Skip to main content

Climate Changes over the Indian Subcontinent: Scenarios and Impacts

  • Chapter
  • First Online:
Science, Policies and Conflicts of Climate Change

Part of the book series: Springer Climate ((SPCL))

  • 172 Accesses

Abstract

It has now been well established that the rise in global mercury has driven climate change phenomena that have led to extreme temperature events, sea level rise, change in the hydrological cycle, frequent droughts and floods, and cyclones and forest fires and caused a myriad of adverse impacts on vital worldwide sectors such as agriculture, water and health. The impact of climate change is anticipated to be more adverse for destitute and socioeconomically deprived populations from developing and underdeveloped nations owing to poor adaptive capacity and higher sensitivity. The present chapter focuses on the Indian context, where it presents shreds of evidence of the impact of climate change in the past, present and future such as extreme events like heat waves, diurnal temperature range, shrinking of Himalayan glaciers, shifting of rainfall patterns, increased susceptibility to floods and droughts, and its impact on some of the important sectors. The chapter shows clear evidence of a decline in crop production and productivity of some of the important crops such as wheat, rice, sugarcane, maize, potato, tomato, etc. The recent studies established an increase in morbidity and mortality associated with extreme temperature and poor air quality associated with increased particulate matter (PM), NOx, SOx, O3, black carbon and other ambient pollutants. In addition, important river basins of India, such as Gomti, Gandak, Vaigai, Mahi, Varuna and Ghaghra, have shown increased susceptibility to flooding and drought events that are more likely to be frequent and severe in the future under different climate change scenarios owing to changes in erratic rainfall patterns and increasing temperature. The chapter also discusses the potential adaptation and mitigation strategies that would help policymakers to combat climate change amid the rising susceptible population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adger WN, Barnett J, Brown K, Marshall N, Brien KO (2012) Cultural dimensions of climate change impacts and adaptation. Nat Clim Change 3(2):112–117

    Article  ADS  Google Scholar 

  • Aggarwal PK, Mall RK (2002) Climate change and rice yields in diverse agro-environments of India. II Effect of uncertainties in scenarios and crop models on impact assessment. Clim Change 52(3):331–343

    Article  Google Scholar 

  • Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29(3):417–435

    Article  Google Scholar 

  • Ali H, Mishra V (2018) Increase in subdaily precipitation extremes in India under 1.5 and 2.0 °C warming worlds. Geophys Res Lett 45(14):6972–6982

    Article  ADS  Google Scholar 

  • Akhtar R, Palagiano C (2018) Climate change and air pollution: an introduction. In: Akhtar R, Palagiano C (eds) Climate change and air pollution. Springer, Cham. https://doi.org/10.1007/978-3-319-61346-8_1

    Chapter  Google Scholar 

  • Arora A, Arabameri A, Pandey M, Siddiqui MA, Shukla UK, Bui DT, Mishra VN, Bhardwaj A (2020) Optimization of state-of-the-art fuzzy-metaheuristic ANFIS based machine learning models for flood susceptibility prediction mapping in the middle ganga plain, India. Sci Total Environ 750:141565

    Article  ADS  Google Scholar 

  • Asadieh B, Krakauer NY (2017) Global change in streamflow extremes under climate change over the 21st century. Hydrol Earth Syst Sci 21(11):5863–5874

    Article  ADS  CAS  Google Scholar 

  • Asseng S, Cammarano D, Basso B, Chung U, Alderman PD, Sonder K et al (2017) Hot spots of wheat yield decline with rising temperatures. Glob Chang Biol 23(6):2464–2472

    Article  ADS  Google Scholar 

  • Ã…ström DO, Forsberg B, Ebi KL, Rocklöv J (2013) Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat Clim Chang 3(12):1050–1054

    Article  ADS  Google Scholar 

  • Auffhammer M, Ramanathan V, Vincent JR (2006) Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci 103(52):19668–19672

    Article  ADS  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45(13):2297–2309

    Article  ADS  CAS  Google Scholar 

  • Awasthi S, Pande VK (1997) Seasonal pattern of morbidities in preschool slum children in Lucknow, North India. Indian Pediatr 34:987–993

    CAS  Google Scholar 

  • Azhar GS, Mavalankar D, Nori-Sarma A, Rajiva A, Dutta P, Jaiswal A et al (2014) Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One 9(3):e91831

    Article  ADS  Google Scholar 

  • Banerjee T, Shitole A, Mhawish A, Anand A, Ranjan R, Khan MF, Srithawirat T, Latif MT, Mall R (2021) Aerosol climatology over South and Southeast Asia: aerosol types, vertical profile and source fields. J Geophys Res Atmos 126:e2020JD033554. https://doi.org/10.1029/2020JD033554

    Article  ADS  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(SUPPL. 1):71–95

    Article  Google Scholar 

  • Bhatla R, Mandal B, Verma S, Ghosh S, Mall RK (2019) Performance of regional climate model in simulating monsoon onset over the Indian subcontinent. Pure Appl Geophys 176(1):409–420

