. T. Ha, T.A. Laurence, D.S. Chemla, S. Weiss, Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103, 6839–6850 (1999)

    Article  CAS  Google Scholar 

  163. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009)

    Article  CAS  Google Scholar 

  164. M. Haidekker, T.P. Brady, D. Lichlyter, E.A. Theodorakis, A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. 128, 398–399 (2006)

    Article  Google Scholar 

  165. M.A. Haidekker, T. Ling, M. Anglo, H.Y. Stevens, J.A. Frangos, E.A. Theodorakis, New fluorescent probes for the measurement of cell membrane viscosity. Chem. Biol. 8, 123–131 (2001)

    Article  CAS  Google Scholar 

  166. M.A. Haidekker, M. Nipper, A. Mustafic, D. Lichlyter, M. Dakanali, E.A. Theodorakis, Dyes with segmental mobility: molecular rotors, in Advanced Fluorescence Reporters in Chemistry and Biology I. Fundamentals and Molecular Design, ed by A.P. Demchenko (Springer, Berlin, 2010), pp. 267–308

    Google Scholar 

  167. M.A. Haidekker, E.A. Theodorakis, Molecular rotors-fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 5, 1669–1678 (2007)

    Article  CAS  Google Scholar 

  168. M.A. Haidekker, A.G. Tsai, T. Brady, H.Y. Stevens, J.A. Frangos, E. Theodorakis, M. Intaglietta, A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors, Am. J. Physiol.-Heart Circul. Physiol. 282, H1609–H1614 (2002)

    Google Scholar 

  169. Q.S. Hanley, D.J. Arndt-Jovin, T.M. Jovin, Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spectrosc. 56, 155–166 (2002)

    Article  CAS  Google Scholar 

  170. Q.S. Hanley, A.H. Clayton, AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers. J. Micros. 218, 62–67 (2005)

    Article  CAS  Google Scholar 

  171. Q.S. Hanley, V. Subramaniam, D.J. Arndt-Jovin, T.M. Jovin, Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression. Cytometry 43, 248–260 (2001)

    Article  CAS  Google Scholar 

  172. K.M. Hanson, M.J. Behne, N.P. Barry, T.M. Mauro, E. Gratton, R.M. Clegg, Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83, 1682–1690 (2002)

    Article  CAS  Google Scholar 

  173. A.G. Harpur, F.S. Wouters, P.I. Bastiaens, Imaging FRET between spectrally similar GFP molecules in single cells. Nat. Biotechnol. 19, 167–169 (2001)

    Article  CAS  Google Scholar 

  174. H. Harris, The Birth of the Cell (Yale University Press, New Haven, 1999)

    Google Scholar 

  175. E.N. Harvey, A History of Luminescence from the Earliest Times Until 1900 (American Philosophical Society, Philadelphia, 1957)

    Book  Google Scholar 

  176. J. Hedstrom, S. Sedarus, F.G. Prendergast, Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer. Biochemistry 27, 6203–6208 (1988)

    Article  CAS  Google Scholar 

  177. A.A. Heikal, S.T. Hess, W.W. Webb, Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specificity. Chem. Phys. 274, 37–55 (2001)

    Article  CAS  Google Scholar 

  178. R. Heintzmann, G. Ficz, Breaking the resolution limit in light microscopy. Briefings Funct. Genomics Proteomics 5, 289–301 (2006)

    Article  Google Scholar 

  179. B. Herman, P. Wodnicki, S. Kwon, A. Periasamy, G.W. Gordon, N. Mahajan, W. Xue Feng, Recent developments in monitoring calcium and protein interactions in cells using fluorescence lifetime microscopy. J. Fluores. 7, 85–92 (1997)

    Google Scholar 

  180. A.M. Heskes, C.N. Lincoln, J.Q.D. Goodger, I.E. Woodrow, T.A. Smith, Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities. J. Micros. 247, 33–42 (2012)

    Article  CAS  Google Scholar 

  181. C. Hille, M. Berg, L. Bressel, D. Munzke, P. Primus, H.G. Löhmannsröben, C. Dosche, Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues. Anal. Bioanal. Chem. 391, 1871–1879 (2008)

    Article  CAS  Google Scholar 

  182. S. Hirayama, D. Phillips, Correction for refractive index in the comparison of radiative lifetimes in vapour and solution phases. J. Photochem. 12, 139–145 (1980)

    Article  CAS  Google Scholar 

  183. L.M. Hirvonen, F. Festy, K. Suhling, Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution. Opt. Lett. 39, 5602–5605 (2014)

    Article  Google Scholar 

  184. L.M. Hirvonen, T.A. Smith, Imaging on the nanoscale: super-resolution fluorescence microscopy. Aust. J. Chem. 64, 41–45 (2011)

    Article  CAS  Google Scholar 

  185. N.A. Hosny, D.A. Lee, M.M. Knight, Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations. J. Biomed. Opt. 17, 016007 (2012)

    Article  CAS  Google Scholar 

  186. N.A. Hosny, G. Mohamedi, P. Rademeyer, J. Owen, Y. Wu, M.X. Tang, R.J. Eckersley, E. Stride, M.K. Kuimova, Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proc. Natl. Acad. Sci. USA 110, 9225–9230 (2013)

    Article  CAS  Google Scholar 

  187. B. Hötzer, R. Ivanov, S. Altmeier, R. Kappl, G. Jung, Determination of copper(II) ion concentration by lifetime measurements of green fluorescent protein. J. Fluoresc. 21, 2143–2153 (2011)

    Article  CAS  Google Scholar 

  188. B. Hötzer, R. Ivanov, T. Brumbarova, P. Bauer, G. Jung, Visualization of Cu2+uptake and release in plant cells by fluorescence lifetime imaging microscopy. FEBS J. 279, 410–419 (2012)

    Article  CAS  Google Scholar 

  189. S.S. Howard, A. Straub, N.G. Horton, D. Kobat, C. Xu, Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy. Nat. Photonics 7, 33–37 (2013)

    Article  CAS  Google Scholar 

  190. P. Howes, M. Green, J. Levitt, K. Suhling, M. Hughes, Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. J. Am. Chem. Soc. 132, 3989–3996 (2010)

    Article  CAS  Google Scholar 

  191. P.D. Howes, R. Chandrawati, M.M. Stevens, Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014)

    Google Scholar 

  192. S. Hrabetova, Extracellular diffusion is fast and isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices. Hippocampus 15, 441–450 (2005)

    Article  Google Scholar 

  193. G. Hungerford, A. Allison, D. McLoskey, M.K. Kuimova, G. Yahioglu, K. Suhling, Monitoring Sol-to-Gel transitions via fluorescence lifetime determination using viscosity sensitive fluorescent probes. J. Phys. Chem. B 113, 12067–12074 (2009)

    Article  CAS  Google Scholar 

  194. G. Hungerford, D.J.S. Birch, Single-photon timing detectors for fluorescence lifetime spectroscopy. Meas. Sci. Technol. 7, 121–135 (1996)

    Article  CAS  Google Scholar 

  195. J. Hunt, A.H. Keeble, R.E. Dale, M.K. Corbett, R.L. Beavil, J. Levitt, M.J. Swann, K. Suhling, S. Ameer-Beg, B.J. Sutton, A.J. Beavil, A fluorescent biosensor reveals conformational changes in human immunoglobulin E Fc. implications for mechanisms of receptor binding, inhibition and allergen recognition. J. Biol. Chem. 287, 17459–17470 (2012)

    Article  CAS  Google Scholar 

  196. A.A. Istratov, O.F. Vyvenko, Exponential analysis in physical phenomena. Rev. Sci. Instrum. 70, 1233–1257 (1999)

    Article  CAS  Google Scholar 

  197. A. Jablonski, Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren. Z. Phys. 94, 38–46 (1935)

    Article  CAS  Google Scholar 

  198. O. Jagutzki, A. Cerezo, A. Czasch, R. Dörner, M. Hattass, M. Huang, V. Mergel, U. Spillmann, K. Ullmann-Pfleger, T. Weber, H. Schmidt-Böcking, G.D.W. Smith, Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477–2483 (2002)

    Article  Google Scholar 

  199. D.M. Jameson, J.A. Ross, Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 110, 2685–2708 (2010)

    Article  CAS  Google Scholar 

  200. E.A. Jares-Erijman, T.M. Jovin, FRET imaging. Nat. Biotechnol. 21, 1387–1396 (2003)

    Article  CAS  Google Scholar 

  201. L. Joosen, M.A. Hink, T.W.J. Gadella, J. Goedhart, Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins. J. Micros. 256, 166–176 (2014)

