Skip to main content
Log in

Molecular diffusion and binding analyzed with FRAP

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Intracellular molecular transport and localization are crucial for cells (plant cells as much as mammalian cells) to proliferate and to adapt to diverse environmental conditions. Here, some aspects of the microscopy-based method of fluorescence recovery after photobleaching (FRAP) are introduced. In the course of the last years, this has become a very powerful tool to study dynamic processes in living cells and tissue, and it is expected to experience further increasing demand because quantitative information on biological systems becomes more and more important. This review introduces the FRAP methodology, including some theoretical background, describes challenges and pitfalls, and presents some recent advanced applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscopy

CP:

Continuous fluorescence photobleaching

ER:

Endoplasmatic reticulum

FCS:

Fluorescence correlation spectroscopy

FM:

Fluorescence microphotolysis

FPR:

Fluorescence photobleaching recovery

FRAP:

Fluorescence recovery/redistribution after photobleaching

GFP:

Green fluorescent protein

GR:

Glucocorticoid receptor

HP1:

Heterochromatin protein 1

mRNP:

mRNA–protein complex

MSD:

Mean squared displacement

NA:

Numerical aperture

PSF:

Point-spread function

RICS:

Raster image correlation spectroscopy

ROI:

Region of interest

SD:

Spinning disk

TIRF:

Total internal reflection fluorescence

YFP:

Yellow fluorescent protein

3PEA:

Pixel-wise photobleaching profile evolution analysis

References

  • Arkhipov A, Hüve J, Kahms M, Peters R, Schulten K (2007) Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy. Biophys J 93(11):4006–4017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beaudouin J, Mora-Bermúdez F, Klee T, Daigle N, Ellenberg J (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90(6):1878–1894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braeckmans K, Peeters L, Sanders NN, De Smedt SC, Demeester J (2003) Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J 85(4):2240–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braeckmans K, Remaut K, Vandenbroucke RE, Lucas B, De Smedt SC, Demeester J (2007) Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples. Biophys J 92(6):2172–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braga J, Desterro JM, Carmo-Fonseca M (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15(10):4749–4760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown EB, Wu ES, Zipfel W, Webb WW (1999) Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J 77(5):2837–2849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calapez A, Pereira HM, Calado A, Braga J, Rino J, Carvalho C, Tavanez JP, Wahle E, Rosa AC, Carmo-Fonseca M (2002) The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J Cell Biol 159(5):795–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrero G, McDonald D, Crawford E, de Vries G, Hendzel MJ (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29(1):14–28

    Article  CAS  PubMed  Google Scholar 

  • Conrad C, Wunsche A, Tan TH, Bulkescher J, Sieckmann F, Verissimo F, Edelstein A, Walter T, Liebel U, Pepperkok R, Ellenberg J (2011) Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Met 8(3):246–249

    Article  CAS  Google Scholar 

  • Delon A, Usson Y, Derouard J, Biben T, Souchier C (2006) Continuous photobleaching in vesicles and living cells: a measure of diffusion and compartmentation. Biophys J 90(7):2548–2562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  • Erdel F, Rippe K (2012) Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis. Proc Natl Acad Sci U S A 109(47):E3221–E3230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gosch M, Rigler R (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv Drug Deliv Rev 57(1):169–190

    Article  PubMed  Google Scholar 

  • Harms GS, Cognet L, Lommerse PH, Blab GA, Schmidt T (2001) Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J 80(5):2396–2408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Icenogle RD, Elson EL (1983a) Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements. Biopolymers 22(8):1919–1948

    Article  CAS  PubMed  Google Scholar 

  • Icenogle RD, Elson EL (1983b) Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high DNA concentrations. Biopolymers 22(8):1949–1966

    Article  CAS  PubMed  Google Scholar 

  • Im KB, Schmidt U, Kang MS, Lee JY, Bestvater F, Wachsmuth M (2013) Diffusion and binding analyzed with combined point FRAP and FCS. Cytometry A 83(9):876–889

    Article  PubMed  Google Scholar 

  • Kang M, Kenworthy AK (2008) A closed-form analytic expression for FRAP formula for the binding diffusion model. Biophys J 95(2):L13–L15, -L13-15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang M, Day CA, Drake K, Kenworthy AK, DiBenedetto E (2009) A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophys J 97(5):1501–1511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang M, Day CA, DiBenedetto E, Kenworthy AK (2010) A quantitative approach to analyze binding diffusion kinetics by confocal FRAP. Biophys J 99(9):2737–2747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kao HP, Verkman AS (1996) Construction and performance of a photobleaching recovery apparatus with microsecond time resolution. Biophys Chem 59(1–2):203–210

    CAS  PubMed  Google Scholar 

  • Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Met 4(11):963–973

    Article  CAS  Google Scholar 

  • Koppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW (1976) Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16:1315–1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Langowski J (2008) Protein–protein interactions determined by fluorescence correlation spectroscopy. Methods Cell Biol 85:471–484

    Article  CAS  PubMed  Google Scholar 

  • Lanni F, Ware BR (1981) Intensity dependence of fluorophore photobleaching by a stepped-intensity slow-bleach experiment. Photochem Photobiol 34(2):279–281

    Article  CAS  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–456

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Dupou L, Altibelli A, Trotard J, Tocanne JF (1988) Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination—critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient-D. Biophys J 53(6):963–970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlations spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61

    Article  CAS  PubMed  Google Scholar 

  • Mazza D, Braeckmans K, Cella F, Testa I, Vercauteren D, Demeester J, De Smedt SS, Diaspro A (2008) A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys J 95(7):3457–3469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally JG, Sullivan KF (2008) Quantitative FRAP in analysis of molecular binding dynamics in vivo. In: Fluorescent proteins, vol 85. Methods Cell Biol. San Diego, CA; Academic Press, pp 329-351

  • Miyawaki A (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12(10):656–668

    Article  CAS  PubMed  Google Scholar 

  • Mueller F, Wach P, McNally JG (2008) Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys J 94(8):3323–3339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller KP, Erdel F, Caudron-Herger M, Marth C, Fodor BD, Richter M, Scaranaro M, Beaudouin J, Wachsmuth M, Rippe K (2009) Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy. Biophys J 97(11):2876–2885

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan X, Foo W, Lim W, Fok MHY, Liu P, Yu H, Maruyama I, Wohland T (2007) Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev Sci Instrum 78(5):053711–053711

    Article  PubMed  Google Scholar 

  • Pawley J (2006) Handbook of biological confocal microscopy. Springer, Berlin

    Book  Google Scholar 

  • Peters R, Peters J, Tews KH, Bahr W (1974) A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta 367(3):282–294, -282-294

    Article  CAS  PubMed  Google Scholar 

  • Petersen NO, Elson EL (1986) Measurements of diffusion and chemical kinetics by fluorescence photobleaching recovery and fluorescence correlation spectroscopy. Methods Enzymol 130:454–484

    Article  CAS  PubMed  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404(6778):604–609

    Article  CAS  PubMed  Google Scholar 

  • Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24(14):6393–6402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabut G, Ellenberg J (2005) Photobleaching techniques to study mobility and molecular mynamics of proteins in live cells: FRAP, iFRAP, and FLIP. In: Spector D, Goldman D (eds) Live cell imaging—a laboratory manual. CSHL Press, Cold Spring Harbor, pp 101–126

    Google Scholar 

  • Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy: theory and applications. Springer, Berlin

    Book  Google Scholar 

  • Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Fuchs C, Dobay A, Rottach A, Qin W, Wolf P, Alvarez-Castro JM, Nalaskowski MM, Kremmer E, Schmid V, Leonhardt H, Schermelleh L (2013) Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res 41(9):4860–4876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182

    Article  CAS  PubMed  Google Scholar 

  • Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A 97(1):151–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon JR, Gough A, Urbanik E, Wang F, Lanni F, Ware BR, Taylor DL (1988) Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery. Biophys J 54(5):801–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skruzny M, Brach T, Ciuffa R, Rybina S, Wachsmuth M, Kaksonen M (2012) Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 109(38):E2533–E2542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song L, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68(6):2588–2600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song L, Varma CA, Verhoeven JW, Tanke HJ (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70(6):2959–2968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41(1):95–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15(2):84–91

    Article  CAS  PubMed  Google Scholar 

  • Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stasevich TJ, Mueller F, Brown DT, McNally JG (2010a) Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO J 29(7):1225–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stasevich TJ, Mueller F, Michelman-Ribeiro A, Rosales T, Knutson JR, McNally JG (2010b) Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates. Biophys J 99(9):3093–3101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72(4):1900–1907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Royen ME, Farla P, Mattern KA, Geverts B, Trapman J, Houtsmuller AB (2009) Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. Methods Mol Biol 464:363–385

    Article  PubMed  Google Scholar 

  • van Royen ME, Zotter A, Ibrahim SM, Geverts B, Houtsmuller AB (2011) Nuclear proteins: finding and binding target sites in chromatin. Chromosom Res 19(1):83–98

    Article  CAS  Google Scholar 

  • Verkman AS (2003) Diffusion in cells measured by fluorescence recovery after photobleaching. Methods Enzymol 360:635–648

    Article  CAS  PubMed  Google Scholar 

  • Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Wachsmuth M, Weidemann T, Muller G, Hoffmann-Rohrer UW, Knoch TA, Waldeck W, Langowski J (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84(5):3353–3363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wachsmuth M, Caudron-Herger M, Rippe K (2008) Genome organization: balancing stability and plasticity. Biochim Biophys Acta 1783(11):2061–2079

    Article  CAS  PubMed  Google Scholar 

  • Wedekind P, Kubitscheck U, Peters R (1994) Scanning microphotolysis: a new photobleaching technique based on fast intensity modulation of a scanned laser beam and confocal imaging. J Microsc 176(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Weiss M (2004) Challenges and artifacts in quantitative photobleaching experiments. Traffic 5(9):662–671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by EMBL research funding.

Conflict of interests

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Wachsmuth.

Additional information

Handling Editor: J. W. Borst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachsmuth, M. Molecular diffusion and binding analyzed with FRAP. Protoplasma 251, 373–382 (2014). https://doi.org/10.1007/s00709-013-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0604-x

Keywords

Navigation