    Article  ADS  Google Scholar 

  • Bhatla R, Sarkar D, Verma S, Sinha P, Ghosh S, Mall RK (2020a) Regional climate model performance and application of bias corrections in simulating summer monsoon maximum temperature for agro-climatic zones in India. Theor Appl Climatol 142(3):1595–1612

    Article  ADS  Google Scholar 

  • Bhatla R, Verma S, Ghosh S, Gupta A (2020b) Abrupt changes in mean temperature over India during 1901–2010. Journal of earth system science, 129(1):1–11

    Google Scholar 

  • Bhatt D, Sonkar G, Mall RK (2019) Impact of climate variability on the rice yield in Uttar Pradesh: an agro-climatic zone-based study. Environ Process 6(1):135–153

    Article  Google Scholar 

  • Bhatt D, Kundu A, Mall R, Raju KP (2020) Dynamics of vegetation response to seasonal rainfall in the Gomati River basin (India) using earth observation data sets. J Sci Res 64(01):20–31

    Google Scholar 

  • Bhatt D, Mall RK, Raju KP, Suryavanshi S (2022) Multivariate drought analysis for the temperature homogeneous regions of India: lessons from the Gomati River basin. Meteorological applications. RMetS 29(2):e2044. https://doi.org/10.1002/met.2044

    Article  Google Scholar 

  • Burney J, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. Proc Natl Acad Sci 111(46):16319–16324

    Article  ADS  CAS  Google Scholar 

  • Byjesh K, Kumar SN, Aggarwal PK (2010) Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig Adapt Strat Glob Chang 15(5):413–431

    Article  Google Scholar 

  • Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J (2015) Climate change and vector-borne diseases: what are the implications for public health research and policy. Philos Trans R Soc Lond B Biol Sci 370(1665):20130552. https://doi.org/10.1098/rstb.2013.0552

    Article  Google Scholar 

  • Cao J, Xu H, Xu Q, Chen B, Kan H (2012) Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ Health Perspect 120(3):373–378

    Article  CAS  Google Scholar 

  • CCSP (2008) Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and US Pacific islands. A report by the US climate change science program and the subcommittee on global change research, 164

    Google Scholar 

  • Chakraborty P, Chakraborty A, Ghosh D, Mandal J, Biswas S, Mukhopadhyay UK, Bhattacharya SG (2014) Effect of airborne Alternaria conidia, ozone exposure, PM 10 and weather on emergency visits for asthma in school-age children in Kolkata city, India. Aerobiologia 30(2):137–148

    Article  Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4(4):287–291

    Article  ADS  Google Scholar 

  • Chanana-Nag N, Aggarwal PK (2020) Women in agriculture, and climate risks: hotspots for development. Clim Change 158(1):13–27

    Article  ADS  Google Scholar 

  • Chaubey PK, Srivastava PK, Gupta A, Mall RK (2021) Integrated assessment of extreme events and hydrological responses of indo-Nepal Gandak River basin. Environ Dev Sustain 23:8643–8668

    Article  Google Scholar 

  • Chaubey PK, Mall RK, Jaiswal R, Payra S (2022) Spatio-temporal changes in extreme rainfall events over different Indian river basins. Earth and space science. AGU 9:e2021EA001930. https://doi.org/10.1029/2021EA001930

    Article  Google Scholar 

  • Chauhan BS, Mahajan G, Randhawa RK, Singh H, Kang MS (2014) Global warming and its possible impact on agriculture in India. Adv Agron 123:65–121

    Article  Google Scholar 

  • Choudhary A, Dimri AP (2019) On bias correction of summer monsoon precipitation over India from CORDEX? SA simulations. Int J Climatol 39(3):1388–1403

    Article  Google Scholar 

  • Chowdhury S, Dey S, Smith KR (2018) Ambient PM 2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat Commun 9(1):1–10

    Article  ADS  Google Scholar 

  • Cline WR (2007) Global warming and agriculture: impact estimates by country. Peterson Institute

    Google Scholar 

  • Cooper RT (2019) Projection of future precipitation extremes across the Bangkok metropolitan region. Heliyon 5(5):e01678

    Article  Google Scholar 

  • CRED (2016) EM-DAT | the international disasters database website. In: Centre for Research on the epidemiology of disasters (CRED). Université Catholique de Louvain. https://www.emdat.be/

    Google Scholar 

  • D’amato G (2002) Outdoor air pollution, climate and allergic respiratory diseases: evidence of a link. Clin Exp Allergy 32(10):1391–1393

    Article  Google Scholar 

  • Dai A, Zhao T, Chen J (2018) Climate change and drought: a precipitation and evaporation perspective. Curr Clim Change Report 4(3):301–312

    Article  Google Scholar 

  • Das S, Dey A, Pal A, Roy N (2015) Applications of artificial intelligence in machine learning: review and Prospect. Int J Comput Applic 115(9):31–41

    Article  Google Scholar 

  • DeBeer CM, Wheater HS, Carey SK, Chun KP (2016) Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. Hydrol Earth Syst Sci 20(4):1573–1598