    Google Scholar 

  202. T.M. Jovin, D.J. Arndt-Jovin, FRET microscopy: digital imaging of fluorescence resonance energy transfer, in Cell structure and function by microspectrofluorometry, ed by E. Kohen, J.G. Hirschberg, J.S. Ploem (Academic Press, London, 1989), pp. 99–117

    Google Scholar 

  203. G. Jung, Y.Z. Ma, B.S. Prall, G.R. Fleming, Ultrafast fluorescence depolarisation in the yellow fluorescent protein due to its dimerisation. ChemPhysChem 6, 1628–1632 (2005)

    Article  CAS  Google Scholar 

  204. C. Jüngst, M. Klein, A. Zumbusch, Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes. J. Lipid Res. 54, 3419–3429 (2013)

    Article  CAS  Google Scholar 

  205. G.S. KaminskiSchierle, C.W. Bertoncini, F.T.S. Chan, A.T. van der Goot, S. Schwedler, J. Skepper, S. Schlachter, T. van Ham, A. Esposito, J.R. Kumita, E.A.A. Nollen, C.M. Dobson, C.F. Kaminski, A FRET sensor for non-invasive imaging of amyloid formation in vivo. Chemphyschem 12, 673–680 (2011)

    Google Scholar 

  206. H. Kaneko, I. Putzier, S. Frings, U.B. Kaupp, T. Gensch, Chloride accumulation in mammalian olfactory sensory neurons. J. Neurosci. 24, 7931–7938 (2004)

    Article  CAS  Google Scholar 

  207. M. Kasha, Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)

    Article  Google Scholar 

  208. V. Katsoulidou, A. Bergmann, W. Becker, How fast can TCSPC FLIM be made? in SPIE Proc 6771, (2007), B7710

    Google Scholar 

  209. S. Kawata, Y. Inouye, T. Ichimura, Near-field optics and spectroscopy for molecular nano-imaging. Sci. Prog. 87, 25–49 (2004)

    Article  CAS  Google Scholar 

  210. S.M. Keating, T.G. Wensel, Nanosecond fluorescence microscopy. Emission kinetics of fura-2 in single cells. Biophys. J. 59, 186–202 (1991)

    Article  CAS  Google Scholar 

  211. M. Köllner, J. Wolfrum, How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200, 199–204 (1992)

    Article  Google Scholar 

  212. K. König, H. Schneckenburger, R. Hibst, Time-gated in vivo autofluorescence imaging of dental caries. Cell. Mol. Biol. 45, 233–239 (1999)

    Google Scholar 

  213. M. Koshioka, K. Sasaki, H. Masuhara, Time-dependent fluorescence depolarization analysis in 3-dimensional microspectroscopy. Appl. Spectrosc. 49, 224–228 (1995)

    Article  CAS  Google Scholar 

  214. S.V. Koushik, S.S. Vogel, Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Förster resonance energy transfer measurements. J. Biomed. Opt. 13, 031204 (2008)

    Article  CAS  Google Scholar 

  215. M. Kress, T. Meier, R. Steiner, F. Dolp, R. Erdmann, U. Ortmann, A. Rück, Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes. J. Biomed. Opt. 8, 26–32 (2003)

    Article  CAS  Google Scholar 

  216. R.V. Krishnan, E. Biener, J.H. Zhang, R. Heckel, B. Herman, Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy. Appl. Phys. Lett. 83, 4658–4660 (2003)

    Article  CAS  Google Scholar 

  217. R.V. Krishnan, A. Masuda, V.E. Centonze, B. Herman, Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera. J. Biomed. Opt. 8, 362–367 (2003)

    Article  CAS  Google Scholar 

  218. R.V. Krishnan, H. Saitoh, H. Terada, V.E. Centonze, B. Herman, Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev. Sci. Instrum. 74, 2714–2721 (2003)

    Article  CAS  Google Scholar 

  219. K.V. Kuchibhotla, C.R. Lattarulo, B.T. Hyman, B.J. Bacskai, Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009)

    Article  CAS  Google Scholar 

  220. M.K. Kuimova, Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 14, 12671–12686 (2012)

    Article  CAS  Google Scholar 

  221. M.K. Kuimova, Molecular rotors image intracellular viscosity. Chimia 66, 159–165 (2012)

    Article  CAS  Google Scholar 

  222. M.K. Kuimova, S.W. Botchway, A.W. Parker, M. Balaz, H.A. Collins, H.L. Anderson, K. Suhling, P.R. Ogilby, Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 1, 69–73 (2009)

    Article  CAS  Google Scholar 

  223. M.K. Kuimova, G. Yahioglu, J.A. Levitt, K. Suhling, Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 130, 6672–6673 (2008)

    Article  CAS  Google Scholar 

  224. F. Kukita, Solvent effects on squid sodium channels are attributable to movements of a flexible protein structure in gating currents and to hydration in a pore. J. Physiol.-London 522, 357–373 (2000)

    Google Scholar 

  225. C.E. Kung, J.K. Reed, Fluorescent molecular rotors—a new class of probes for tubulin structure and assembly. Biochemistry 28, 6678–6686 (1989)

    Article  CAS  Google Scholar 

  226. C.E. Kung, J.K. Reed, Microsviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 25, 6114–6121 (1986)

    Article  CAS  Google Scholar 

  227. Y. Kuo, T.-Y. Hsu, Y.-C. Wu, J.-H. Hsu, H.-C. Chang, Fluorescence lifetime imaging microscopy of nanodiamonds in vivo, in SPIE Proc 8635 (2013), 863503

    Google Scholar 

  228. E.S. Kwak, T.J. Kang, D.A.V. Bout, Fluorescence lifetime imaging with near-field scanning optical microscopy. Anal. Chem. 73, 3257–3262 (2001)

    Article  CAS  Google Scholar 

  229. M. Lahn, C. Dosche, C. Hille, Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl changes in cockroach salivary acinar cells. Am. J. Physiol.-Cell Physiol. 300, C1323–C1336 (2011)

    Article  CAS  Google Scholar 

  230. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  231. J.R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005)

    Article  CAS  Google Scholar 

  232. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, K.W. Berndt, M. Johnson, Fluorescence lifetime imaging. Anal. Biochem. 202, 316–330 (1992)

    Article  CAS  Google Scholar 

  233. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, M.L. Johnson, Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium 13, 131–147 (1992)

    Article  CAS  Google Scholar 

  234. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, M.L. Johnson, Fluorescence lifetime imaging of free and protein-bound NADH. Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992)

    Article  CAS  Google Scholar 

  235. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, W.J. Lederer, Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium 15, 7–27 (1994)

    Article  CAS  Google Scholar 

  236. K.Y. Law, Fluorescence probe for micro-environments—a new probe for micelle solvent parameters and premicellar aggregates. Photochem. Photobiol. 33, 799–806 (1981)

    Article  CAS  Google Scholar 

  237. M.D. Lesoine, S. Bose, J.W. Petrich, E.A. Smith, Supercontinuum stimulated emission depletion fluorescence lifetime imaging. J. Phys. Chem. B 116, 7821–7826 (2012)

    Article  CAS  Google Scholar 

  238. S. Lévêque-Fort, D.N. Papadopoulos, S. Forget, F. Balembois, P. Georges, Fluorescence lifetime imaging with a low-repetition-rate passively mode-locked diodepumped Nd:YVO4 oscillator. Opt. Lett. 30, 168–170 (2005)

    Article  Google Scholar 

  239. J.A. Levitt, P.H. Chung, D.R. Alibhai, K. Suhling, Simultaneous measurements of fluorescence lifetimes, anisotropy and FRAP recovery curves, in SPIE Proc 7902 (2011), 79020Y

    Google Scholar 

  240. J.A. Levitt, P.H. Chung, M.K. Kuimova, G. Yahioglu, Y. Wang, J.L. Qu, K. Suhling, Fluorescence anisotropy of molecular rotors. Chemphyschem 12, 662–672 (2011)

    Article  CAS  Google Scholar 

  241. J.A. Levitt, M.K. Kuimova, G. Yahioglu, P.H. Chung, K. Suhling, D. Phillips, Membrane-bound molecular rotors measure viscosity in live cells via fluorescence lifetime imaging. J. Phys. Chem. C 113, 11634–11642 (2009)

    Article  CAS  Google Scholar 

  242. J.A. Levitt, D.R. Matthews, S.M. Ameer-Beg, K. Suhling, Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr. Opin. Biotechnol. 20, 28–36 (2009)

