Skip to main content

Fibrate Therapy: Impact on Dyslipidemia and Cardiovascular Events in Patients with Diabetes Mellitus Type 2

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 377 Accesses

Abstract

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality in developed countries, especially among patients with diabetes mellitus type 2 (DM-2) and its essential precursor, insulin resistance. ASCVD risk is reduced in all patients primarily by lowering low-density lipoprotein cholesterol (LDL-C) levels, but statin-based LDL-C lowering prevents less than half of ASCVD events. Much of this residual risk is related to “the atherogenic dyslipidemia,” common in DM-2 and insulin resistance, and which consists primarily of elevated levels of triglycerides (TG), low high-density lipoprotein cholesterol (HDL-C), and decreased LDL particle size (small, dense LDL or sdLDL). The most widely used medications for this atherogenic dyslipidemia management, and especially for TG lowering, are the peroxisome proliferator activator receptor PPAR-alpha agonists, or fibrates. This chapter focuses on the impact of fibrate therapy on patients with DM-2 and other insulin-resistant states. We review fibrate effects to control atherogenic dyslipidemia and other ASCVD risk factors. We also review the published data regarding fibrate use and ASCVD incidence and look forward to cardiovascular outcome data with a new fibrate, pemafibrate, due in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://doi.org/10.1161/CIR.0000000000001052.

    Article  PubMed  Google Scholar 

  2. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins [published correction appears in Lancet. 2005 Oct 15–21;366(9494):1358] [published correction appears in Lancet. 2008 Jun 21;371(9630):2084]. Lancet. 2005;366(9493):1267–78. https://doi.org/10.1016/S0140-6736(05)67394-1.

    Article  CAS  PubMed  Google Scholar 

  3. Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25. https://doi.org/10.1016/S0140-6736(08)60104-X.

    Article  CAS  Google Scholar 

  4. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383–9.

    Google Scholar 

  5. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279(20):1615–22. https://doi.org/10.1001/jama.279.20.1615.

    Article  CAS  PubMed  Google Scholar 

  6. Marschner IC, Colquhoun D, Simes RJ, et al. Long-term risk stratification for survivors of acute coronary syndromes. Results from the Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Study. LIPID Study Investigators. J Am Coll Cardiol. 2001;38(1):56–63. https://doi.org/10.1016/s0735-1097(01)01360-2.

    Article  CAS  PubMed  Google Scholar 

  7. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):23–33. https://doi.org/10.1016/S0140-6736(02)09328-5.

    Article  Google Scholar 

  8. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46(6):733–49. https://doi.org/10.1007/s00125-003-1111-y.

    Article  PubMed  Google Scholar 

  9. Brinton EA. Lipid abnormalities in the metabolic syndrome. Curr Diab Rep. 2003;3(1):65–72. https://doi.org/10.1007/s11892-003-0056-3.

    Article  PubMed  Google Scholar 

  10. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sandesara PB, Virani SS, Fazio S, Shapiro MD. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr Rev. 2019;40(2):537–57. https://doi.org/10.1210/er.2018-00184.

    Article  PubMed  Google Scholar 

  12. Ginsberg HN. New perspectives on atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation. 2002;106(16):2137–42. https://doi.org/10.1161/01.cir.0000035280.64322.31.

    Article  PubMed  Google Scholar 

  13. Schwartz EA, Reaven PD. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta. 2012;1821(5):858–66. https://doi.org/10.1016/j.bbalip.2011.09.021.

    Article  CAS  PubMed  Google Scholar 

  14. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–806. https://doi.org/10.1093/eurheartj/ehab551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 2020;69(4):508–16. https://doi.org/10.2337/dbi19-0007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    Article  CAS  PubMed  Google Scholar 

  17. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. https://doi.org/10.1001/jama.298.3.299.

    Article  CAS  PubMed  Google Scholar 

  18. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, Schnohr P, Jensen GB, Nordestgaard BG. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270(1):65–75. https://doi.org/10.1111/j.1365-2796.2010.02333.x.

    Article  CAS  PubMed  Google Scholar 

  19. Varbo A, Freiberg JJ, Nordestgaard BG. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 2015;61(3):533–43. https://doi.org/10.1373/clinchem.2014.234146.

    Article  CAS  PubMed  Google Scholar 

  20. Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, et al. Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation. 2018;138(8):770–81. https://doi.org/10.1161/CIRCULATIONAHA.117.032318.

    Article  CAS  PubMed  Google Scholar 

  21. Varbo A, Nordestgaard BG. Remnant cholesterol and risk of ischemic stroke in 112,512 individuals from the general population. Ann Neurol. 2019;85(4):550–9. https://doi.org/10.1002/ana.25432.

    Article  CAS  PubMed  Google Scholar 

  22. Kaltoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J. 2020;41(24):2288–99. https://doi.org/10.1093/eurheartj/ehaa172.

    Article  CAS  PubMed  Google Scholar 

  23. Balling M, Afzal S, Varbo A, Langsted A, Davey Smith G, Nordestgaard BG. VLDL Cholesterol accounts for one-half of the risk of myocardial infarction associated with apoB-containing lipoproteins. J Am Coll Cardiol. 2020;76(23):2725–35. https://doi.org/10.1016/j.jacc.2020.09.610.

    Article  CAS  PubMed  Google Scholar 

  24. Langsted A, Madsen CM, Nordestgaard BG. Contribution of remnant cholesterol to cardiovascular risk. J Intern Med. 2020;288(1):116–27. https://doi.org/10.1111/joim.13059.

    Article  CAS  PubMed  Google Scholar 

  25. Jepsen AM, Langsted A, Varbo A, Bang LE, Kamstrup PR, Nordestgaard BG. Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clin Chem. 2016;62(4):593–604. https://doi.org/10.1373/clinchem.2015.253757.

    Article  CAS  PubMed  Google Scholar 

  26. Imke C, Rodriguez BL, Grove JS, et al. Are remnant-like particles independent predictors of coronary heart disease incidence? ATVB. 2005;25:1718–22. https://doi.org/10.1161/01.ATV.0000173310.85845.7b.