    Article  ADS  Google Scholar 

  • Dey S, Shukla UK, Mehrishi P, Mall RK (2021a) Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM. Environ Dev Sustain 23:17558–17589

    Article  Google Scholar 

  • Dey S, Dey AK, Mall RK (2021b) Modeling long-term groundwater levels by exploring deep bidirectional long short-term memory using hydro-climatic data. Water Resour Manag 2021. https://doi.org/10.1007/s11269-021-02899-z

  • Dhiman RC, Pahwa S, Dhillon GPS, Dash AP (2010) Climate change and the threat of vector-borne diseases in India: are we prepared? Parasitol Res 106(4):763–773

    Article  Google Scholar 

  • Dhiman R, Vishnu Radhan R, Eldho TI, Inamdar A (2019) Flood risk and adaptation in Indian coastal cities: recent scenarios. Appl Water Sci 9(1):1–16

    Article  ADS  Google Scholar 

  • Duan W, Hanasaki N, Shiogama H, Chen Y, Zou S, Nover D, Zhou B, Wang Y (2019) Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. J Climate 32(8):2169–2183

    Article  ADS  Google Scholar 

  • Endo H, Kitoh A, Mizuta R, Ishii M (2017) Future changes in precipitation extremes in East Asia and their uncertainty based on large ensemble simulations with a high-resolution AGCM. SOLAIAT 13:7–12

    Article  ADS  Google Scholar 

  • EPA (2020) Air Quality and Climate Change Research. Accessed from: https://www.epa.gov/air-research/air-quality-and-climate-change-research on 6th Aug 2021

  • Farrar DS, Awasthi S, Fadel SA, Kumar R, Sinha A, Fu SH, Wahl B, Morris SK, Jha P (2019) Seasonal variation and etiologic inferences of childhood pneumonia and diarrhea mortality in India. eLife 8:e46202. https://doi.org/10.7554/eLife.46202

    Article  Google Scholar 

  • Field CB, Levy AN, Mach KJ (2014) Climate change 2014: impacts. Adapt Vulnerabil 107:301–316

    Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403

    Article  ADS  CAS  Google Scholar 

  • Galbraith H, Jones R, Park R, Clough J, Herrod-Julius S, Harrington B, Page G (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25(2):173–183

    Article  Google Scholar 

  • Ghosh S, Krishnan R (2020) Extreme storms. Assessment of climate change over the Indian region: a report of the Ministry of Earth Sciences (MoES), Government of India, 155

    Google Scholar 

  • Ghosh S, Vittal H, Sharma T, Karmakar S, Kasiviswanathan KS, Dhanesh Y, Sudheer KP, Gunthe SS (2016) Indian summer monsoon rainfall: implications of contrasting trends in the spatial variability of means and extremes. PLoS One 11(7):e0158670

    Article  Google Scholar 

  • Gómez-Martín MB (2021) Tourism climatology: past, present, and future. Atmos 12(5):639–643

    Google Scholar 

  • Gosling SN, Hondula DM, Bunker A, Ibarreta D, Liu J, Zhang X, Sauerborn R (2017) Adaptation to climate change: a comparative analysis of modeling methods for heat-related mortality. Environ Health Perspect 125(8):087008

    Article  Google Scholar 

  • Greene D, Hoffmann AL, Stark L (2019) Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning. Proceedings of the 52nd Hawaii international conference on system sciences

    Google Scholar 

  • Gupta R, Somanathan E, Dey S (2017) Global warming and local air pollution have reduced wheat yields in India. Clim Change 140(3–4):593–604

    Article  ADS  Google Scholar 

  • Gusain A, Mohanty MP, Ghosh S, Chatterjee C, Karmakar S (2020) Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach. Sci Total Environ 726:138600

    Article  ADS  CAS  Google Scholar 

  • Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dynam 4(1):129–144

    Article  ADS  Google Scholar 

  • Hajat S, Vardoulakis S, Heaviside C, Eggen B (2014) Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Community Health 68(7):641–648

    Article  Google Scholar 

  • Han J, Liu S, Zhang J, Zhou L, Fang Q, Zhang J, Zhang Y (2017) The impact of temperature extremes on mortality: a time-series study in Jinan, China. BMJ Open 7(4):e014741

    Article  Google Scholar 

  • Hari V, Dharmasthala S, Koppa A, Karmakar S, Kumar R (2021) Climate hazards are threatening vulnerable migrants in Indian megacities. Nat Clim Chang:1–3

    Google Scholar 

  • Hasegawa A, Gusyev M, Iwami Y (2016) Meteorological drought and flood assessment using the comparative SPI approach in Asia under climate change. J Disaster Res 11(6):1082–1090

    Article  Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu C, Wang B, Yao J (2011) Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch Env Res Risk A 25(6):781–792

    Article  Google Scholar 

  • Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H (2019) Machine learning and artificial intelligence to aid climate change research and preparedness. Environ Res Lett 14(12)

    Google Scholar 

  • IPCC (2001) Climate change 2001. Synthesis report (n.d.)