    Article  CAS  Google Scholar 

  243. Q. Li, T. Ruckstuhl, S. Seeger, Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules. J. Phys. Chem. B 108, 8324–8329 (2004)

    Article  CAS  Google Scholar 

  244. W. Li, Y. Wang, H.R. Shao, Y.H. He, H. Ma, Probing rotation dynamics of biomolecules using polarization based fluorescence microscopy. Microsc. Res. Tech. 70, 390–395 (2007)

    Article  CAS  Google Scholar 

  245. G. Liaugaudas, A.T. Collins, K. Suhling, G. Davies, R. Heintzmann, Luminescence-lifetime mapping in diamond. J. Phys.: Condens. Matter 21, 364210 (2009)

    Google Scholar 

  246. G. Liaugaudas, G. Davies, K. Suhling, R.U.A. Khan, D.J.F. Evans, Luminescence lifetimes of neutral nitrogen-vacancy centres in synthetic diamond containing nitrogen. J. Phys.-Condes. Matter 24, 435503 (2012)

    Google Scholar 

  247. D.S. Lidke, P. Nagy, B.G. Barisas, R. Heintzmann, J.N. Post, K.A. Lidke, A.H.A. Clayton, D.J. Arndt-Jovin, T.M. Jovin, Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans. 31, 1020–1027 (2003)

    Article  CAS  Google Scholar 

  248. H.J. Lin, P. Herman, J.R. Lakowicz, Fluorescence lifetime-resolved pH imaging of living cells. Cytometry 52A, 77–89 (2003)

    Article  Google Scholar 

  249. L.L. Lin, J.E. Grice, M.K. Butler, A.V. Zvyagin, W. Becker, T.A. Robertson, H.P. Soyer, M.S. Roberts, T.W. Prow, Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm. Res. 28, 2920–2930 (2011)

    Article  CAS  Google Scholar 

  250. P.Y. Lin, S.S. Lee, C.S. Chang, F.J. Kao, Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay. Opt. Express 20, 11445–11450 (2012)

    Article  Google Scholar 

  251. P.Y. Lin, Y.C. Lin, C.S. Chang, F.J. Kao, Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution. Jpn. J. Appl. Phys. 52, 028004(2013)

    Google Scholar 

  252. L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, H. Niu, Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy. Appl. Phys. B-Lasers Opt. 84, 379–383 (2006)

    Article  CAS  Google Scholar 

  253. P. Loison, N.A. Hosny, P. Gervais, D. Champion, M.K. Kuimova, J.M. Perrier-Cornet, Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: a molecular rotor/FLIM study. Biochim. Biophys. Acta 1828, 2436–2443 (2013)

    Article  CAS  Google Scholar 

  254. R.O. Loutfy, Fluorescence probes for polymer free-volume. Pure Appl. Chem. 58, 1239–1248 (1986)

    Article  CAS  Google Scholar 

  255. R.O. Loutfy, B.A. Arnold, Effect of viscosity and temperature on torsional relaxation of molecular rotors. J. Phys. Chem. 86, 4205–4211 (1982)

    Article  CAS  Google Scholar 

  256. J. Lu, C.L. Liotta, C.A. Eckert, Spectroscopically probing microscopic solvent properties of room-temperature ionic liquids with the addition of carbon dioxide. J. Phys. Chem. A 107, 3995–4000 (2003)

    Article  CAS  Google Scholar 

  257. K. Luby-Phelps, S. Mujumdar, R. Mujumdar, L.A. Ernst, W. Galbraith, A.S. Waggoner, A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasma. Biophys. J. 65, 236–242 (1993)

    Article  CAS  Google Scholar 

  258. Y.J. Ma, P. Rajendran, C. Blum, Y. Cesa, N. Gartmann, D. Bruhwiler, V. Subramaniam, Microspectroscopic analysis of green fluorescent proteins infiltrated into mesoporous silica nanochannels. J. Colloid Interface Sci. 356, 123–130 (2011)

    Article  CAS  Google Scholar 

  259. S.W. Magennis, E.M. Graham, A.C. Jones, Quantitative spatial mapping of mixing in microfluidic systems. Angew. Chem. Int. Ed. 44, 6512–6516 (2005)

    Article  CAS  Google Scholar 

  260. M. Magzoub, H. Zhang, J.A. Dix, A.S. Verkman, Extracellular space volume measured by two-color pulsed dye infusion with microfiberoptic fluorescence photodetection. Biophys. J. 96, 2382–2390 (2009)

    Article  CAS  Google Scholar 

  261. M. Malley, A heated controversy on cold light. Arch. Hist. Exact. Sci. 42, 173–186 (1991)

    Article  Google Scholar 

  262. S. Mao, R.K.P. Benninger, Y.L. Yan, C. Petchprayoon, D. Jackson, C.J. Easley, D.W. Piston, G. Marriott, Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94, 4515–4524 (2008)

    Article  CAS  Google Scholar 

  263. L. Marcu, P.M.W. French, D. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  264. B.R. Masters, P.T.C. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412 (1997)

    Article  CAS  Google Scholar 

  265. D.R. Matthews, L.M. Carlin, E. Ofo, P.R. Barber, B. Vojnovic, M. Irving, T. Ng, S.M. Ameer-Beg, Time-lapse FRET microscopy using fluorescence anisotropy. J. Microsc. 237, 51–62 (2010)

    Article  CAS  Google Scholar 

  266. A.L. Mattheyses, A.D. Hoppe, D. Axelrod, Polarized fluorescence resonance energy transfer microscopy. Biophys. J. 87, 2787–2797 (2004)

    Article  CAS  Google Scholar 

  267. M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F.C. De Schryver, J. Schaffer, C.A.M. Seidel, An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal. Chem. 73, 2078–2086 (2001)

    Article  CAS  Google Scholar 

  268. A. Mayevsky, B. Chance, Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7, 330–339 (2007)

    Article  CAS  Google Scholar 

  269. G. McConnell, J.M. Girkin, S.M. Ameer-Beg, P.R. Barber, B. Vojnovic, T. Ng, A. Banerjee, T.F. Watson, R.J. Cook, Time-correlated single-photon counting fluorescence lifetime confocal imaging of decayed and sound dental structures with a white-light supercontinuum source. J. Microsc. 225, 126–136 (2007)

    Article  CAS  Google Scholar 

  270. B.J. McCranor, H. Szmacinski, H.H. Zeng, A.K. Stoddard, T. Hurst, C.A. Fierke, J.R. Lakowicz, R.B. Thompson, Fluorescence lifetime imaging of physiological free Cu(II) levels in live cells with a Cu(II)-selective carbonic anhydrase-based biosensor. Metallomics 6, 1034–1042 (2014)

    Article  CAS  Google Scholar 

  271. J. McGinty, D.W. Stuckey, V.Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D.J. Wells, S.R. Arridge, P.M.W. French, J.V. Hajnal, A. Sardini, In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse. Biomed. Opt. Express 2, 1907–1917 (2011)

    Article  CAS  Google Scholar 

  272. D.A. Mendels, E.M. Graham, S.W. Magennis, A.C. Jones, F. Mendels, Quantitative comparison of thermal and solutal transport in a T-mixer by FLIM and CFD. Microfluid. Nanofluid. 5, 603–617 (2008)

    Article  CAS  Google Scholar 

  273. X. Michalet, A. Cheng, J. Antelman, M. Suyama, K. Arisaka, S. Weiss, Hybrid photodetector for single-molecule spectroscopy and microscopy, in SPIE Proc 6862 (2008), 68620F

    Google Scholar 

  274. X. Michalet, R.A. Colyer, J. Antelman, O.H.W. Siegmund, A. Tremsin, J.V. Vallerga, S. Weiss, Single-quantum dot imaging with a photon counting camera. Curr. Pharm. Biotechnol. 10, 543–558 (2009)

    Article  CAS  Google Scholar 

  275. X. Michalet, R.A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J.E. Millaud, S. Weiss, O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, S. Cova, Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos. Trans. R. Soc. B 368, 20120035 (2013)

    Article  CAS  Google Scholar 

  276. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Article  CAS  Google Scholar 

  277. X. Michalet, O.H.W. Siegmund, J. Vallerga, P. Jelinsky, J.E. Millaud, S. Weiss, Detectors for single-molecule fluorescence imaging and spectroscopy. J. Mod. Opt. 54, 239–281 (2007)

    Article  Google Scholar 

  278. X. Michalet, O.H.W. Siegmund, J.V. Vallerga, P. Jelinsky, J.E. Millaud, S. Weiss, Photon-counting H33D detector for biological fluorescence imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 567, 133–136 (2006)

    Article  CAS  Google Scholar 

  279. M. Micic, D.H. Hu, Y.D. Suh, G. Newton, M. Romine, H.P. Lu, Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells. Colloid Surf. B 34, 205–212 (2004)

    Article  CAS  Google Scholar 

  280. M.Y. Min, D.A. Rusakov, D.M. Kullmann, Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21, 561–570 (1998)

    Article  CAS  Google Scholar 

  281. T. Minami, S. Hirayama, High quality fluorescence decay curves and lifetime imaging using an elliptical scan streak camera. J. Photochem. Photobiol. A 53, 11–21 (1990)

    Article  CAS  Google Scholar 

  282. A.C. Mitchell, J.E. Wall, J.G. Murray, C.G. Morgan, Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging. J. Micros. 206, 225–232 (2002)

    Article  CAS  Google Scholar 

  283. A.C. Mitchell, J.E. Wall, J.G. Murray, C.G. Morgan, Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera. J. Micros. 206, 233–238 (2002)

    Article  CAS  Google Scholar 

  284. A. Miyawaki, J. Llopis, R. Helm, J.M. McCaffery, J.A. Adams, M. Ikura, R.Y. Tsien, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997)

    Article  CAS  Google Scholar 

  285. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010)

    Article  CAS  Google Scholar 

  286. H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, J. Zyss, Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA. Biophys. J. 97, 2348–2357 (2009)

    Article  CAS  Google Scholar 

  287. C.G. Morgan, A.C. Mitchell, J.G. Murray, Nanosecond time-resolved fluorescence microscopy: principles and practice. Proc. Roy. Microscop. Soc. 1, 463–466 (1990)

    Google Scholar 

  288. G.A. Morton, H.M. Smith, R. Wasserman, Afterpulses in photomultipliers. IEEE Trans. Nucl. Sci. 14, 443–448 (1967)

    Article  CAS  Google Scholar 

  289. H. Murakoshi, H. Wang, R. Yasuda, Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472, 100–104 (2011)

    Article  CAS  Google Scholar 

  290. S. Murata, P. Herman, J.R. Lakowicz, Texture analysis of fluorescence lifetime images of AT- and GC- rich regions in nuclei. J. Histochem. Cytochem. 49, 1443–1451 (2001)

    Article  CAS  Google Scholar 

  291. S. Murata, P. Herman, J.R. Lakowicz, Texture analysis of fluorescence lifetime images of nuclear DNA with effect of fluorescence resonance energy transfer. Cytometry 43, 94–100 (2001)

    Article  CAS  Google Scholar 

  292. S. Murata, P. Herman, H.J. Lin, J.R. Lakowicz, Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer. Cytometry 41, 178–185 (2000)

    Article  CAS  Google Scholar 

  293. T. Nakabayashi, I. Nagao, M. Kinjo, Y. Aoki, M. Tanaka, N. Ohta, Stress-induced environmental changes in a single cell as revealed by fluorescence lifetime imaging. Photoch. Photobio. Sci. 7, 671–674 (2008)

    Article  CAS  Google Scholar 

  294. T. Nakabayashi, H.P. Wang, M. Kinjo, N. Ohta, Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements. Photoch. Photobio. Sci. 7, 668–670 (2008)

    Article  CAS  Google Scholar 

  295. F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7, 3588–3591 (2007)

    Article  CAS  Google Scholar 

  296. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P.I. Bastiaens, P.J. Parker, Imaging protein kinase C alpha activation in cells. Science 283, 2085–2089 (1999)

    Article  CAS  Google Scholar 

  297. T.A. Nguyen, P. Sarkar, J.V. Veetil, S.V. Koushik, S.S. Vogel, Fluorescence polarization and fluctuation analysis monitors subunit proximity, stoichiometry, and protein complex hydrodynamics. PLoS ONE 7, e38209 (2012)

    Article  CAS  Google Scholar 

  298. T. Ni, L.A. Melton, Two-dimensional gas-phase temperature measurements using fluorescence lifetime imaging. Appl. Spectrosc. 50, 1112–1116 (1996)

    Article  CAS  Google Scholar 

  299. C. Nicholson, J.M. Phillips, A.R. Gardner-Medwin, Diffusion from an iontophoretic point source in the brain—role of tortuosity and volume fraction. Brain Res. 169, 580–584 (1979)

    Article  CAS  Google Scholar 

  300. C. Nicholson, L. Tao, Hindered diffusion of high-molecular-weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J. 65, 2277–2290 (1993)

    Article  CAS  Google Scholar 

  301. T.A. Nielsen, D.A. DiGregorio, R.A. Silver, Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42, 757–771 (2004)

    Article  CAS  Google Scholar 

  302. M.E. Nipper, M. Dakanali, E.A. Theodorakis, M.A. Haidekker, Detection of liposome membrane viscosity perturbations with ratiometric molecular rotors. Biochimie 93, 988–994 (2010)

    Article  CAS  Google Scholar 

  303. M.E. Nipper, S. Majd, M. Mayer, J.C. Lee, E.A. Theodorakis, M.A. Haidekker, Characterization of changes in the viscosity of lipid membranes with the molecular rotor FCVJ. Biochim. Biophys. Acta 1778, 1148–1153 (2008)

    Article  CAS  Google Scholar 

  304. G. Nishimura, M. Tamura, Artefacts in the analysis of temporal response functions measured by photon counting. Phys. Med. Biol. 50, 1327–1342 (2005)

    Article  Google Scholar 

  305. D.V. O’Connor, D. Phillips, Time-Correlated Single-Photon Counting (Academic Press, London, 1984)

    Google Scholar 

  306. S. Ogikubo, T. Nakabayashi, T. Adachi, M.S. Islam, T. Yoshizawa, M. Kinjo, N. Ohta, Intracellular pH sensing using autofluorescence lifetime microscopy. J. Phys. Chem. B 115, 10385–10390 (2011)

    Article  CAS  Google Scholar 

  307. P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010)

    Article  CAS  Google Scholar 

  308. K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012)

    Article  CAS  Google Scholar 

  309. A. Orte, J.M. Alvarez-Pez, M.J. Ruedas-Rama, Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 7, 6387–6395 (2013)

    Article  CAS  Google Scholar 

  310. D.M. Owen, P.M.P. Lanigan, C. Dunsby, I. Munro, D. Grant, M.A.A. Neil, P.M.W. French, A.I. Magee, Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive Dye di-4-ANEPPDHQ in model membranes and live cells. Biophys. J. 90, L80–L82 (2006)

    Article  CAS  Google Scholar 

  311. D.M. Owen, C. Rentero, A. Magenau, A. Abu-Siniyeh, K. Gaus, Quantitative imaging of membrane lipid order in cells and organisms. Nat. Protoc. 7, 24–35 (2012)

    Article  CAS  Google Scholar 

  312. J.M. Paredes, M.D. Giron, M.J. Ruedas-Rama, A. Orte, L. Crovetto, E.M. Talavera, R. Salto, J.M. Alvarez-Pez, Real-Time phosphate sensing in living cells using fluorescence lifetime imaging microscopy (FLIM). J. Phys. Chem. B 117, 8143–8149 (2013)

    Article  CAS  Google Scholar 

  313. R. Patalay, C. Talbot, Y. Alexandrov, M.O. Lenz, S. Kumar, S. Warren, I. Munro, M.A.A. Neil, K. König, P.M.W. French, A. Chu, G.W.H. Stamp, C. Dunsby, Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas. PLoS ONE 7, e43460 (2012)

    Article  CAS  Google Scholar 

  314. A. Paul, A. Samanta, Free Volume dependence of the internal rotation of a molecular rotor probe in room temperature ionic liquids. J. Phys. Chem. B 112, 16626–16632 (2008)

    Article  CAS  Google Scholar 

  315. S. Pelet, M.J.R. Previte, P.T.C. So, Comparing the quantification of Förster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. J. Biomed. Opt. 11, 034017 (2006)

    Article  CAS  Google Scholar 

  316. X. Peng, Z. Yang, J. Wang, J. Fan, Y. He, F. Song, B. Wang, S. Sun, J. Qu, J. Qi, M. Yan, Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 133, 6626–6635 (2011)

    Article  CAS  Google Scholar 

  317. R. Pepperkok, A. Squire, S. Geley, P.I.H. Bastiaens, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr. Biol. 9, 269–272 (1999)