    Article  CAS  Google Scholar 

  27. Duran EK, Pradhan AD. Triglyceride-rich lipoprotein remnants and cardiovascular disease. Clin Chem. 2021;67(1):183–96. https://doi.org/10.1093/clinchem/hvaa296.

    Article  PubMed  Google Scholar 

  28. Hopkins PN, Wu LL, Hunt SC, Brinton EA. Plasma triglycerides and type III hyperlipidemia are independently associated with premature familial coronary artery disease. J Am Coll Cardiol. 2005;45(7):1003–12. https://doi.org/10.1016/j.jacc.2004.11.062.

    Article  CAS  PubMed  Google Scholar 

  29. Hopkins PN, Brinton EA, Nanjee MN. Hyperlipoproteinemia type 3: the forgotten phenotype. Curr Atheroscler Rep. 2014;16(9):440. https://doi.org/10.1007/s11883-014-0440-2.

    Article  CAS  PubMed  Google Scholar 

  30. Sacks FM, Tonkin AM, Shepherd J, et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation. 2000;102(16):1893–900. https://doi.org/10.1161/01.cir.102.16.1893.

    Article  CAS  PubMed  Google Scholar 

  31. Sacks FM, Alaupovic P, Moye LA, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000;102(16):1886–92. https://doi.org/10.1161/01.cir.102.16.1886.

    Article  CAS  PubMed  Google Scholar 

  32. Miller M, Cannon CP, Murphy SA, et al. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51(7):724–30. https://doi.org/10.1016/j.jacc.2007.10.038.

    Article  CAS  PubMed  Google Scholar 

  33. Drexel H, Aczel S, Marte T, Vonbank A, Saely CH. Factors predicting cardiovascular events in statin-treated diabetic and non-diabetic patients with coronary atherosclerosis. Atherosclerosis. 2010;208(2):484–9. https://doi.org/10.1016/j.atherosclerosis.2009.08.026.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ. 2007;176(8):1113–20. https://doi.org/10.1503/cmaj.060963.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aberra T, Peterson ED, Pagidipati NJ, et al. The association between triglycerides and incident cardiovascular disease: what is “optimal”? J Clin Lipidol. 2020;14(4):438–447.e3. https://doi.org/10.1016/j.jacl.2020.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81(4A):7B–12B. https://doi.org/10.1016/s0002-9149(98)00031-9.

    Article  CAS  PubMed  Google Scholar 

  37. Langsted A, Nordestgaard BG. Nonfasting lipids, lipoproteins, and apolipoproteins in individuals with and without diabetes: 58 434 individuals from the Copenhagen General Population Study. Clin Chem. 2011;57(3):482–9. https://doi.org/10.1373/clinchem.2010.157164.

    Article  CAS  PubMed  Google Scholar 

  38. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52. https://doi.org/10.1038/ng.2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res. 2009;50(2):204–13. https://doi.org/10.1194/jlr.M700505-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kohan AB. Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2015;22(2):119–25. https://doi.org/10.1097/MED.0000000000000136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borén J, Packard CJ, Taskinen MR. The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans. Front Endocrinol (Lausanne). 2020;11:474. Published 2020 Jul 28. https://doi.org/10.3389/fendo.2020.00474.

    Article  PubMed  Google Scholar 

  42. Luo M, Peng D. The emerging role of apolipoprotein C-III: beyond effects on triglyceride metabolism. Lipids Health Dis. 2016;15(1):184. Published 2016 Oct 22. https://doi.org/10.1186/s12944-016-0352-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahebkar A, Simental-Mendía LE, Katsiki N, et al. Effect of fenofibrate on plasma apolipoprotein C-III levels: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019;8(11):e021508. Published 2019 Feb 22. https://doi.org/10.1136/bmjopen-2018-021508.

    Article  PubMed  Google Scholar 

  44. Ballantyne CM, Herd JA, Ferlic LL, et al. Influence of low HDL on progression of coronary artery disease and response to fluvastatin therapy. Circulation. 1999;99(6):736–43. https://doi.org/10.1161/01.cir.99.6.736.

    Article  CAS  PubMed  Google Scholar 

  45. Després JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B. HDL-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study. Atherosclerosis. 2000;153(2):263–72. https://doi.org/10.1016/s0021-9150(00)00603-1.

    Article  PubMed  Google Scholar 

  46. Asztalos BF, Batista M, Horvath KV, et al. Change in alpha1 HDL concentration predicts progression in coronary artery stenosis. Arterioscler Thromb Vasc Biol. 2003;23(5):847–52. https://doi.org/10.1161/01.ATV.0000066133.32063.BB.

    Article  CAS  PubMed  Google Scholar 

  47. Johnsen SH, Mathiesen EB, Fosse E, et al. Elevated high-density lipoprotein cholesterol levels are protective against plaque progression: a follow-up study of 1952 persons with carotid atherosclerosis the Tromsø study. Circulation. 2005;112(4):498–504. https://doi.org/10.1161/CIRCULATIONAHA.104.522706.

    Article  CAS  PubMed  Google Scholar 

  48. Vergallo R, Porto I, D'Amario D, et al. Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol. 2019;4(4):321–9. https://doi.org/10.1001/jamacardio.2019.0275.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grant RW, Meigs JB. Prevalence and treatment of low HDL cholesterol among primary care patients with type 2 diabetes: an unmet challenge for cardiovascular risk reduction. Diabetes Care. 2007;30(3):479–84. https://doi.org/10.2337/dc06-1961.

    Article  CAS  PubMed  Google Scholar 

  50. Brinton EA, Eisenberg S, Breslow JL. Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia. J Clin Invest. 1991;87(2):536–44. https://doi.org/10.1172/JCI115028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bitzur R, Cohen H, Kamari Y, Shaish A, Harats D. Triglycerides and HDL cholesterol: stars or second leads in diabetes? Diabetes Care. 2009;32(Suppl 2):S373–7. https://doi.org/10.2337/dc09-S343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langsted A, Jensen AMR, Varbo A, Nordestgaard BG. Low high-density lipoprotein cholesterol to monitor long-term average increased triglycerides. J Clin Endocrinol Metab. 2020;105(4):dgz265. https://doi.org/10.1210/clinem/dgz265.