    Google Scholar 

  • IPCC (2014) Working group II, fifth assessment report of the intergovernmental panel on climate change, summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2021) In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Jaiswal R, Mall RK, Singh N, Kumar TVL, Niyogi D (2022) Evaluation of Bias correction methods for regional climate models: Downscaled Rainfall analysis over diverse agro-climatic zones of India. Earth Space Sci:e2021EA001981. https://doi.org/10.1029/2021EA001981

  • Janssen NA, Hoek G, Simic-Lawson M, Fischer P, Van Bree L, Ten Brink H et al (2011) Black carbon is an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2. 5. Environ Health Perspect 119(12):1691–1699

    Article  CAS  Google Scholar 

  • Jehanzaib M, Sattar MN, Lee JH, Kim TW (2020) Investigating the effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections. Stoch Env Res Risk A 34(1):7–21

    Article  Google Scholar 

  • Jyoti J, Swapna P, Krishnan R, Naidu CV (2019) Pacific modulation of accelerated South Indian Ocean Sea-level rise during the early 21st century. Climate Dynam 53(7):4413–4432

    Article  ADS  Google Scholar 

  • Kahn ME, Mohaddes K, Ng RNC, Pesaran MH, Raissi M, Yang J-C (2019) Long-term macroeconomic effects of climate change: a cross-country analysis, Cambridge working papers in economics 1965, Faculty of Economics. University of Cambridge

    Book  Google Scholar 

  • Kilbourne EM (1999) The spectrum of illness during heat waves. Am J Prev Med 16(4):359–360

    CAS  Google Scholar 

  • Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, Solomon G, Trent R, English P (2009) The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect 117(1):61–67. https://doi.org/10.1289/ehp.11594

    Article  Google Scholar 

  • Kumar KK, Parikh J (2001) Indian agriculture and climate sensitivity. Glob Environ Chang 11(2):147–154

    Article  Google Scholar 

  • Kumar M, Raju MP, Singh RS, Banerjee T (2017) Impact of drought and normal monsoon scenarios on aerosol induced radiative forcing and atmospheric heating in Varanasi over middle indo-Gangetic plain. J Aerosol Sci 113:95–107

    Article  ADS  CAS  Google Scholar 

  • Kumar KJ, Chowdary KA, Usha HC, Kulkarni M, Manjunath VG (2018) Etiology of community-acquired pneumonia among children in India with special reference to atypical pathogens. Lung India: Official Organ of Indian Chest Society 35(2):116

    Article  Google Scholar 

  • Kumar V, Shukla T, Mehta M, Dobhal DP, Singh Bisht MP, Nautiyal S (2021) Glacier changes and associated climate drivers for the last three decades, Nanda Devi region, central Himalaya, India. Quat Int 575-576(May):213–226

    Article  Google Scholar 

  • Lavers DA, Allan RP, Villarini G, Lloyd-Hughes B, Brayshaw DJ, Wade AJ (2013) Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ Res Lett 8(3)

    Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87

    Article  ADS  CAS  Google Scholar 

  • Lewis SC, King AD (2017) Evolution of mean, variance and extremes in 21st-century temperatures. Weather Clim Extremes 15:1–10

    Article  Google Scholar 

  • Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128. https://doi.org/10.1016/S0140-6736(12)61728-0

    Article  Google Scholar 

  • Lindell MK (2013) Disaster studies. Curr Sociol 61(5–6):797–825

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503

    Article  ADS  CAS  Google Scholar 

  • Maghsood FF, Moradi H, Massah Bavani AR, Panahi M, Berndtsson R, Hashemi H (2019) Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water 11(2):273

    Article  Google Scholar 

  • Mahmood R, Jia S, Zhu W (2019) Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad Basin, Africa. Sci Rep 9(1):6317

    Article  ADS  Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78(2–4):445–478

    Article  ADS  Google Scholar 

  • Mall RK, Kumar R, Bhatla R (2011) Climate change and disaster in India. J South Asian Disaster Stud 4(1):27–76

    Google Scholar 

  • Mall RK, Bhatt D, Sonkar G, Banerjee T (2014) Simulation modeling and climate change: issues and challenges. Environ Sci Pollut Res 21(19):11605–11608

    Article  CAS  Google Scholar 

  • Mall RK, Sonkar G, Bhatt D, Baxla AK, Singh KK (2016) Managing impact of extreme weather events in sugarcane in different agro climatic zones of Uttar Pradesh. Mausam 67(1):233–250

    Article  Google Scholar 

  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In: Current developments in biotechnology and bioengineering. Elsevier, pp 23–46

    Chapter  Google Scholar 

  • Mall RK, Singh N, Singh KK, Sonkar G, Gupta A (2018) Evaluating the performance of RegCM4. 0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh. India Clim change 149(3):503–515

    Article  ADS  CAS  Google Scholar 

  • Mall RK, Srivastava RK, Banerjee T, Mishra OP, Bhatt D, Sonkar G (2019) Disaster risk reduction including climate change adaptation over South Asia: challenges and ways forward. Int J Disaster Risk Sci 10(1):14–27