    Article  CAS  Google Scholar 

  318. D. Perrais, N. Ropert, Altering the concentration of GABA in the synaptic cleft potentiates miniature IPSCs in rat occipital cortex. Euro. J. Neurosci. 12, 400–404 (2000)

    Article  CAS  Google Scholar 

  319. M. Peter, S.M. Ameer-Beg, Imaging molecular interactions by multiphoton FLIM. Biol. Cell 96, 231–236 (2004)

    Article  CAS  Google Scholar 

  320. Z. Petrášek, H.J. Eckert, K. Kemnitz, Wide-field photon counting fluorescence lifetime imaging microscopy: application to photosynthesizing systems. Photosynth. Res. 102, 157–168 (2009)

    Article  CAS  Google Scholar 

  321. J. Philip, K. Carlsson, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J. Opt. Soc. Am. A 20, 368–379 (2003)

    Article  Google Scholar 

  322. J.C. Pickup, Z.L. Zhi, F. Khan, T. Saxl, D.J.S. Birch, Nanomedicine and its potential in diabetes research and practice. Diabetes-Metab. Res. 24, 604–610 (2008)

    Article  CAS  Google Scholar 

  323. R. Piet, L. Vargova, E. Sykova, D.A. Poulain, S.H.R. Oliet, Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl. Acad. Sci. U. S. A. 101, 2151–2155 (2004)

    Article  CAS  Google Scholar 

  324. A. Pietraszewska-Bogiel, T.W.J. Gadella, FRET microscopy: from principle to routine technology in cell biology. J. Micros. 241, 111–118 (2011)

    Article  CAS  Google Scholar 

  325. D.W. Piston, Fluorescence anisotropy of protein complexes in living cells. Biophys. J. 99, 1685–1686 (2010)

    Article  CAS  Google Scholar 

  326. A. Pliss, L.L. Zhao, T.Y. Ohulchanskyy, J.L. Qu, P.N. Prasad, Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression. ACS. Chem. Biol. 7, 1385–1392 (2012)

    Article  CAS  Google Scholar 

  327. G.B. Porter, Reversible energy-transfer. Theor. Chim. Acta 24, 265–270 (1972)

    Article  CAS  Google Scholar 

  328. P.P. Provenzano, K.W. Eliceiri, P.J. Keely, Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metastas. 26, 357–370 (2009)

    Article  CAS  Google Scholar 

  329. J.L. Qu, L.X. Liu, D.N. Chen, Z.Y. Lin, G.X. Xu, B.P. Guo, H.B. Niu, Temporally and spectrally resolved sampling imaging with a specially designed streak camera. Opt. Lett. 31, 368–370 (2006)

    Article  Google Scholar 

  330. G.I. Redford, R.M. Clegg, Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J. Fluores. 15, 805–815 (2005)

    Article  CAS  Google Scholar 

  331. G.I. Redford, Z.K. Majumdar, J.D.B. Sutin, R.M. Clegg, Properties of microfluidic turbulent mixing revealed by fluorescence lifetime imaging. J. Chem. Phys. 123, 224504 (2005)

    Article  CAS  Google Scholar 

  332. J.E. Reeve, A.D. Corbett, I. Boczarow, T. Wilson, H. Bayley, H.L. Anderson, Probing the orientational distribution of dyes in membranes through multiphoton microscopy. Biophys. J. 103, 907–917 (2012)

    Article  CAS  Google Scholar 

  333. A. Rei, G. Hungerford, M.I.C. Ferreira, Probing local effects in silica sol-gel media by fluorescence spectroscopy of p-DASPMI. J. Phys. Chem. B 112, 8832–8839 (2008)

    Article  CAS  Google Scholar 

  334. J. Requejo-Isidro, J. McGinty, I. Munro, D.S. Elson, N.P. Galletly, M.J. Lever, M.A.A. Neil, G.W.H. Stamp, P.M.W. French, P.A. Kellett, J.D. Hares, A.K.L. Dymoke-Bradshaw, High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt. Lett. 29, 2249–2251 (2004)

    Article  CAS  Google Scholar 

  335. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)

    Article  CAS  Google Scholar 

  336. M.A. Rizzo, D.W. Piston, High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys. J. 88, L14–L16 (2005)

    Article  CAS  Google Scholar 

  337. M.J. Roberti, T.M. Jovin, E. Jares-Erijman, Confocal fluorescence anisotropy and FRAP imaging of alpha-synuclein amyloid aggregates in living cells. PLoS ONE 6, e23338 (2011)

    Article  CAS  Google Scholar 

  338. T. Robinson, P. Valluri, H.B. Manning, D.M. Owen, I. Munro, C.B. Talbot, C. Dunsby, J.F. Eccleston, G.S. Baldwin, M.A.A. Neil, A.J. de Mello, P.M.W. French, Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging. Opt. Lett. 33, 1887–1889 (2008)

    Article  Google Scholar 

  339. C. Rodenbücher, T. Gensch, W. Speier, U. Breuer, M. Pilch, H. Hardtdegen, M. Mikulics, E. Zych, R. Waser, K. Szot, Inhomogeneity of donor doping in SrTiO3 substrates studied by fluorescence-lifetime imaging microscopy. Appl. Phys. Lett. 103, 162904 (2013)

    Article  CAS  Google Scholar 

  340. M.I. Rowley, P.R. Barber, A.C.C. Coolen, B. Vojnovic, Bayesian analysis of fluorescence lifetime imaging data, SPIE Proc 7903, (2011), 790325

    Google Scholar 

  341. C. Rumble, K. Rich, G. He, M. Maroncelli, CCVJ is not a simple rotor probe. J. Phys. Chem. A 116, 10786–10792 (2012)

    Article  CAS  Google Scholar 

  342. D.A. Rusakov, L.P. Savtchenko, K.Y. Zheng, J.M. Henley, Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci. 34, 359–369 (2011)

    Article  CAS  Google Scholar 

  343. A.G. Ryder, T.J. Glynn, M. Przyjalgowski, B. Szczupak, A compact violet diode laser-based fluorescence lifetime microscope. J. Fluores. 12, 177–180 (2002)

    Article  CAS  Google Scholar 

  344. Y. Sakai, S. Hirayama, A Fast deconvolution method to analyze fluorescence decays when the excitation pulse repetition period is less than the decay times. J. Lumines. 39, 145–151 (1988)

    Article  CAS  Google Scholar 

  345. W.Y. Sanchez, C. Obispo, E. Ryan, J.E. Grice, M.S. Roberts, Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging. J. Biomed. Opt. 18, 034016 (2012)

    Google Scholar 

  346. W.Y. Sanchez, T.W. Prow, W.H. Sanchez, J.E. Grice, M.S. Roberts, Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J. Biomed. Opt. 15, 046008 (2010)

    Article  CAS  Google Scholar 

  347. R. Sanders, A. Draaijer, H.C. Gerritsen, P.M. Houpt, Y.K. Levine, Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal. Biochem. 227, 302–308 (1995)

    Article  CAS  Google Scholar 

  348. R. Sanders, H.C. Gerritsen, A. Draaijer, P.M. Houpt, Y.K. Levine, Fluorescence lifetime imaging of free calcium in single cells. Bioimaging 2, 131–138 (1994)

    Article  CAS  Google Scholar 

  349. F. Santamaria, S. Wils, E. De Schutter, G.J. Augustine, Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006)

    Article  CAS  Google Scholar 

  350. M. Sauer, J. Hofkens, J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging (Wiley-VCH, Weinheim, 2011)

    Book  Google Scholar 

  351. L.P. Savtchenko, D.A. Rusakov, Extracellular diffusivity determines contribution of high-versus low-affinity receptors to neural signaling. Neuroimage 25, 101–111 (2005)

    Article  Google Scholar 

  352. L.P. Savtchenko, S. Sylantyev, D.A. Rusakov, Central synapses release a resource-efficient amount of glutamate. Nat. Neurosci. 16, 10–16 (2013)

    Article  CAS  Google Scholar 

  353. T. Saxl, F. Khan, M. Ferla, D. Birch, J. Pickup, A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 136, 968–972 (2011)

    Article  CAS  Google Scholar 

  354. T. Saxl, F. Khan, D.R. Matthews, Z.L. Zhi, O. Rolinski, S. Ameer-Beg, J. Pickup, Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosens. Bioelectron. 24, 3229–3234 (2009)

    Article  CAS  Google Scholar 

  355. K.C. Schuermann, H.E. Grecco, flatFLIM: enhancing the dynamic range of frequency domain FLIM. Opt. Express 20, 20730–20741 (2012)

    Article  Google Scholar 

  356. D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E.R. Gaillard, E.R. Gaillard, In vivo measurement of time-resolved autofluorescence at the human fundus. J. Biomed. Opt. 9, 1214–1222 (2004)

    Article  Google Scholar 

  357. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, Towards metabolic mapping of the human retina. Microsc. Res. Tech. 70, 410–419 (2007)

    Article  CAS  Google Scholar 

  358. A.D. Scully, A.J. Mac Robert, S. Botchway, P. O’Neill, A.W. Parker, R.B. Ostler, D. Phillips, Development of a laser-based fluorescence microscope with subnanosecond time resolution. J. Fluores. 6, 119–125 (1996)

    Google Scholar 

  359. S. Seidenari, F. Arginelli, C. Dunsby, P. French, K. König, C. Magnoni, M. Manfredini, C. Talbot, G. Ponti, Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non-invasive diagnostics. Exp. Dermatol. 21, 831–836 (2012)

    Article  Google Scholar 

  360. N. Sergent, J.A. Levitt, M. Green, K. Suhling, Rapid wide-field photon counting imaging with microsecond time resolution. Opt. Express 18, 25292–25298 (2010)

    Article  CAS  Google Scholar 

  361. N.C. Shaner, G.H. Patterson, M.W. Davidson, Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260 (2007)

    Article  CAS  Google Scholar 

  362. N.C. Shaner, P.A. Steinbach, R.Y. Tsien, A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005)

    Article  CAS  Google Scholar 

  363. P. Sharma, R. Varma, R.C. Sarasij, Ira, K. Gousset, G. Krishnamoorthy, M. Rao, S. Mayor, Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004)

    Google Scholar 

  364. T. Shibuya, The refractive index correction to the radiative rate constant. Chem. Phys. Lett. 103(1), 46–48 (1983)

    Article  CAS  Google Scholar 

  365. J. Siegel, D.S. Elson, S.E.D. Webb, K.C.B. Lee, A. Vlandas, G.L. Gambaruto, S. Lévêque-Fort, M.J. Lever, P.J. Tadrous, G.W.H. Stamp, Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl. Opt. 42, 2995–3004 (2003)

    Article  Google Scholar 

  366. A. Sillen, Y. Engelborghs, The correct use of “average” fluorescence parameters. Photochem. Photobiol. 67, 475–486 (1998)

    CAS  Google Scholar 

  367. M.C. Skala, K.M. Riching, D.K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, P.J. Keely, N. Ramanujam, In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt. 12, 024014 (2007)

    Article  CAS  Google Scholar 

  368. M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA. 104, 19494–19499 (2007)

    Article  CAS  Google Scholar 

  369. A.D. Slepkov, A. Ridsdale, H.N. Wan, M.H. Wang, A.F. Pegoraro, D.J. Moffatt, J.P. Pezacki, F.J. Kao, A. Stolow, Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy. J. Biomed. Opt. 16, 021103 (2011)

    Article  Google Scholar 

  370. G.E. Smith, The invention and early history of the CCD. Nucl. Instrum. Meth. A 607, 1–6 (2009)

    Article  CAS  Google Scholar 

  371. T.A. Smith, M.L. Gee, C.A. Scholes, Time-resolved evanescent wave-induced fluorescence anisotropy measurements, in Reviews in Fluorescence, ed by C.D.Geddes, J.R. Lakowicz (Springer, New York, 2005), pp. 245–271

    Google Scholar 

  372. J.A. Spitz, V. Polard, A. Maksimenko, F. Subra, C. Baratti-Elbaz, R. Meallet-Renault, R.B. Pansu, P. Tauc, C. Auclair, Assessment of cellular actin dynamics by measurement of fluorescence anisotropy. Anal. Biochem. 367, 95–103 (2007)

    Article  CAS  Google Scholar 

  373. J.A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.J. Vachon, R. Meallet-Renault, R.B. Pansu, Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy. J. Micros. 229, 104–114 (2008)

    Article  CAS  Google Scholar 

  374. A. Squire, P.J. Verveer, O. Rocks, P.I.H. Bastiaens, Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J. Struct. Biol. 147, 62–69 (2004)

    Article  CAS  Google Scholar 

  375. V.K.A. Sreenivasan, A.V.Zvyagin, E.M. Goldys, Luminescent nanoparticles and their applications in the life sciences. J. Phys.-Condes. Matter 25, 194101 (2013)

    Google Scholar 

  376. R. Steinmeyer, G.S. Harms, Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor. Microsc. Res. Tech. 72, 12–21 (2009)

    Article  CAS  Google Scholar 

  377. O. Stern, M. Volmer, Über die Abklingungszeit der Fluoreszenz. Physikalische Zeitschrift 20, 183–188 (1919)

    CAS  Google Scholar 

  378. G.G. Stokes, On the change of refrangibility of light. Philos. Trans. R. Soc. London 142, 463–562 (1852)

    Article  Google Scholar 

  379. G.G. Stokes, On the change of refrangibility of light II. Phil. Trans. R. Soc. London 143, 385–396 (1853)

    Article  Google Scholar 

  380. M. Straub, S.W. Hell, Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope. Appl. Phys. Lett. 73, 1769–1771 (1998)

    Article  CAS  Google Scholar 

  381. S.J. Strickler, R.A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–820 (1962)

    Article  CAS  Google Scholar 

  382. C. Stringari, A. Cinquin, O. Cinquin, M.A. Digman, P.J. Donovan, E. Gratton, Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc. Natl. Acad. Sci. USA 108, 13582–13587 (2011)

    Article  CAS  Google Scholar 

  383. C. Stringari, R.A. Edwards, K.T. Pate, M.L. Waterman, P.J. Donovan, E. Gratton, Metabolic trajectory of cellular differentiation in small intestine by phasor fluorescence lifetime microscopy of NADH. Sci. Rep. 2, 568 (2012)

    Article  CAS  Google Scholar 

  384. L. Stryer, Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978)

    Article  CAS  Google Scholar 

  385. L. Stryer, R.P. Haugland, Energy Transfer: A spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726 (1967)

    Article  CAS  Google Scholar 

  386. H. Studier, K. Weisshart, O. Holub, and W. Becker, Megapixel FLIM, (SPIE Proc 8948, (2014), 89481 K

    Google Scholar 

  387. K. Suhling, Fluorescence lifetime imaging, in Cell Imaging, ed by D. Stephens (Scion, Bloxham, 2006), pp. 219–245

    Google Scholar 

  388. K. Suhling, R.W. Airey, B.L. Morgan, Optimisation of centroiding algorithms for photon event counting imaging. Nucl. Instrum. Methods A 437, 393–418 (1999)

    Article  CAS  Google Scholar 

  389. K. Suhling, P.M.W. French, D. Phillips, Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 4, 13–22 (2005)

    Article  CAS  Google Scholar 

  390. K. Suhling, G. Hungerford, R.W. Airey, B.L. Morgan, A position-sensitive photon event counting detector applied to fluorescence imaging of dyes in sol-gel matrices. Meas. Sci. Technol. 12, 131–141 (2001)

    Article  CAS  Google Scholar 

  391. K. Suhling, J. Levitt, P.H. Chung, Time-resolved fluorescence anisotropy imaging, in Methods in Molecular Biology, ed by Y. Engelborghs, A.J.W.G. Visser (Springer Science + Business Media, New York, 2014), pp. 503–519

    Google Scholar 

  392. K. Suhling, D. McLoskey, D.J.S. Birch, Multiplexed single-photon counting. II. The statistical theory of time-correlated measurements. Rev. Sci. Instrum. 67, 2238–2246 (1996)

    Article  CAS  Google Scholar 

  393. K. Suhling, J. Siegel, P.M.P. Lanigan, S. Lévêque-Fort, S.E.D. Webb, D. Phillips, D.M. Davis, P.M.W. French, Time-resolved fluorescence anisotropy imaging applied to live cells. Opt. Lett. 29, 584–586 (2004)

    Article  Google Scholar 

  394. K. Suhling, J. Siegel, D. Phillips, P.M.W. French, S. Lévêque-Fort, S.E.D. Webb, D.M. Davis, Imaging the environment of green fluorescent protein. Biophys. J. 83, 3589–3595 (2002)

    Article  CAS  Google Scholar 

  395. Y.H. Sun, N. Hatami, M. Yee, J. Phipps, D.S. Elson, F. Gorin, R.J. Schrot, L. Marcu, Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J. Biomed. Opt. 15, 056022 (2010)

    Article  CAS  Google Scholar 

  396. K. Svoboda, D.W. Tank, W. Denk, Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996)

    Article  CAS  Google Scholar 

  397. R. Swaminathan, C.P. Hoang, A.S. Verkman, Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997)

    Article  CAS  Google Scholar 

  398. E. Sykova, C. Nicholson, Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008)

    Article  CAS  Google Scholar 

  399. H. Szmacinski, J.R. Lakowicz, Fluorescence lifetime characterization of magnesium probes: improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry. J. Fluores. 6, 83–85 (1996)

    Article  CAS  Google Scholar 

  400. H. Szmacinski, J.R. Lakowicz, Potassium and sodium measurements at clinical concentrations using phase-modulation fluorometry. Sens. Actuator B-Chem. 60, 8–18 (1999)

    Article  CAS  Google Scholar 

  401. H. Szmacinski, J.R. Lakowicz, Sodium Green as a potential probe for intracellular sodium imaging based on fluorescence lifetime. Anal. Biochem. 250, 131–138 (1997)

    Article  CAS  Google Scholar 

  402. P.J. Tadrous, J. Siegel, P.M.W. French, S. Shousha, E.N. Lalani, G.W. Stamp, Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer. J. Pathol. 199, 309–317 (2003)

    Article  Google Scholar 

  403. R. Teixeira, P.M.R. Paulo, A.S. Viana, S.M.B. Costa, Plasmon-enhanced emission of a phthalocyanine in polyelectrolyte films induced by gold nanoparticles. J. Phys. Chem. C 115, 24674–24680 (2011)

    Article  CAS  Google Scholar 

  404. J. Tellinghuisen, C.W. Wilkerson, Bias and precision in the estimation of exponential decay parameters from sparse data. Anal. Chem. 65, 1240–1246 (1993)

    Article  CAS  Google Scholar 

  405. C. Thaler, S.V. Koushik, P.S. Blank, S.S. Vogel, Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys. J. 89, 2736–2749 (2005)

    Article  CAS  Google Scholar 

  406. C. Thaler, S.V. Koushik, H.L. Puhl, P.S. Blank, S.S. Vogel, Structural rearrangement of CaMKII alpha catalytic domains encodes activation. Proc. Natl. Acad. Sci. USA 106, 6369–6374 (2009)

    Article  CAS  Google Scholar 

  407. R.G. Thorne, C. Nicholson, In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. USA 103, 5567–5572 (2006)

    Article  CAS  Google Scholar 

  408. P. Tinnefeld, D.P. Herten, M. Sauer, Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM). J. Phys. Chem. A 105, 7989–8003 (2001)

    Article  CAS  Google Scholar 

  409. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Fluorescence and spin properties of defects in single digit nanodiamonds. Acs Nano 3, 1959–1965 (2009)

    Article  CAS  Google Scholar 

  410. D.M. Togashi, R.I.S. Romao, A.M.G. da Silva, A.J.F.N. Sobral, S.M.B. Costa, Self-organization of a sulfonamido-porphyrin in Langmuir monolayers and Langmuir-Blodgett films. Phys. Chem. Chem. Phys. 7, 3875–3884 (2005)

    Article  CAS  Google Scholar 

  411. L. Tolosa, H. Szmacinski, G. Rao, J.R. Lakowicz, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor. Anal. Biochem. 250, 102–108 (1997)

    Article  CAS  Google Scholar 

  412. D. Toptygin, Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute. J. Fluores. 13, 201–219 (2003)

    Article  CAS  Google Scholar 

  413. D. Toptygin, R.S. Savtchenko, N.D. Meadow, S. Roseman, L. Brand, Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein. J. Phys. Chem. B 106, 3724–3734 (2002)

    Article  CAS  Google Scholar 

  414. K. Torno, B.K. Wright, M.R. Jones, M.A. Digman, E. Gratton, M. Phillips, Real-time analysis of metabolic activity within lactobacillus acidophilus by phasor fluorescence lifetime imaging microscopy of NADH. Curr. Microbiol. 66, 365–367 (2013)

    Article  CAS  Google Scholar 

  415. M. Tramier M. Coppey-Moisan, Fluorescence anisotropy imaging microscopy for homo-FRET in living cells, in Methods in Cell Biology, ed by F.S. Kevin (Academic Press, San Diego, 2008), pp. 395–414

    Google Scholar 

  416. M. Tramier, K. Kemnitz, C. Durieux, J. Coppey, P. Denjean, R.B. Pansu, M. Coppey-Moisan, Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells. Biophys. J. 78, 2614–2627 (2000)

    Article  CAS  Google Scholar 

  417. B. Treanor, P.M. Lanigan, K. Suhling, T. Schreiber, I. Munro, M.A. Neil, D. Phillips, D.M. Davis, P.M.W. French, Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse. J. Micros. 217, 36–43 (2005)

    Article  CAS  Google Scholar 

  418. C. Tregidgo, J.A. Levitt, K. Suhling, Effect of refractive index on the fluorescence lifetime of green fluorescent protein. J. Biomed. Opt. 13, 031218 (2008)

    Article  CAS  Google Scholar 

  419. P. Urayama, M.-A. Mycek, Fluorescence lifetime imaging microscopy of enodogenous biological fluorescence, in Handbook of Biomedical Fluorescence, ed by M.-A. Mycek, B.W. Pogue (Marcel Dekker, New York, 2003)

    Google Scholar 

  420. M.A. Uskova, J. Borst, M.A. Hink, A. van Hoek, A. Schots, A.L. Klyachko, A.J.W.G. Visser, Fluorescence dynamics of green fluorescent protein in AOT reversed micelles. Biophys. Chem. 87, 73–84 (2000)

    Article  CAS  Google Scholar 

  421. B.M. Uzhinov, V.L. Ivanov, M.Y. Melnikov, Molecular rotors as luminescence sensors of local viscosity and viscous flow in solutions and organized systems. Russ. Chem. Rev. 80, 1179–1190 (2011)

    Google Scholar 

  422. B. Valeur, Pulse and phase fluorometries: an objective comparison, in Fluorescence Spectroscopy in Biology, ed by M. Hof, R. Hutterer, V. Fidler (Springer, Berlin, 2005), pp. 30–48

    Google Scholar 

  423. B. Valeur, M. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J. Chem. Edu. 88, 731–738 (2011)

    Article  CAS  Google Scholar 

  424. B. Valeur, M.N. Berberan-Santos, Molecular Fluorescence. Principles and Applications, 2nd ed. (Wiley, Weinheim, 2012)

    Google Scholar 

  425. B.W. van der Meer, Kappa-squared: from nuisance to new sense. J. Biotechnol. 82, 181–196 (2002)

    Google Scholar 

  426. T.J. van Ham, A. Esposito, J.R. Kumita, S.-T.D. Hsu, G.S. Kaminski Schierle, C.F. Kaminski, C.M. Dobson, E.A.A. Nollen, and C. W. Bertoncini, Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of α-Synuclein aggregation. J. Mol. Biol. 395, 627–642 (2010)

    Google Scholar 

  427. H.J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T.K. van den Berg, D. Roos, C. Otto, Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys. J. 94, L67–L69 (2008)

    Article  CAS  Google Scholar 

  428. E.B. van Munster, T.W.J. Gadella, φ-FLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy. J. Micros. 213, 29–38 (2004)

    Article  Google Scholar 

  429. E.B. van Munster, T.W.J. Gadella, Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order. Cytometry Part A 58, 185–194 (2004)

    Article  Google Scholar 

  430. M. van Zandvoort, C.J. de Grauw, H.C. Gerritsen, J.L.V. Broers, M. Egbrink, F.C.S. Ramaekers, D.W. Slaaf, Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of SYTO13 in healthy and apoptotic cells. Cytometry 47, 226–235 (2002)

    Article  Google Scholar 

  431. C.J.R. Vanderoord, H.C. Gerritsen, F.F.G. Rommerts, D.A. Shaw, I.H. Munro, Y.K. Levine, Microvolume time-resolved fluorescence spectroscopy using a confocal synchrotron-radiation microscope. Appl. Spectrosc. 49, 1469–1473 (1995)

    Article  CAS  Google Scholar 

  432. R. Varma, S. Mayor, GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998)

    Article  CAS  Google Scholar 

  433. B.D. Venetta, Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes. Rev. Sci. Instrum. 30, 450–457 (1959)

    Article  CAS  Google Scholar 

  434. H.D. Vishwasrao, P. Trifilieff, E.R. Kandel, In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy. Biophys. J. 102, 1204–1214 (2012)

    Article  CAS  Google Scholar 

  435. M. Vitali, F. Picazo, Y. Prokazov, A. Duci, E. Turbin, C. Gotze, J. Llopis, R. Hartig, A.J.W.G. Visser, W. Zuschratter, Wide-field multi-parameter FLIM: long-term minimal invasive observation of proteins in living cells. PLOS ONE 6, e15820 (2011)

    Article  CAS  Google Scholar 

  436. M. Vitali, M. Reis, T. Friedrich, H.-J. Eckert, A wide-field multi-parameter FLIM and FRAP setup to investigate the fluorescence emission of individual living cyanobacteria, in SPIE Proc 7376, (2010), 737610

    Google Scholar 

  437. S.S. Vogel, T.A. Nguyen, B.W. van der Meer, P.S. Blank, The impact of heterogeneity and dark acceptor states on FRET: implications for using fluorescent protein donors and acceptors. PLoS ONE 7, e49593 (2012)

    Article  CAS  Google Scholar 

  438. S.S. Vogel, C. Thaler, P.S. Blank, S.V. Koushik, Time-Resolved Fluorescence Anisotropy, in FLIM Microscopy in Biology and Medicine, ed by A. Periasamy, R.M. Clegg (Chapman & Hall, Taylor & Francis Group, Boca Raton, 2010), pp. 245–288

    Google Scholar 

  439. M. Wachsmuth, Molecular diffusion and binding analyzed with FRAP. Protoplasma 251, 373–382 (2014)

    Article  Google Scholar 

  440. H. Wallrabe, A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005)

    Article  CAS  Google Scholar 

  441. B. Wandelt, P. Cywinski, G.D. Darling, B.R. Stranix, Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe. Biosens. Bioelectron. 20, 1728–1736 (2005)

    Article  CAS  Google Scholar 

  442. B. Wandelt, A. Mielniczak, P. Turkewitsch, G.D. Darling, B.R. Stranix, Substituted 4-[4-(dimethylamino)styryl] pyridinium salt as a fluorescent probe for cell microviscosity. Biosens. Bioelectron. 18, 465–471 (2003)

    Article  CAS  Google Scholar 

  443. H.W. Wang, V. Ghukassyan, C.T. Chen, Y.H. Wei, H.W. Guo, J.S. Yu, F.J. Kao, Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells. J. Biomed. Opt. 13, 054011 (2008)

    Article  CAS  Google Scholar 

  444. X.-D. Wang, O.S. Wolfbeis, Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666–3761 (2014)

    Article  CAS  Google Scholar 

  445. X.F. Wang, A. Periasamy, B. Herman, D.M. Coleman, Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications. Crit. Rev. Anal. Chem. 23, 369–395 (1992)

    Article  CAS  Google Scholar 

  446. X.F. Wang, T. Uchida, D.M. Coleman, S. Minami, A 2-dimensional fluorescence lifetime imaging system using a gated image intensifier. Appl. Spectrosc. 45, 360–366 (1991)

    Article  CAS  Google Scholar 

  447. X.F. Wang, T. Uchida, S. Minami, A fluorescence lifetime distribution measurement system based on phase-resolved detection using an image dissector tube. Appl. Spectrosc. 43, 840–845 (1989)

    Google Scholar 

  448. K. Willaert, R. Loewenthal, J. Sancho, M. Froeyen, A. Fersht, Y. Engelborghs, Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants. Biochemistry 31, 711–716 (1992)

    Article  CAS  Google Scholar 

  449. C.D. Wilms, J. Eilers, Photo-physical properties of Ca2+-indicator dyes suitable for two-photon fluorescence-lifetime recordings. J. Micros. 225, 209–213 (2007)

    Article  CAS  Google Scholar 

  450. C.D. Wilms, H. Schmidt, J. Eilers, Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40, 73–79 (2006)

    Article  CAS  Google Scholar 

  451. P. Woolley, K.G. Steinhäuser, B. Epe, Förster-type energy-transfer—simultaneous forward and reverse transfer between unlike fluorophores. Biophys. Chem. 26, 367–374 (1987)

    Article  CAS  Google Scholar 

  452. F.S. Wouters, The physics and biology of fluorescence microscopy in the life sciences. Contemp. Phys. 47, 239–255 (2006)

    Article  CAS  Google Scholar 

  453. S.F. Wuister, C. de Mello Donega, A. Meijerink, Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. J. Chem. Phys. 121, 4310–4315 (2004)

    Google Scholar 

  454. F.R. Xiao, C. Nicholson, J. Hrabe, S. Hrabetova, Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical Imaging. Biophys. J. 95, 1382–1392 (2008)

    Article  CAS  Google Scholar 

  455. E. Yaghini, F. Giuntini, I.M. Eggleston, K. Suhling, A.M. Seifalian, A.J. MacRobert, Fluorescence lifetime imaging and FRET-induced intracellular redistribution of tat-conjugated quantum dot nanoparticles through interaction with a phthalocyanine photosensitiser. Small 10, 782–792 (2014)

    Article  CAS  Google Scholar 

  456. Y.L. Yan, G. Marriott, Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy, in Methods in Enzymology, Biophotonics, Pt A (Academic Press, London, 2003), pp. 561–580

    Google Scholar 

  457. C.M. Yengo, C.L. Berger, Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr. Opin. Pharmacol. 10, 731–737 (2010)

    Article  CAS  Google Scholar 

  458. E.K.L. Yeow, A.H.A. Clayton, Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys. J. 92, 3098–3104 (2007)

    Article  CAS  Google Scholar 

  459. Q.R. Yu, A.A. Heikal, Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J. Photochem. Photobiol. B-Biol. 95, 46–57 (2009)

    Article  CAS  Google Scholar 

  460. Y. Zeng, Y. Wu, D. Li, W. Zheng, W.X. Wang, J.N.Y. Qu, Two-photon excitation chlorophyll fluorescence lifetime imaging: a rapid and noninvasive method for in vivo assessment of cadmium toxicity in a marine diatom Thalassiosira weissflogii. Planta 236, 1653–1663 (2012)

    Article  CAS  Google Scholar 

  461. H. Zhang, A.S. Verkman, Microfiberoptic measurement of extracellular space volume in brain and tumor slices based on fluorescent dye partitioning. Biophys. J. 99, 1284–1291 (2010)

    Article  CAS  Google Scholar 

  462. Q. Zhang, D.W. Piston, R.H. Goodman, Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002)

    CAS  Google Scholar 

  463. Q.L. Zhao, I.T. Young, J.G.S. de Jong, Photon budget analysis for fluorescence lifetime imaging microscopy. J. Biomed. Opt. 16, 086007 (2011)

    Article  Google Scholar 

  464. N.G. Zhegalova, G. Gonzales, M.Y. Berezin, Synthesis of nitric oxide probes with fluorescence lifetime sensitivity. Org. Biomol. Chem. 11, 8228–8234 (2013)

    Article  CAS  Google Scholar 

  465. K. Zheng, J. A. Levitt, K. Suhling, D.A. Rusakov, Monitoring nanoscale mobility of small molecules in organized brain tissue with time-resolved fluorescence anisotropy imaging, in Neuromethods 84: Nanoscale Imaging of Synapses, New Concepts and Opportunities, ed by U.V. Nägerl, A. Triller (Springer Science + Business Media, New York, 2014) pp. 125–143

    Google Scholar 

  466. K.Y. Zheng, A. Scimemi, D.A. Rusakov, Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to Microns. Biophys. J. 95, 4584–4596 (2008)

    Article  CAS  Google Scholar 

  467. L.-L. Zhu, D.-H. Qu, D. Zhang, Z.-F. Chen, Q.-C. Wang, H. Tian, Dual-mode tunable viscosity sensitivity of a rotor-based fluorescent dye. Tetrahedron 66, 1254–1260 (2010)

    Article  CAS  Google Scholar 

  468. M. Zimmer, Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–781 (2002)

    Article  CAS  Google Scholar 

  469. H. Zollinger, Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes And Pigments (Helvetica Chimica Acta, Zurich, 2003)

    Google Scholar 

Download references

Acknowledgments

We would like the UK’s MRC, BBSRC and EPSRC for funding. Thanks also to Dylan Owen of the Physics Department and Randall Division of Cell and Molecular Biophysics at King’s College London for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Suhling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suhling, K. et al. (2015). Fluorescence Lifetime Imaging (FLIM): Basic Concepts and Recent Applications. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_3

Download citation

Publish with us

Policies and ethics