    Article  PubMed  Google Scholar 

  53. Bruckert E, Baccara-Dinet M, McCoy F, Chapman J. High prevalence of low HDL-cholesterol in a pan-European survey of 8545 dyslipidaemic patients. Curr Med Res Opin. 2005;21(12):1927–34. https://doi.org/10.1185/030079905X74871.

    Article  CAS  PubMed  Google Scholar 

  54. Barter P, Gotto AM, LaRosa JC, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357(13):1301–10. https://doi.org/10.1056/NEJMoa064278.

    Article  CAS  PubMed  Google Scholar 

  55. Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000. https://doi.org/10.1001/jama.2009.1619.

    Article  Google Scholar 

  56. Vervoort D, Ma X, Luc JGY. Addressing the cardiovascular disease burden in China-is it possible without surgery? JAMA Cardiol. 2019;4(9):952–3. https://doi.org/10.1001/jamacardio.2019.2433.

    Article  PubMed  Google Scholar 

  57. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–300. https://doi.org/10.1001/jama.290.17.2292.

    Article  CAS  PubMed  Google Scholar 

  58. Rader DJ. Mechanisms of disease: HDL metabolism as a target for novel therapies. Nat Clin Pract Cardiovasc Med. 2007;4(2):102–9. https://doi.org/10.1038/ncpcardio0768.

    Article  CAS  PubMed  Google Scholar 

  59. Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature. 2008;451(7181):904–13. https://doi.org/10.1038/nature06796.

    Article  CAS  PubMed  Google Scholar 

  60. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–32. https://doi.org/10.1038/nrcardio.2010.222.

    Article  CAS  PubMed  Google Scholar 

  61. Vergeer M, Holleboom AG, Kastelein JJ, Kuivenhoven JA. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? J Lipid Res. 2010;51(8):2058–73. https://doi.org/10.1194/jlr.R001610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brewer HB Jr. Clinical review: The evolving role of HDL in the treatment of high-risk patients with cardiovascular disease. J Clin Endocrinol Metab. 2011;96(5):1246–57. https://doi.org/10.1210/jc.2010-0163.

    Article  CAS  PubMed  Google Scholar 

  63. Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr Cardiol Rep. 2013;15(9):400. https://doi.org/10.1007/s11886-013-0400-4.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35. https://doi.org/10.1056/NEJMoa1001689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93. https://doi.org/10.1056/NEJMoa1409065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cavigiolio G, Shao B, Geier EG, Ren G, Heinecke JW, Oda MN. The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses. Biochemistry. 2008;47(16):4770–9. https://doi.org/10.1021/bi7023354.

    Article  CAS  PubMed  Google Scholar 

  67. von Eckardstein A. Implications of torcetrapib failure for the future of HDL therapy: is HDL-cholesterol the right target? Expert Rev Cardiovasc Ther. 2010;8(3):345–58. https://doi.org/10.1586/erc.10.6.

    Article  Google Scholar 

  68. McQueen MJ, Hawken S, Wang X, et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet. 2008;372(9634):224–33. https://doi.org/10.1016/S0140-6736(08)61076-4.

    Article  CAS  PubMed  Google Scholar 

  69. Walldius G, de Faire U, Alfredsson L, et al. Long-term risk of a major cardiovascular event by apoB, apoA-1, and the apoB/apoA-1 ratio-experience from the Swedish AMORIS cohort: a cohort study. PLoS Med. 2021;18(12):e1003853. Published 2021 Dec 1. https://doi.org/10.1371/journal.pmed.1003853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ingelsson E, Schaefer EJ, Contois JH, et al. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA. 2007;298(7):776–85. https://doi.org/10.1001/jama.298.7.776.

    Article  CAS  PubMed  Google Scholar 

  71. Welsh C, Celis-Morales CA, Brown R, et al. Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease. Circulation. 2019;140(7):542–52. https://doi.org/10.1161/CIRCULATIONAHA.119.041149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang P, Gao J, Pu C, Zhang Y. Apolipoprotein status in type 2 diabetes mellitus and its complications (Review). Mol Med Rep. 2017;16(6):9279–86. https://doi.org/10.3892/mmr.2017.7831.

    Article  CAS  PubMed  Google Scholar 

  73. Khera AV, Demler OV, Adelman SJ, et al. Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin). Circulation. 2017;135(25):2494–504. https://doi.org/10.1161/CIRCULATIONAHA.116.025678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Albers JJ, Marcovina SM, Imperatore G, et al. Prevalence and determinants of elevated apolipoprotein B and dense low-density lipoprotein in youths with type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2008;93(3):735–42. https://doi.org/10.1210/jc.2007-2176.

    Article  CAS  PubMed  Google Scholar 

  75. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506. https://doi.org/10.1161/01.cir.82.2.495.

    Article  CAS  PubMed  Google Scholar 

  76. Brinton EA, Eisenberg S, Breslow JL. Human HDL cholesterol levels are determined by apoA-I fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Effects of gender, hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler Thromb. 1994;14(5):707–20. https://doi.org/10.1161/01.atv.14.5.707.

    Article  CAS  PubMed  Google Scholar 

  77. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Circulation. 1997;95(1):69–75. https://doi.org/10.1161/01.cir.95.1.69.

    Article  CAS  PubMed  Google Scholar 

  78. St-Pierre AC, Ruel IL, Cantin B, et al. Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation. 2001;104(19):2295–9. https://doi.org/10.1161/hc4401.098490.

    Article  CAS  PubMed  Google Scholar 

  79. Hirano T, Ito Y, Koba S, et al. Clinical significance of small dense low-density lipoprotein cholesterol levels determined by the simple precipitation method. Arterioscler Thromb Vasc Biol. 2004;24(3):558–63. https://doi.org/10.1161/01.ATV.0000117179.92263.08.

    Article  CAS  PubMed  Google Scholar 

  80. Rizzo M, Pernice V, Frasheri A, et al. Small, dense low-density lipoproteins (LDL) are predictors of cardio- and cerebro-vascular events in subjects with the metabolic syndrome. Clin Endocrinol. 2009;70(6):870–5. https://doi.org/10.1111/j.1365-2265.2008.03407.x.