    Article  Google Scholar 

  • Mall RK, Chaturvedi M, Singh N, Bhatla R, Singh RS, Gupta A, Niyogi D (2021) Evidence of asymmetric change in diurnal temperature range in recent decades over different agro? Climatic zones of India. Int J Climatol 41(4):2597–2610

    Article  Google Scholar 

  • Maurya S, Srivastava PK, Yaduvanshi A, Anand A, Petropoulos GP, Zhuo L, Mall RK (2021) Soil erosion in future scenario using CMIP5 models and earth observation datasets. J Hydrol 594:125851

    Article  Google Scholar 

  • Mazdiyasni O, Agha Kouchak A, Davis SJ, Madadgar S, Mehran A, Ragno E et al (2017) Increasing probability of mortality during Indian heatwaves. Sci Adv 3(6):e1700066

    Article  ADS  Google Scholar 

  • Milojevic-Dupont N, Creutzig F (2020) Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain Cities Soc:102526

    Google Scholar 

  • Mishra B, Babel MS, Tripathi NK (2014) Analysis of climatic variability and snow cover in the Kaligandaki River basin, Himalaya, Nepal. Theor Appl Climatol 116(3):681–694

    Article  ADS  Google Scholar 

  • Mishra S, Singh R, Kumar R, Kalia A, Panigrahy SR (2017) Impact of climate change on pigeon pea. Econ Aff 62(3):455–457

    Article  Google Scholar 

  • Mishra V, Aadhar S, Mahto SS (2021) Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India. Npj Clim Atmos Sci 4(1):1

    Article  Google Scholar 

  • Mohapatra SC, Mohapatra P, Singh IJ, Gaur SD (1989) Epidemiology of gastro-intestinal and respiratory tract diseases in rural areas of Varanasi (India). Eur J Epidemiol 5(1):117–122. https://doi.org/10.1007/BF00145058

    Article  CAS  Google Scholar 

  • Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies?: IPCC expert meeting report?: 19–21 September 2007, Noordwijkerhout, the Netherlands. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Mukherjee S, Mishra A, Trenberth KE (2018) Climate change and drought: a perspective on drought indices. Curr Clim Change Report 4(2):145–163

    Article  Google Scholar 

  • Murari V, Singh N, Ranjan R, Singh RS, Banerjee T (2020) Source apportionment and health risk assessment of airborne particulates over central Indo-Gangetic Plain. Chemosphere 257. https://doi.org/10.1016/j.chemosphere.2020.127145

  • Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK et al (2013) Radiative forcing of the direct aerosol effect from AeroCom phase II simulations. Atmos Chem Phys 13(4):1853–1877

    Article  ADS  CAS  Google Scholar 

  • Nagalapalli S, Kundu A, Mall RK, Thattai D, Rangarajan S (2019) An appraisal of flood events using IMD, CRU, and CCSM4-derived meteorological data sets over the Vaigai river basin, Tamil Nadu (India). Sustain Water Resour Manag 5:1–14

    Article  Google Scholar 

  • Niyogi D, Subramanian S, Mohanty UC, Kishtawal CM, Ghosh S, Nair US, Ek M, Rajeevan M (2018) The impact of land cover and land use change on the Indian monsoon region hydroclimate. In: Land-Atmospheric Research Applications in South and Southeast Asia. Springer, Berlin, pp 553–575

    Chapter  Google Scholar 

  • Nori-Sarma A, Anderson GB, Rajiva A, Shah Azhar G, Gupta P, Pednekar MS et al (2019) The impact of heatwaves on mortality in Northwest India. Environ Res 176:108546

    Article  CAS  Google Scholar 

  • NRDC (2021) Global warming 101. Accessed from - https://www.nrdc.org/stories/global-warming-101#causes on 6th Aug 2021

  • Nyhan M (2015) Coping with air pollution in an age of urbanisation. Angle Journal. Retrieved from http://anglejournal.com/article/2015-06-protecting-urban-populations-from-air-pollution-in-an-age-of-global-urbanisation/

  • Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Change 110(3):669–696

    Article  Google Scholar 

  • Pandey V, Srivastava P (2019) Integration of microwave and optical/infrared derived datasets for a drought Hazard inventory in a sub-tropical region of India. Remote Sens (Basel) 11(4):439

    Article  ADS  Google Scholar 

  • Pandey V, Srivastava PK, Singh SK, Petropoulos GP, Mall RK (2021) Drought identification and trend analysis using long-term CHIRPS satellite precipitation product in Bundelkhand, India. Sustainability 13(3):1042

    Article  Google Scholar 

  • Parthasarathy B, Rupa Kumar K, Munot AA (1992) Forecast of rainy season foodgrain production based on monsoon rainfall. Indian J Agric Sci 62:1–8

    Google Scholar 

  • Pathak H, Ladha JK, Aggarwal PK, Peng S, Das S, Singh Y et al (2003) Trends of climatic potential and on-farm yields of rice and wheat in the indo-Gangetic Plains. Field Crop Res 80(3):223–234

    Article  Google Scholar 

  • Pathak SK, Singh P, Singh MM, Sharma BL (2019) Impact of temperature and humidity on sugar recovery in Uttar Pradesh. Sugar Tech 21(1):176–181

    Article  Google Scholar 

  • Patel S, Mall RK, Jaiswal R, Singh R, Chand R (2022) Vulnerability assessment of wheat yield under warming climate in Northern India using multi-model projections. Int J Plant Prod 1–16. https://doi.org/10.1007/s42106-022-00208-1

  • Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119(5):701–706

    Article  Google Scholar 

  • Philipsborn RP, Chan K (2018) Climate change and global child health. Pediatrics 141(6)

    Google Scholar 

  • Rai P, Choudhary A, Dimri AP (2019) Future precipitation extremes over India from the CORDEX-South Asia experiments. Theor Appl Climatol 137(3):2961–2975

    Article  ADS  Google Scholar 

  • Rajak R, Chattopadhyay A (2020) Short and long term exposure to ambient air pollution and impact on health in India: a systematic review. Int J Environ Health Res 30(6):593–617

    Article  Google Scholar 

  • Ramanathan V (2007) Global dimming by air pollution and global warming by greenhouse gases: global and regional perspectives. In: Nucleation and atmospheric aerosols. Springer, Dordrecht, pp 473–483

    Chapter  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT et al (2005) Atmospheric brown clouds: impacts on south Asian climate and hydrological cycle. Proc Natl Acad Sci 102(15):5326–5333

    Article  ADS  CAS  Google Scholar 

  • Ray DK, Gerber JS, Macdonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:1–9

    Article  Google Scholar 

  • Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS One 14(5):0217148

    Article  Google Scholar 

  • Riedl MO (2019) Human-centred artificial intelligence and machine learning. Human Behav Emerg Technol 1(1):33–36

    Article  Google Scholar 

  • Rosenzweig C, Tubiello FN (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strat Glob Chang 12(5):855–873

    Article  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over Central India. Nat Commun 8(1):708

    Article  ADS  CAS  Google Scholar 

  • Saha S, Gogoi P, Gayen A, Paul GC (2021) Constructing the machine learning techniques based spatial drought vulnerability index in Karnataka state of India. J Clean Prod 314:128073

    Article  Google Scholar 

  • Saini P, Sharma M (2020) Cause and age-specific premature mortality attributable to PM2. 5 exposure: an analysis for million-plus Indian cities. Sci Total Environ 710:135230

    Article  ADS  CAS  Google Scholar 

  • Sanchez-pi N, Marti L, Abreu A, Maass A (2021) Artificial intelligence, machine learning and modeling for understanding the oceans and climate change to cite this version?: HAL Id?: hal-03138712 Artificial Intelligence. Machine Learning and Modeling for Understanding the Oceans and Climate Change

    Google Scholar 

  • Sarthi PP, Agrawal A, Rana A (2014) Possible future changes in cyclonic storms in the Bay of Bengal, India under warmer climate. Int J Climatol 35(7):1267–1277

    Article  Google Scholar 

  • Satterthwaite D, Archer D, Colenbrander S et al (2020) Building resilience to climate change in informal settlements. One Earth 2(2):143–156. https://doi.org/10.1016/j.oneear.2020.02.002

    Article  ADS  Google Scholar 

  • Scott D, Stefan G, Hall CM, Wiley J (2012) International tourism and climate. 3(June):213–232

    Google Scholar 

  • Sedova B, Kalkuhl M (2020) Who are the climate migrants and where do they go? Evidence from rural India q. World Dev 129:104848

    Article  Google Scholar 

  • Semenza JC, Ebi KL (2019) Climate change impact on migration, travel, travel destinations and the tourism industry. J Travel Med 26(5):1–13

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 9781107025, pp 109–230

    Chapter  Google Scholar 

  • Sharifi A (2021) Co-benefits and synergies between urban climate change mitigation and adaptation measures: a literature review. Sci Total Environ 750(July):141642

    Article  ADS  CAS  Google Scholar 

  • Sharma S, Mujumdar P (2017) Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci Rep 7(1):1–9

    Article  Google Scholar 

  • Singh BR, Singh O (2012) Study of impacts of global warming on climate change: rise in sea level and disaster frequency. In: Global warming impacts and future perspective. IntechOpen. https://doi.org/10.5772/50464

    Chapter  Google Scholar 

  • Singh N, Murari V, Kumar M, Barman SC, Banerjee T (2017) Fine particulates over South Asia: review and meta-analysis of PM2. 5 source apportionment through receptor model. Environ Pollut 223:121–136

    Article  CAS  Google Scholar 

  • Singh N, Mall RK, SINGH K, GUPTA A, Sonkar G (2018) Evaluation of RegCM4 climate model for assessment of climate change impact on crop production. Mausam 69(3):387–398

    Article  Google Scholar 

  • Singh N, Mhawish A, Ghosh S, Banerjee T, Mall RK (2019) Attributing mortality from temperature extremes: a time series analysis in Varanasi, India. Sci Total Environ 665:453–464

    Article  ADS  CAS  Google Scholar 

  • Singh H, Yadav M, Kumar N, Kumar A, Kumar M (2020) Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: a case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS One 15(1):1–20

    Article  Google Scholar 

  • Singh N, Singh S, Mall RK (2020a) Urban ecology and human health: implications of urban heat island, air pollution and climate change nexus. In: Urban ecology. Elsevier, pp 317–334

    Chapter  Google Scholar 

  • Singh H, Singh N, Mall RK (2020b) Japanese encephalitis and associated environmental risk factors in eastern Uttar Pradesh: a time series analysis from 2001 to 2016. Acta Trop 212:105701

    Article  Google Scholar 

  • Singh S, Mall RK, Singh N (2021a) Changing spatio? Temporal trends of heatwave and severe heatwave events over India: an emerging health hazard. Int J Climatol 41:E1831–E1845

    Article  Google Scholar 

  • Singh S, Mall RK, Dadich J, Verma S, Singh JV, Gupta A (2021b) Evaluation of CORDEX-South Asia regional climate models for heatwave simulations over India. Atmos Res 248:105228

    Article  Google Scholar 

  • Singh N, Mhawish A, Banerjee T, Ghosh S, Singh RS, Mall RK (2021c) Association of aerosols, trace gases and black carbon with mortality in an urban pollution hotspot over central indo-Gangetic plain. Atmos Environ 246:118088

    Article  CAS  Google Scholar 

  • Singh N, Mall RK, Banerjee T, Gupta A (2021d) Associations between climate, and infectious diseases among children in Varanasi City, India: A prospective cohort study. Sci Total Environ 796:148769

    Article  ADS  CAS  Google Scholar 

  • Sonkar G, Mall RK, Banerjee T, Singh N, Kumar TL, Chand R (2019) Vulnerability of Indian wheat against rising temperature and aerosols. Environ Pollut 254:112946

    Article  CAS  Google Scholar 

  • Sonkar G, Singh N, Mall RK, Singh KK, Gupta A (2020) Simulating the impacts of climate change on sugarcane in diverse agro-climatic zones of northern India using CANEGRO-sugarcane model. Sugar Tech 22(3):460–472

    Article  CAS  Google Scholar 

  • Soora NK, Aggarwal PK, Saxena R, Rani S, Jain S, Chauhan N (2013) An assessment of regional vulnerability of rice to climate change in India. Clim Change 118(3):683–699

    Article  ADS  Google Scholar 

  • Srivastava AK, Rai MK (2012) Sugarcane production: impact of climate change and its mitigation. Biodiversitas 13:214–227. https://doi.org/10.13057/biodiv/d130408

    Article  Google Scholar 

  • Srivastava P, Dey S, Srivastava AK, Singh S, Tiwari S (2019) Suppression of aerosol-induced atmospheric warming by clouds in the indo-Gangetic Basin, northern India. Theor Appl Climatol 137(3):2731–2741

    Article  ADS  Google Scholar 

  • Srivastava PK, Singh P, Mall RK, Pradhan RK, Bray M, Gupta A (2020) Performance assessment of evapotranspiration estimated from different data sources over agricultural landscape in northern India. Theor Appl Climatol 140(1):145–156

    Article  ADS  Google Scholar 

  • Srivastava PK, Pradhan RK, Petropoulos GP, Pandey V, Gupta M, Yaduvanshi A, Mall RK (2021) Long-term trend analysis of precipitation and extreme events over Kosi River basin in India. Water 13(12):1695

    Article  Google Scholar 

  • Stein AL (2020) Artificial intelligence and climate change. Yale J Regul 37(3)

    Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2018) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Swapna P, Jyoti J, Krishnan R, Sandeep N, Griffies SM (2017) Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean Sea level. Geophys Res Lett 44(20):10,560–10,572

    Article  Google Scholar 

  • Swapna P et al (2020) Sea-level rise. In: Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (eds) Assessment of climate change over the Indian region. Springer, Singapore. https://doi.org/10.1007/978-981-15-4327-2_9

    Chapter  Google Scholar 

  • Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10(1):1–10

    MathSciNet  Google Scholar 

  • Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, Brink J (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15(3):504–508

    Article  Google Scholar 

  • Tien Bui D, Shirzadi A, Chapi K, Shahabi H, Pradhan B, Pham B, Singh V, Chen W, Khosravi K, Bin Ahmad B, Lee S (2019) A hybrid computational intelligence approach to groundwater spring potential mapping. Water 11(10):2013

    Article  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018) Future warming increases the probability of globally synchronized maize production shocks. Proc Natl Acad Sci 115(26):6644–6649

    Article  ADS  Google Scholar 

  • Tyagi S, Singh N, Sonkar G (2019) Sensitivity of evapotranspiration to climate change using DSSAT model in sub-humid climate region of eastern Uttar Pradesh. Model Earth Syst Environ 5(1):1–11

    Article  Google Scholar 

  • Uk RJN, Poh P, Hay J, Zealand N, Ragoonaden S, Arblaster J, Uk BB, Canada DF, Uk JH, Uk SK, Uk JL, Uk SR (2007) Coastal systems and low-lying areas coordinating lead authors. Lead Authors: Contributing Authors, pp 315–356

    Google Scholar 

  • Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R (2020) Applications of artificial intelligence and machine learning in smart cities. Comput Commun 154:313–323

    Article  Google Scholar 

  • UNICEF. Diarrhoeal disease. Available online: http://data.unicef.org/childhealth/diarrhoeal-disease.html. Accessed 12 May 2020

  • Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynam 41(9–10):2555–2575

    Article  ADS  Google Scholar 

  • Verma RR, Srivastava TK, Singh P (2019) Climate change impacts on rainfall and temperature in sugarcane growing upper Gangetic Plains of India. Theor Appl Climatol 135(1–2):279–292

    Article  ADS  Google Scholar 

  • Vinjamuri KS, Mhawish A, Banerjee T, Sorek-Hamer M, Broday DM, Mall RK, Latif MT (2020) Vertical distribution of smoke aerosols over upper indo-Gangetic plain. Environ Pollut 257:113377

    Article  CAS  Google Scholar 

  • Viswanathan B, Kavi Kumar K (2015) Weather, agriculture and rural migration: evidence from state and district level migration in India. Environ Dev Econ 20(4):469–492. https://doi.org/10.1017/S1355770X1500008X

    Article  Google Scholar 

  • Vittal H, Karmakar S, Ghosh S (2013) Diametric changes in trends and patterns of extreme rainfall over India from pre? 1950 to post? 1950. Geophys Res Lett 40(12):3253–3258

    Article  ADS  Google Scholar 

  • Wasko C, Westra S, Nathan R, Orr HG, Villarini G, Villalobos Herrera R, Fowler HJ (2021) Incorporating climate change in flood estimation guidance. Phil Trans R Soc A 379(2195):20190548

    Article  ADS  Google Scholar 

  • Watts N, Adger WN, Ayeb-Karlsson S, Bai Y, Byass P, Campbell-Lendrum D et al (2017) The lancet countdown: tracking progress on health and climate change. Lancet 389(10074):1151–1164

    Article  Google Scholar 

  • WHO. World Health Organization (2007) Health relevance of particulate matter from various sources: report on a WHO workshop, Bonn, Germany 26–27 March 2007. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2017) World Health Organisation Global health estimates: leading causes of death, cause specific-mortality 2009–2019. Accessed from https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death

  • Xu K, Xu B, Ju J, Wu C, Dai H, Hu BX (2019) Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China. Atmos Res 226:122–137

    Article  Google Scholar 

  • Yadav SS, Lal R (2018) Vulnerability of women to climate change in arid and semi-arid regions: the case of India and South Asia. J Arid Environ 149:4–17

    Article  Google Scholar 

  • Yadav MK, Singh RS, Singh KK, Mall RK, Patel CB, Singh MK (2015) Assessment of climate change impact on the productivity of different cereal crops in Varanasi, India. J Agrometeorol 17(2):179–184

    Article  Google Scholar 

  • Yadav MK, Singh RS, Singh KK, Mall RK, Patel C, Yadav SK, Singh MK (2016) Assessment of climate change impact on pulse, oilseed and vegetable crops at Varanasi, India. J Agrometeorol 18(1):13–21

    Article  Google Scholar 

  • Yadav SK, Yadav M, Patel C, Singh RS, Singh KK, Mall RK, Singh MK (2021) Assessment of climate change impact on different pigeon pea maturity groups in north Indian condition. J Agrometeorol 23(1):82–91

    Article  Google Scholar 

  • Zarekarizi M, Rana A, Moradkhani H (2018) Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA. Climate Dynam 50(11–12):4519–4537

    Article  ADS  Google Scholar 

  • Zhang Y, Bi P, Hiller JE (2007) Climate change and disability-adjusted life years. J Environ Health 70(3):32–38

    Google Scholar 

  • Zhang J, Liu Y, Cui LL, Liu SQ, Yin XX, Li HC (2017) Ambient air pollution, smog episodes and mortality in Jinan, China. Sci Rep 7(1):1–8

    ADS  Google Scholar 

  • Zhang J, Li Y, Tao W, Liu J, Levinson R, Mohegh A, Ban-Weiss G (2019) Investigating the urban air quality effects of cool walls and cool roofs in Southern California. Environ Sci Technol 53(13):7532–7542. https://doi.org/10.1021/acs.est.9b00626

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Climate Change Programme, Department of Science and Technology, New Delhi for providing financial support (Award no.: DST/CCP/CoE/80/2017(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mall, R.K. et al. (2022). Climate Changes over the Indian Subcontinent: Scenarios and Impacts. In: Khare, N. (eds) Science, Policies and Conflicts of Climate Change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-16254-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16254-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16253-4

  • Online ISBN: 978-3-031-16254-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics