Skip to main content
Log in

Fluorescence lifetime characterization of magnesium probes: Improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We measured the Mg2+-dependent absorption spectra, emission spectra, quantum yields, and intensity decays of most presently available fluorescent magnesium probes. The lifetimes were found to be strongly Mg2+ dependent for Mag-quin-1, Mag-quin-2, magnesium green, and magnesium orange and increased 2- to 10-fold upon binding of Mg2+. The lifetimes of Mag-fura-2, Mag-fura-5, Mag-fura red, and Mag-indo-1 were similar in the presence and absence of Mg2+. Detailed timeresolved measurements were carried out for Mag-quin-2 and magnesium green using phase-modulation fluorometry. Apparent dissociation constants (K d) were determined from the steady-state and time-resolved data. Their values were compared and discussed. Mg2+ sensing is described using phase and modulation data measured at a single modulation frequency. Phase angle and modulation data showed the possibility of obtaining a wider Mg2+-sensitive range than available from intensity measurements. A significant expansion in the Mg2+-sensitive range was found for Mag-quin-2 using excitation wavelengths from 343 to 375 nm, where the apparentK d from the phase angle was found to vary from 0.3 to about 100 mM. Discrimination against Ca2+ was also measured for Mag-quin-2 and magnesium green. Significant phototransformation and/or photode-composition, which affect the sensitivity to Mg2+, were observed for Mag-quin-2 and magnesium green under intense and long illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Grubbs and M. E. Maquire (1987)Magnesium 6, 113–127.

    Google Scholar 

  2. P. W. Flatman (1994)Magnesium Transport Across Cell Membranes, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. P. W. Flatman (1991)Annu. Rev. Physiol. 53, 259–271.

    Google Scholar 

  4. P. W. Flatman (1988)J. Physiol. 397, 471–487.

    Google Scholar 

  5. E. Murphy, C. C. Freudenrich, and M. Lieberman (1991)Annu. Rev. Physiol. 53, 273–287.

    Google Scholar 

  6. B. E. Corkey, J. Duszynski, T. L. Rich, B. Matschinsky, and J. R. Williamson (1986)J. Biol. Chem. 261, 2567–2574.

    Google Scholar 

  7. R. E. London (1991)Annu. Rev. Physiol. 53, 241–258.

    Google Scholar 

  8. L. A. Levy, E. Murphy, B. Raju, and R. E. London (1988)Biochemistry 27, 4041–4048.

    Google Scholar 

  9. R. K. Gupta and P. Gupta (1984)Annu. Rev. Biophys. Bioeng. 13, 221–246.

    Google Scholar 

  10. R. P. Haugland (1992–1994) in K. D. Larisson (Ed),Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, OR, pp. 142–152.

  11. R. Y. Tsien (1980)Biochemistry 19, 2396–2404.

    Google Scholar 

  12. G. Grynkiewicz, M. Poenie, and R. Y. Tsien (1985)J. Biol. Chem. 260, 3440–3450.

    Google Scholar 

  13. B. Raju, E. Murphy, L. A. Levy, R. D. Hall, and R. E. London (1989)Am. J. Physiol. 256, C540–548.

    Google Scholar 

  14. B. Morelle, J.-M. Salmon, J. Vigo, and P. Viallet (1993)Photochem. Photobiol. 58, 795–802.

    Google Scholar 

  15. M. A. Kuhn (1993) in A. W. Czarnik (Ed.),Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Symposium Series 538, Washington, DC, pp. 147–161.

  16. M. A. Kuhn, B. Hoyland, S. Carter, C. Zhang, and R. P. Haugland (1995)SPIE Press 2388, 238–244.

    Google Scholar 

  17. A. P. de Silva, H. Q. N. Gunaratne, and E. M. Maguire (1994)J. Chem. Soc. Chem. Commun. 1213–1214.

  18. H. Szmacinski and J. R. Lakowicz (1994) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. IV. Probe Design and Chemical Sensing, Plenum Press, New York, pp. 295–334.

    Google Scholar 

  19. J. R. Lakowicz, H. Szmacinski, and M. L. Johnson (1992)J. Fluoresc. 2, 47–62.

    Google Scholar 

  20. H. Szmacinski and J. R. Lakowicz (1993)Anal. Chem. 65, 1668–1674.

    Google Scholar 

  21. H. Szmacinski and J. R. Lakowicz (1995)Cell Calcium 18, 64–75.

    Google Scholar 

  22. E. Murphy, C. Freudenrich, L. A. Levy, R. E. London, and M. Lieberman (1989)Proc. Natl. Acad. Sci. USA 86, 2981–2984.

    Google Scholar 

  23. M. Schachter, K. L. Gallagher, and P. S. Sever (1990)Biochim. Biophys. Acta 1035, 378–380.

    Google Scholar 

  24. G. A. Rutter, N. J. Osbaldeston, J. G. McCormack, and R. M. Denton (1990)Biochem. J. 271, 627–634.

    Google Scholar 

  25. G. A. Quamme and S. W. Rabkin (1990)Biochem. Biophys. Res. Commun. 167, 1406–1414.

    Google Scholar 

  26. E. Gylfe (1990)Biochim. Biophys. Acta 1055, 82–86.

    Google Scholar 

  27. D. W. Jung, L. Apel, and G. P. Brierley (1990)Biochemistry 29, 4121–1128.

    Google Scholar 

  28. L. L. Ng, J. E. Davies, and M. C. Garrido (1991)Clin. Sci. 80, 539–547.

    Google Scholar 

  29. M. Konishi, N. Nuda, and S. Kurihara (1993)Biophys. J. 64, 223–239.

    Google Scholar 

  30. H. Szmacinski, I. Gryczynski, and J. R. Lakowicz (1993)Photochem. Photobiol. 58, 341–345.

    Google Scholar 

  31. H. Illner, J. A. S. McGuigan, and D. Lüthi (1992)Pflügers Arch. 422, 179–184.

    Google Scholar 

  32. BioProbes 17, Molecular Probes, Inc., June 1993 and personal communication.

  33. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990)Rev. Sci. Instrum. 61(9), 2331–2337.

    Google Scholar 

  34. R. Y. Tsien and T. Pozzan (1989)Methods Enzymol. 172, 230–261.

    Google Scholar 

  35. J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton, and M. Limkeman (1984)Biophys. J. 46, 463–477.

    Google Scholar 

  36. E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko (1984)Biophys. J. 46, 479–486.

    Google Scholar 

  37. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and Johnson M. L. (1992)Cell Calcium 13, 131–147.

    Google Scholar 

  38. F. A. Lattanzio, Jr., and D. K. Bartschat (1991)Biochem. Biophys. Res. Commun. 177, 184–191.

    Google Scholar 

  39. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, W. J. Lederer, M. S. Kirby, and M. L. Johnson (1994)Cell Calcium 15, 7–27.

    Google Scholar 

  40. P. L. Becker and F. S. Fay (1986)J. Physiol. 253 (Cell Physiol. 22), C613-C618.

    Google Scholar 

  41. A. L. Stout and D. Axelrod (1995)Photochem. Photobiol. 62, 239–244.

    Google Scholar 

  42. T. W. Hurley, M. P. Ryan, and R. W. Brinck (1992)Am. J. Physiol. 263 (Cell Physiol. 32), C3300-C3307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szmacinski, H., Lakowicz, J.R. Fluorescence lifetime characterization of magnesium probes: Improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry. J Fluoresc 6, 83–95 (1996). https://doi.org/10.1007/BF00732047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732047

Key words

Navigation