    Article  CAS  Google Scholar 

  81. Taskinen MR. LDL-cholesterol, HDL-cholesterol or triglycerides—which is the culprit? Diabetes Res Clin Pract. 2003;61(Suppl 1):S19–26. https://doi.org/10.1016/s0168-8227(03)00126-8.

    Article  CAS  PubMed  Google Scholar 

  82. Després JP, Lemieux I, Bergeron J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk [published correction appears in Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):e151]. Arterioscler Thromb Vasc Biol. 2008;28(6):1039–49. https://doi.org/10.1161/ATVBAHA.107.159228.

    Article  CAS  PubMed  Google Scholar 

  83. Miller M. Dyslipidemia and cardiovascular risk: the importance of early prevention. QJM. 2009;102(9):657–67. https://doi.org/10.1093/qjmed/hcp065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marston NA, Giugliano RP, Melloni GEM, et al. Association of apolipoprotein B-containing lipoproteins and risk of myocardial infarction in individuals with and without atherosclerosis: distinguishing between particle concentration, type, and content [published online ahead of print, 2021 Nov 13]. JAMA Cardiol. 2021;2021:e215083. https://doi.org/10.1001/jamacardio.2021.5083.

    Article  Google Scholar 

  85. Richardson TG, Wang Q, Sanderson E, et al. Effects of apolipoprotein B on lifespan and risks of major diseases including type 2 diabetes: a Mendelian randomisation analysis using outcomes in first-degree relatives. Lancet Healthy Longev. 2021;2(6):e317–26. https://doi.org/10.1016/S2666-7568(21)00086-6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab. 2013;24(8):391–7. https://doi.org/10.1016/j.tem.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  87. Sierra-Johnson J, Fisher RM, Romero-Corral A, et al. Concentration of apolipoprotein B is comparable with the apolipoprotein B/apolipoprotein A-I ratio and better than routine clinical lipid measurements in predicting coronary heart disease mortality: findings from a multi-ethnic US population. Eur Heart J. 2009;30(6):710–7. https://doi.org/10.1093/eurheartj/ehn347.

    Article  CAS  PubMed  Google Scholar 

  88. van der Steeg WA, Boekholdt SM, Stein EA, et al. Role of the apolipoprotein B-apolipoprotein A-I ratio in cardiovascular risk assessment: a case-control analysis in EPIC-Norfolk. Ann Intern Med. 2007;146(9):640–8. https://doi.org/10.7326/0003-4819-146-9-200705010-00007.

    Article  PubMed  Google Scholar 

  89. Behbodikhah J, Ahmed S, Elyasi A, et al. Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target. Metabolites. 2021;11(10):690. Published 2021 Oct 8. https://doi.org/10.3390/metabo11100690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abourbih S, Filion KB, Joseph L, et al. Effect of fibrates on lipid profiles and cardiovascular outcomes: a systematic review. Am J Med. 2009;122(10):962.e1–962.e9628. https://doi.org/10.1016/j.amjmed.2009.03.030.

    Article  CAS  PubMed  Google Scholar 

  91. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375(9729):1875–84. https://doi.org/10.1016/S0140-6736(10)60656-3.

    Article  CAS  PubMed  Google Scholar 

  92. Vakkilainen J, Steiner G, Ansquer JC, et al. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation. 2003;107(13):1733–7. https://doi.org/10.1161/01.CIR.0000057982.50167.6E.

    Article  PubMed  Google Scholar 

  93. Hiukka A, Leinonen E, Jauhiainen M, et al. Long-term effects of fenofibrate on VLDL and HDL subspecies in participants with type 2 diabetes mellitus [published correction appears in Diabetologia. 2007 Dec;50(12):2611–3]. Diabetologia. 2007;50(10):2067–75. https://doi.org/10.1007/s00125-007-0751-8.

    Article  CAS  PubMed  Google Scholar 

  94. Franceschini G, Calabresi L, Colombo C, Favari E, Bernini F, Sirtori CR. Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients. Atherosclerosis. 2007;195(2):385–91. https://doi.org/10.1016/j.atherosclerosis.2006.10.017.

    Article  CAS  PubMed  Google Scholar 

  95. Chan DC, Watts GF, Ooi EM, Ji J, Johnson AG, Barrett PH. Atorvastatin and fenofibrate have comparable effects on VLDL-apolipoprotein C-III kinetics in men with the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28(10):1831–7. https://doi.org/10.1161/ATVBAHA.108.170530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arca M, Montali A, Pigna G, et al. Comparison of atorvastatin versus fenofibrate in reaching lipid targets and influencing biomarkers of endothelial damage in patients with familial combined hyperlipidemia. Metabolism. 2007;56(11):1534–41. https://doi.org/10.1016/j.metabol.2007.06.021.

    Article  CAS  PubMed  Google Scholar 

  97. Tsunoda F, Asztalos IB, Horvath KV, Steiner G, Schaefer EJ, Asztalos BF. Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: the DAIS trial. Atherosclerosis. 2016;247:35–9. https://doi.org/10.1016/j.atherosclerosis.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ikewaki K, Tohyama J, Nakata Y, Wakikawa T, Kido T, Mochizuki S. Fenofibrate effectively reduces remnants, and small dense LDL, and increases HDL particle number in hypertriglyceridemic men - a nuclear magnetic resonance study. J Atheroscler Thromb. 2004;11(5):278–85. https://doi.org/10.5551/jat.11.278.

    Article  CAS  PubMed  Google Scholar 

  99. Ooi TC, Cousins M, Ooi DS, Nakajima K, Edwards AL. Effect of fibrates on postprandial remnant-like particles in patients with combined hyperlipidemia. Atherosclerosis. 2004;172(2):375–82. https://doi.org/10.1016/j.atherosclerosis.2003.10.016.

    Article  CAS  PubMed  Google Scholar 

  100. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106(4):453–8. https://doi.org/10.1172/JCI10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93. https://doi.org/10.1161/01.cir.98.19.2088.

    Article  CAS  PubMed  Google Scholar 

  102. Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113(12):1556–63. https://doi.org/10.1161/CIRCULATIONAHA.105.565135.

    Article  CAS  PubMed  Google Scholar 

  103. Masana L, Cabré A, Heras M, et al. Remarkable quantitative and qualitative differences in HDL after niacin or fenofibrate therapy in type 2 diabetic patients. Atherosclerosis. 2015;238(2):213–9. https://doi.org/10.1016/j.atherosclerosis.2014.12.006.

    Article  CAS  PubMed  Google Scholar 

  104. Atmeh RF, Shepherd J, Packard CJ. Subpopulations of apolipoprotein A-I in human high-density lipoproteins. Their metabolic properties and response to drug therapy. Biochim Biophys Acta. 1983;751(2):175–88. https://doi.org/10.1016/0005-2760(83)90172-8.

    Article  CAS  PubMed  Google Scholar 

  105. Toth PP, Thakker KM, Jiang P, Padley RJ. Niacin extended-release/simvastatin combination therapy produces larger favorable changes in high-density lipoprotein particles than atorvastatin monotherapy. Vasc Health Risk Manag. 2012;8:39–44. https://doi.org/10.2147/VHRM.S22601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sahebkar A, Simental-Mendía LE, Watts GF, Serban MC, Banach M, Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of head-to-head randomized controlled trials. BMC Med. 2017;15(1):22. Published 2017 Feb 3. https://doi.org/10.1186/s12916-017-0787-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial [published correction appears in Lancet. 2006 Oct 21;368(9545):1420] [published correction appears in Lancet. 2006 Oct 21;368(9545):1415]. Lancet. 2005;366(9500):1849–61. https://doi.org/10.1016/S0140-6736(05)67667-2.

    Article  CAS  PubMed  Google Scholar 

  108. ACCORD Study Group, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus [published correction appears in N Engl J Med. 2010 May 6;362(18):1748]. N Engl J Med. 2010;362(17):1563–74. https://doi.org/10.1056/NEJMoa1001282.

    Article  Google Scholar 

  109. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988;260(5):641–51.

    Article  CAS  PubMed  Google Scholar 

  110. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study [published correction appears in Lancet 2001 Jun 9;357(9271):1890]. Lancet. 2001;357(9260):905–10.

    Google Scholar 

  111. Farnier M. Combination therapy with an HMG-CoA reductase inhibitor and a fibric acid derivative: a critical review of potential benefits and drawbacks. Am J Cardiovasc Drugs. 2003;3(3):169–78. https://doi.org/10.2165/00129784-200303030-00003.

    Article  CAS  PubMed  Google Scholar 

  112. Muhlestein JB, May HT, Jensen JR, et al. The reduction of inflammatory biomarkers by statin, fibrate, and combination therapy among diabetic patients with mixed dyslipidemia: the DIACOR (Diabetes and Combined Lipid Therapy Regimen) study. J Am Coll Cardiol. 2006;48(2):396–401. https://doi.org/10.1016/j.jacc.2006.05.009.

    Article  CAS  PubMed  Google Scholar 

  113. Westphal S, Wiens L, Güttler K, Dierkes J, Luley C. Chylomicron remnants of various sizes are lowered more effectively by fenofibrate than by atorvastatin in patients with combined hyperlipidemia. Atherosclerosis. 2003;171(2):369–77. https://doi.org/10.1016/j.atherosclerosis.2003.08.030.

    Article  CAS  PubMed  Google Scholar 

  114. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97. https://doi.org/10.1001/jama.285.19.2486.

    Article  Google Scholar 

  115. van Eck M, Bos IS, Kaminski WE, et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci U S A. 2002;99(9):6298–303. https://doi.org/10.1073/pnas.092327399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miyazaki T, Shimada K, Miyauchi K, et al. Effects of fenofibrate on lipid profiles, cholesterol ester transfer activity, and in-stent intimal hyperplasia in patients after elective coronary stenting. Lipids Health Dis. 2010;9:122. Published 2010 Oct 25. https://doi.org/10.1186/1476-511X-9-122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Navab M, Yu R, Gharavi N, et al. High-density lipoprotein: antioxidant and anti-inflammatory properties. Curr Atheroscler Rep. 2007;9(3):244–8. https://doi.org/10.1007/s11883-007-0026-3.

    Article  CAS  PubMed  Google Scholar 

  118. Ridker PM, Cook N. Clinical usefulness of very high and very low levels of C-reactive protein across the full range of Framingham Risk Scores. Circulation. 2004;109(16):1955–9. https://doi.org/10.1161/01.CIR.0000125690.80303.A8.

    Article  PubMed  Google Scholar 

  119. Schaefer EJ, McNamara JR, Asztalos BF, et al. Effects of atorvastatin versus other statins on fasting and postprandial C-reactive protein and lipoprotein-associated phospholipase A2 in patients with coronary heart disease versus control subjects. Am J Cardiol. 2005;95(9):1025–32. https://doi.org/10.1016/j.amjcard.2005.01.023.

    Article  CAS  PubMed  Google Scholar 

  120. Albert MA, Danielson E, Rifai N, Ridker PM, PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA. 2001;286(1):64–70. https://doi.org/10.1001/jama.286.1.64.

    Article  CAS  PubMed  Google Scholar 

  121. Elkeles R. Fibrates: old drugs with a new role in type 2 diabetes prevention? Br J Diabet Vasc Dis. 2011;11(4):4–9. https://doi.org/10.1177/1474651410397245.

    Article  CAS  Google Scholar 

  122. Tenenbaum A, Fisman EZ, Boyko V, et al. Attenuation of progression of insulin resistance in patients with coronary artery disease by bezafibrate. Arch Intern Med. 2006;166(7):737–41. https://doi.org/10.1001/archinte.166.7.737.

    Article  CAS  PubMed  Google Scholar 

  123. Elkeles RS, Diamond JR, Poulter C, et al. Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care. 1998;21(4):641–8. https://doi.org/10.2337/diacare.21.4.641.

    Article  CAS  PubMed  Google Scholar 

  124. Hiukka A, Westerbacka J, Leinonen ES, et al. Long-term effects of fenofibrate on carotid intima-media thickness and augmentation index in subjects with type 2 diabetes mellitus. J Am Coll Cardiol. 2008;52(25):2190–7. https://doi.org/10.1016/j.jacc.2008.09.049.

    Article  CAS  PubMed  Google Scholar 

  125. Zhu S, Su G, Meng QH. Inhibitory effects of micronized fenofibrate on carotid atherosclerosis in patients with essential hypertension. Clin Chem. 2006;52(11):2036–42. https://doi.org/10.1373/clinchem.2006.074724.

    Article  CAS  PubMed  Google Scholar 

  126. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet. 1996;347(9005):849–53. https://doi.org/10.1016/s0140-6736(96)91343-4.

    Article  CAS  PubMed  Google Scholar 

  127. Frick MH, Syvänne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation. 1997;96(7):2137–43. https://doi.org/10.1161/01.cir.96.7.2137.

    Article  CAS  PubMed  Google Scholar 

  128. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341(6):410–8. https://doi.org/10.1056/NEJM199908053410604.

    Article  CAS  PubMed  Google Scholar 

  129. Meade T, Zuhrie R, Cook C, Cooper J. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ. 2002;325(7373):1139. https://doi.org/10.1136/bmj.325.7373.1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Federal Register/Vol. 81, No. 74/Monday, April 18, 2016. https://www.federalregister.gov/articles/2016/04/18/2016-08887/abbvie-inc-et-al-withdrawal-of-approval-of-indications-related-to-the-coadministration-with-statins.

  131. Maki KC, Guyton JR, Orringer CE, Hamilton-Craig I, Alexander DD, Davidson MH. Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J Clin Lipidol. 2016;10(4):905–14. https://doi.org/10.1016/j.jacl.2016.03.008.

    Article  PubMed  Google Scholar 

  132. Lee M, Saver JL, Towfighi A, Chow J, Ovbiagele B. Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis. 2011;217(2):492–8. https://doi.org/10.1016/j.atherosclerosis.2011.04.020.

    Article  CAS  PubMed  Google Scholar 

  133. Sacks FM, Carey VJ, Fruchart JC. Combination lipid therapy in type 2 diabetes. N Engl J Med. 2010;363(7):692–5. https://doi.org/10.1056/NEJMc1006407.

    Article  CAS  PubMed  Google Scholar 

  134. Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med. 2002;162(22):2597–604. https://doi.org/10.1001/archinte.162.22.2597.

    Article  CAS  PubMed  Google Scholar 

  135. Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care. 2003;26(5):1513–7. https://doi.org/10.2337/diacare.26.5.1513.

    Article  CAS  PubMed  Google Scholar 

  136. FIELD Study Investigators. The need for a large-scale trial of fibrate therapy in diabetes: the rationale and design of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. [ISRCTN64783481]. Cardiovasc Diabetol. 2004;3:9. Published 2004 Dec 1. https://doi.org/10.1186/1475-2840-3-9.

    Article  Google Scholar 

  137. Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation. 1992;85(1):37–45. https://doi.org/10.1161/01.cir.85.1.37.

    Article  CAS  PubMed  Google Scholar 

  138. Scott R, O’Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8. https://doi.org/10.2337/dc08-1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. https://doi.org/10.1016/S0140-6736(10)61350-5.

    Article  CAS  Google Scholar 

  140. Barter PJ, Rye KA. Cardioprotective properties of fibrates: which fibrate, which patients, what mechanism? Circulation. 2006;113(12):1553–5. https://doi.org/10.1161/CIRCULATIONAHA.105.620450.

    Article  PubMed  Google Scholar 

  141. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237–45. https://doi.org/10.1056/NEJM198711123172001.

    Article  CAS  PubMed  Google Scholar 

  142. Davidson MH, Armani A, McKenney JM, Jacobson TA. Safety considerations with fibrate therapy. Am J Cardiol. 2007;99(6A):3C–18C. https://doi.org/10.1016/j.amjcard.2006.11.016.

    Article  CAS  PubMed  Google Scholar 

  143. Jones PH, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol. 2005;95(1):120–2. https://doi.org/10.1016/j.amjcard.2004.08.076.

    Article  CAS  PubMed  Google Scholar 

  144. Preiss D, Spata E, Holman RR, et al. Effect of fenofibrate therapy on laser treatment for diabetic retinopathy: a meta-analysis of randomized controlled trials. Diabetes Care. 2022;45(1):e1–2. https://doi.org/10.2337/dc21-1439.

    Article  PubMed  Google Scholar 

  145. Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97. https://doi.org/10.1016/S0140-6736(07)61607-9.

    Article  CAS  PubMed  Google Scholar 

  146. ACCORD Study Group; ACCORD Eye Study Group, Chew EY, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes [published correction appears in N Engl J Med. 2011 Jan 13;364(2):190] [published correction appears in N Engl J Med. 2012 Dec 20;367(25):2458]. N Engl J Med. 2010;363(3):233–44. https://doi.org/10.1056/NEJMoa1001288.

    Article  CAS  Google Scholar 

  147. Ansquer JC, Foucher C, Rattier S, Taskinen MR, Steiner G, DAIS Investigators. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis. 2005;45(3):485–93. https://doi.org/10.1053/j.ajkd.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  148. Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011;54(2):280–90. https://doi.org/10.1007/s00125-010-1951-1.

    Article  CAS  PubMed  Google Scholar 

  149. Mychaleckyj JC, Craven T, Nayak U, et al. Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care. 2012;35(5):1008–14. https://doi.org/10.2337/dc11-1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rajamani K, Colman PG, Li LP, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009;373(9677):1780–8. https://doi.org/10.1016/S0140-6736(09)60698-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of Medical Care in Diabetes-2021 [published correction appears in Diabetes Care. 2021 Sep;44(9):2183–2185]. Diabetes Care. 2021;44(Suppl 1):S125–50. https://doi.org/10.2337/dc21-S010.

    Article  Google Scholar 

  152. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in J Am Coll Cardiol. 2019 Jun 25;73(24):3234–3237]. J Am Coll Cardiol. 2019;73(24):3168–209. https://doi.org/10.1016/j.jacc.2018.11.002.

    Article  PubMed  Google Scholar 

  153. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC Expert Consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960–93. https://doi.org/10.1016/j.jacc.2021.06.011.

    Article  PubMed  Google Scholar 

  154. Handelsman Y, Jellinger PS, Guerin CK, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Management of Dyslipidemia and Prevention of Cardiovascular Disease Algorithm - 2020 executive summary. Endocr Pract. 2020;26(10):1196–224. https://doi.org/10.4158/CS-2020-0490.

    Article  PubMed  Google Scholar 

  155. Pearson GJ, Thanassoulis G, Anderson TJ, et al. 2021 Canadian Cardiovascular Society Guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in adults. Can J Cardiol. 2021;37(8):1129–50. https://doi.org/10.1016/j.cjca.2021.03.016.

    Article  PubMed  Google Scholar 

  156. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337. https://doi.org/10.1093/eurheartj/ehab484.

    Article  PubMed  Google Scholar 

  157. Brinton EA. Management of hypertriglyceridemia for prevention of atherosclerotic cardiovascular disease. Cardiol Clin. 2015;33(2):309–23. https://doi.org/10.1016/j.ccl.2015.02.007.

    Article  PubMed  Google Scholar 

  158. Brinton EA. Management of hypertriglyceridemia for prevention of atherosclerotic cardiovascular disease. Endocrinol Metab Clin N Am. 2016;45(1):185–204. https://doi.org/10.1016/j.ecl.2015.09.012.

    Article  Google Scholar 

  159. Ishibashi S, Yamashita S, Arai H, et al. Effects of K-877, a novel selective PPARα modulator (SPPARMα), in dyslipidaemic patients: a randomized, double blind, active- and placebo-controlled, phase 2 trial. Atherosclerosis. 2016;249:36–43. https://doi.org/10.1016/j.atherosclerosis.2016.02.029.

    Article  CAS  PubMed  Google Scholar 

  160. Ishibashi S, Arai H, Yokote K, et al. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia: results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J Clin Lipidol. 2018;12(1):173–84. https://doi.org/10.1016/j.jacl.2017.10.006.

    Article  PubMed  Google Scholar 

  161. Arai H, Yamashita S, Yokote K, et al. Efficacy and safety of pemafibrate versus fenofibrate in patients with high triglyceride and low HDL cholesterol levels: a multicenter, placebo-controlled, double-blind, randomized trial. J Atheroscler Thromb. 2018;25(6):521–38. https://doi.org/10.5551/jat.44412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Arai H, Yamashita S, Yokote K, et al. Efficacy and safety of K-877, a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), in combination with statin treatment: two randomised, double-blind, placebo-controlled clinical trials in patients with dyslipidaemia. Atherosclerosis. 2017;261:144–52. https://doi.org/10.1016/j.atherosclerosis.2017.03.032.

    Article  CAS  PubMed  Google Scholar 

  163. Yamashita S, Arai H, Yokote K, et al. Efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα): pooled analysis of phase 2 and 3 studies in dyslipidemic patients with or without statin combination. Int J Mol Sci. 2019;20(22):5537. Published 2019 Nov 6. https://doi.org/10.3390/ijms20225537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Araki E, Yamashita S, Arai H, et al. Effects of pemafibrate, a novel selective PPARα modulator, on lipid and glucose metabolism in patients with type 2 diabetes and hypertriglyceridemia: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2018;41(3):538–46. https://doi.org/10.2337/dc17-1589.

    Article  CAS  PubMed  Google Scholar 

  165. Araki E, Yamashita S, Arai H, et al. Efficacy and safety of pemafibrate in people with type 2 diabetes and elevated triglyceride levels: 52-week data from the PROVIDE study. Diabetes Obes Metab. 2019;21(7):1737–44. https://doi.org/10.1111/dom.13686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Komiya I, Yamamoto A, Sunakawa S, Wakugami T. Pemafibrate decreases triglycerides and small, dense LDL, but increases LDL-C depending on baseline triglycerides and LDL-C in type 2 diabetes patients with hypertriglyceridemia: an observational study. Lipids Health Dis. 2021;20(1):17. Published 2021 Feb 20. https://doi.org/10.1186/s12944-021-01434-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yamashita S, Arai H, Yokote K, et al. Effects of pemafibrate (K-877) on cholesterol efflux capacity and postprandial hyperlipidemia in patients with atherogenic dyslipidemia. J Clin Lipidol. 2018;12(5):1267–1279.e4. https://doi.org/10.1016/j.jacl.2018.06.010.

    Article  PubMed  Google Scholar 

  168. Ida S, Kaneko R, Murata K. Efficacy and safety of pemafibrate administration in patients with dyslipidemia: a systematic review and meta-analysis. Cardiovasc Diabetol. 2019;18(1):38. https://doi.org/10.1186/s12933-019-0845-x.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kusunoki M, Sakazaki T, Tsutsumi K, Miyata T, Oshida Y. The effects of pemafibrate in Japanese patients with type 2 diabetes receiving HMG-CoA reductase inhibitors. Endocr Metab Immune Disord Drug Targets. 2021;21(5):919–24. https://doi.org/10.2174/1871530320999200818135553.

    Article  CAS  PubMed  Google Scholar 

  170. Yokote K, Yamashita S, Arai H, et al. Effects of pemafibrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double-blind placebo-controlled clinical trials. Cardiovasc Diabetol. 2021;20(1):96. Published 2021 May 4. https://doi.org/10.1186/s12933-021-01291-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sasaki Y, Asahiyama M, Tanaka T, et al. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content. Sci Rep. 2020;10(1):7818. Published 2020 May 8. https://doi.org/10.1038/s41598-020-64902-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ikeda S, Sugihara T, Hoshino Y, et al. Pemafibrate dramatically ameliorated the values of liver function tests and fibrosis marker in patients with non-alcoholic fatty liver disease [published correction appears in Yonago Acta Med. 2020 Nov 24;63(4):385]. Yonago Acta Med. 2020;63(3):188–97. Published 2020 Aug 7. https://doi.org/10.33160/yam.2020.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yokote K, Yamashita S, Arai H, et al. Long-term efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor-α modulator (SPPARMα), in dyslipidemic patients with renal impairment. Int J Mol Sci. 2019;20(3):706. Published 2019 Feb 6. https://doi.org/10.3390/ijms20030706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol. 2021;20(1):2. Published 2021 Jan 4. https://doi.org/10.1186/s12933-020-01188-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fruchart JC, Santos RD, Aguilar-Salinas C, et al. The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential: a consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation. Cardiovasc Diabetol. 2019;18(1):71. Published 2019 Jun 4. https://doi.org/10.1186/s12933-019-0864-7.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Pradhan AD, Paynter NP, Everett BM, et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J. 2018;206:80–93. https://doi.org/10.1016/j.ahj.2018.09.011.

    Article  CAS  PubMed  Google Scholar 

  177. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. https://doi.org/10.1056/NEJMoa1812792.

    Article  CAS  PubMed  Google Scholar 

  178. Bhatt DL, Miller M, Brinton EA, et al. REDUCE-IT USA: results from the 3146 patients randomized in the United States. Circulation. 2020;141(5):367–75. https://doi.org/10.1161/CIRCULATIONAHA.119.044440.

    Article  PubMed  Google Scholar 

  179. Orringer CE, Jacobson TA, Maki KC. National Lipid Association Scientific Statement on the use of icosapent ethyl in statin-treated patients with elevated triglycerides and high or very-high ASCVD risk. J Clin Lipidol. 2019;13(6):860–72. https://doi.org/10.1016/j.jacl.2019.10.014.

    Article  PubMed  Google Scholar 

  180. Skulas-Ray AC, Wilson PWF, Harris WS, et al. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation. 2019;140(12):e673–91. https://doi.org/10.1161/CIR.0000000000000709.

    Article  CAS  PubMed  Google Scholar 

  181. Arnold SV, Bhatt DL, Barsness GW, et al. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2020;141(19):e779–806. https://doi.org/10.1161/CIR.0000000000000766.

    Article  PubMed  Google Scholar 

  182. Farnier M, Freeman MW, Macdonell G, et al. Efficacy and safety of the coadministration of ezetimibe with fenofibrate in patients with mixed hyperlipidaemia. Eur Heart J. 2005;26(9):897–905. https://doi.org/10.1093/eurheartj/ehi231.

    Article  CAS  PubMed  Google Scholar 

  183. Farnier M, Roth E, Gil-Extremera B, et al. Efficacy and safety of the coadministration of ezetimibe/simvastatin with fenofibrate in patients with mixed hyperlipidemia. Am Heart J. 2007;153(2):335.e1–335.e3358. https://doi.org/10.1016/j.ahj.2006.10.031.

    Article  CAS  PubMed  Google Scholar 

  184. Bezafibrate Infarction Prevention (BIP) study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation. 2000;102(1):21–7. https://doi.org/10.1161/01.cir.102.1.21.

    Article  Google Scholar 

  185. Frick MH, Heinonen OP, Huttunen JK, Koskinen P, Mänttäri M, Manninen V. Efficacy of gemfibrozil in dyslipidaemic subjects with suspected heart disease. An ancillary study in the Helsinki Heart Study frame population. Ann Med. 1993;25(1):41–5. https://doi.org/10.3109/07853899309147855.

    Article  CAS  PubMed  Google Scholar 

  186. The treatment of cerebrovascular disease with clofibrate. Final report of the Veterans Administration Cooperative Study of Atherosclerosis, Neurology Section. Stroke. 1973;4(4):684–93. https://doi.org/10.1161/01.str.4.4.684.

  187. Knopp RH, Brown WV, Dujovne CA, et al. Effects of fenofibrate on plasma lipoproteins in hypercholesterolemia and combined hyperlipidemia. Am J Med. 1987;83(5B):50–9. https://doi.org/10.1016/0002-9343(87)90871-0.

    Article  CAS  PubMed  Google Scholar 

  188. Davidson MH, Bays HE, Stein E, et al. Effects of fenofibrate on atherogenic dyslipidemia in hypertriglyceridemic subjects. Clin Cardiol. 2006;29(6):268–73. https://doi.org/10.1002/clc.4960290609.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Krempf M, Rohmer V, Farnier M, et al. Efficacy and safety of micronised fenofibrate in a randomised double-blind study comparing four doses from 200 mg to 400 mg daily with placebo in patients with hypercholesterolemia. Diabetes Metab. 2000;26(3):184–91.

    CAS  PubMed  Google Scholar 

  190. Seidehamel RJ. Fenofibrate in type IV and type V hyperlipoproteinemia. Cardiology. 1989;76(Suppl 1):23–32. https://doi.org/10.1159/000174544.

    Article  PubMed  Google Scholar 

  191. Nissen SE, Nicholls SJ, Wolski K, et al. Effects of a potent and selective PPAR-alpha agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA. 2007;297(12):1362–73. https://doi.org/10.1001/jama.297.12.1362.

    Article  CAS  PubMed  Google Scholar 

  192. Vinik AI, Colwell JA. Effects of gemfibrozil on triglyceride levels in patients with NIDDM. Hyperlipidemia in Diabetes Investigators. Diabetes Care. 1993;16(1):37–44. https://doi.org/10.2337/diacare.16.1.37.

    Article  CAS  PubMed  Google Scholar 

  193. Schaefer EJ, Lamon-Fava S, Cole T, et al. Effects of regular and extended-release gemfibrozil on plasma lipoproteins and apolipoproteins in hypercholesterolemic patients with decreased HDL cholesterol levels. Atherosclerosis. 1996;127(1):113–22. https://doi.org/10.1016/s0021-9150(96)05941-2.

    Article  CAS  PubMed  Google Scholar 

  194. Avogaro A, Piliego T, Catapano A, Miola M, Tiengo A. The effect of gemfibrozil on lipid profile and glucose metabolism in hypertriglyceridaemic well-controlled non-insulin-dependent diabetic patients. For the Gemfibrozil Study Group. Acta Diabetol. 1999;36(1–2):27–33. https://doi.org/10.1007/s005920050141.

    Article  CAS  PubMed  Google Scholar 

  195. Wiklund O, Angelin B, Bergman M, et al. Pravastatin and gemfibrozil alone and in combination for the treatment of hypercholesterolemia. Am J Med. 1993;94(1):13–20. https://doi.org/10.1016/0002-9343(93)90114-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot A. Brinton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brinton, E.A., Pulipati, V.P. (2023). Fibrate Therapy: Impact on Dyslipidemia and Cardiovascular Events in Patients with Diabetes Mellitus Type 2. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_24

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics