Skip to main content

Climate Change Effect On-Climate Parameters Like Temperature, Rainfall and Water Resources Sectors in India

  • Chapter
  • First Online:
Climate Change Impacts in India

Abstract

Climate change is currently the world’s most serious environmental and meteorological challenge. Climate change has a negative impact on agriculture, water resources, forests, health, biodiversity, ecology, socioeconomics, and coastlines. Agriculture is the most vulnerable to climate change, and it is India’s backbone, with 70–80% of the population relying solely on rainfed crop production for food. In the unprecedented increasing population, urbanization, industrialization creating additional stress and facing pressure with limited sources of water demands. Adaptation strategies must be designed to accommodate climatic and non-climatic stress for existing anthropogenic driven beyond climate change control. Climate change is the foremost environmental challenge associated with climate variability. It is impact on the decline of agricultural production and crop areas, to fulfil increasing food demand, water resources, forest and biodiversity, health, coastal management, ecological, socioeconomic (rapid industrialization, urbanization, economic development and increase in temperature). Climate change or climate variability also brings a susceptible epidemic pests and diseases over Indian continents. Stamping out the poverty thereby rendering good living standards and basic amenities (food, water and shelter) to Indian citizens is India’s utmost task. India has a target of mitigation towards less emission of GHG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pande CB, Moharir KN, Singh SK, Varade AM, Ahmed Elbeltagie SFR, Khadri PC (2021) Estimation of crop and forest biomass resources in a semi-arid region using satellite data and GIS. J Saudi Soc Agric Sci 20(5):302–311

    Google Scholar 

  2. Orimoloye IR, Olusola AO, Belle JA et al (2022) Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms. Nat Hazards. https://doi.org/10.1007/s11069-022-05219-9

    Article  Google Scholar 

  3. Shahid M, Rahman KU, Haider S et al (2021) Quantitative assessment of regional land use and climate change impact on runoff across Gilgit watershed. Environ Earth Sci 80:743. https://doi.org/10.1007/s12665-021-10032-x

    Article  Google Scholar 

  4. Pande CB, Moharir KN, Khadri SFR et al (2018) Study of land use classification in an arid region using multispectral satellite images. Appl Water Sci 8:123. https://doi.org/10.1007/s13201-018-0764-0

    Article  Google Scholar 

  5. Pande CB, Moharir KN, Khadri SFR (2021) Assessment of land-use and land-cover changes in Pangari watershed area (MS), India, based on the remote sensing and GIS techniques. Appl Water Sci 11:96. https://doi.org/10.1007/s13201-021-01425-1

    Article  Google Scholar 

  6. IPCC, Climate Change (2001) TAR & synthesis report. In: Watson RT, Core writing team, Albritton DL, Barker T (eds) Contribution of working groups I, II, and III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Press, ISBN 0-521-80770-0 (pb: 0-521-01507-3)

    Google Scholar 

  7. Gadgil S (2003) The Indian monsoon and its variability. Ann Rev Earth Planet Sci 31:429–467

    Article  CAS  Google Scholar 

  8. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, 104 pp

    Google Scholar 

  9. Parikh KS (2001) Indian agriculture and climate sensitivity. Glob Environ Chang 112(2):147–154. https://doi.org/10.1016/S0959-3780(01)00004-8

    Article  Google Scholar 

  10. Bhatia A (2004) Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Curr Sci 87(3):317–324

    CAS  Google Scholar 

  11. Komuscu AU, Erkan A, Oz S (1998) Possible impacts of climate change on soil moisture availability in the southeast anatolia development project region (GAP): an analysis from an agricultural drought perspective. Clim Change 40:519–545. https://doi.org/10.1023/A:1005349408201

    Article  Google Scholar 

  12. Rohini P (2019) Future projections of heat waves over India from CMIP5 models. Clim Dyn 53(2):975–988. https://doi.org/10.1007/s00382-019-04700-9

  13. Krishnan R et al (eds) (2020) Assessment of climate change over the indian region-a report of the ministry of earth sciences (MoES). Government of India, chapter 3-precipitation changed in India, pp 47–72. https://doi.org/10.1007/978-981-15-4327-2_3

  14. Deshpande (2021) Changing status of tropical cyclones over the north Indian Ocean. Clim Dyn 57:3545–3567. https://doi.org/10.1007/s00382-021-05880-z

  15. Liu L, Wang Y, Zhan R, Xu J, Duan Y (2020) Increasing destructive potential of landfalling tropical cyclones over China. J Clim. https://doi.org/10.1175/JCLI-D-19-0451.1

    Article  Google Scholar 

  16. Ahmed R (2021) Characteristic features of super cyclone ‘AMPHAN’—observed through satellite images. Tropical Cycl Res Rev 10(1):16–31. ISSN-2225–6032. https://doi.org/10.1016/j.tcrr.2021.03.003

  17. Kothawale DR (2008) Temperature variability over the Indian Ocean and its relationship with Indian summer monsoon rainfall. Theor Appl Climotol 92(1–2):31–45. https://doi.org/10.1007/s00704-006-0291-z

    Article  Google Scholar 

  18. Niranjan A (2021) Climate change makes Indian monsoon season stronger and more chaotic. Environment News. https://www.dw.com/en/indian-monsoon-climate-change-rainfall/a-57187793

  19. IMD (2018) India meteorological department (IMD) annual report 2018 IMD, 2019: India Meteorological Department (IMD) Annual Report 2019 IMD, 2020: India Meteorological Department(IMD) Annual Report 2020

    Google Scholar 

  20. Fernandis S (2018) New weather phenomenon: Beware of the mini-cloud bursts. https://www.hindustantimes.com/mumbainews/new-weather-phenomenon-beware-of-the-mini-cloud-bursts-says-study/story-XjKINfMtUTF8BzZ8d29yIJ.html

  21. Wikipedia (2005). Wikipedia. https://en.wikipedia.org/wiki/Maharashtra_floods_of_2005

  22. NDTV News (2021) 125 extremely heavy rainfall events in September, October. Weather Office, NDTV, New Delhi, India

    Google Scholar 

  23. Dimri AP et al (2017) Cloudbursts in Indian Himalayas: a review. Earth Sci Rev 168:1–23. https://doi.org/10.1016/j.earscirev.2017.03.006

    Article  Google Scholar 

  24. Murari K (2015) Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg Environ Change 15:569–579. https://doi.org/10.1007/s10113-014-0660-6

    Article  Google Scholar 

  25. Gnanaseelan C et al (2017) Variability and trends of sea surface temperature and circulation in the Indian Ocean. In: Rajeevan MN, Nayak S (eds) Observed climate variability and change over the Indian Region, vol 10. Springer, Singapore, pp 165–179. https://doi.org/10.1007/978-981-10-2531-0

  26. Willett KM (2007) Attribution of observed humidity changes to human influence. Nature 449(7163):710–712. https://doi.org/10.1038/nature06207

    Article  CAS  Google Scholar 

  27. Kumari BP (2007) Observational evidence of solar dimming: offsetting surface warming over India. AGU Adv Earth Space Sci 34. https://doi.org/10.1029/2007GL031133

  28. Kumari BP (2010) Seminal role of clouds on solar dimming over the Indian monsoon region. Geophys Res Lett Clim 37:L06703. https://doi.org/10.1029/2009GL042133

    Article  Google Scholar 

  29. Padmakumari B (2013) In situ measurements of aerosol vertical and spatial distributions over continental India during the major drought year 2009. Atmos Environ 80(2013):107–121. https://doi.org/10.1016/j.atmosenv.2013.07.064

    Article  CAS  Google Scholar 

  30. Soni VK (2011) Evaluation of long-term changes of solar radiation in India. Int J Climatol RMetS 32(4):540–551. https://doi.org/10.1002/joc.2294

  31. Srivastava AK, Kothawale DR, Rajeevan MN (2017) Variability and long-term changes in surface air temperatures over the Indian subcontinent. In: Rajeevan MN, Nayak S (eds) Observed climate variability and change over the Indian region. Springer Geology, pp 17–35. https://doi.org/10.1007/978-981-10-2531-0_2

  32. Raut B (2009) Spatial distribution and diurnal variation of cumuliform clouds during Indian Summer Monsoon. J Geophys Res Atmospheres 114(D11):D11208. https://doi.org/10.1029/2008JD011153

    Article  Google Scholar 

  33. Doswell CA (eds) (2001) Severe convective storms part of the book series: meteorological monographs (METEOR). American Meteorological Society Boston, MA, Springer Book Archivepringer Book, pp 1–26. https://doi.org/10.1007/978-1-935704-06-5_1

  34. Kesrkar (2005) Climatology of thunderstorm activity over the Indian region: III-Latitudinal and seasonal variation. Mausam 56(3):581–592. https://doi.org/10.54302/mausam.v56i3.987

  35. Jolly W et al (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6:7537. https://doi.org/10.1038/ncomms8537

    Article  CAS  Google Scholar 

  36. IPCC, Climate Change (2014) Synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, vol 151. IPCC, Geneva, Switzerland

    Google Scholar 

  37. Ganaseelan (2021) The decadal sea level variability observed in the Indian Ocean tide gauge records and its association with global climate modes. Glob Planetary Change 198(C10). https://doi.org/10.1016/j.gloplacha.2021.103427

  38. Wahl T (2017) Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat Commun 8(1). SN 2041–1723. https://doi.org/10.1038/ncomms16075

  39. Jonathan D (2013) Review-coastal flooding by tropical cyclones and sea-level rise. Nature 504(7478):44–52. https://doi.org/10.1038/nature12855

    Article  CAS  Google Scholar 

  40. Hermer MA (2013) Projected changes wave climate from a multi-model ensemble. Nat Clim Change 3(5):471–476. ISSN 1758-678X, E-ISSN 1758-6798. https://doi.org/10.1038/NCLIMATE1791

  41. Hinkel J (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. 111(9):3292–3297. https://doi.org/10.1073/pnas.1222469111

  42. Bachmann J (2009) Black carbon: a science policy primer. Pew Centre on Global Climate Change, Arlington, VA 22201

    Google Scholar 

  43. Van Dingenen R (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. 43(3):604–618. https://doi.org/10.1016/j.atmosenv.2008.10.033

  44. Mall RK et al (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78:445–478. https://doi.org/10.1007/s10584-005-9042-x

    Article  Google Scholar 

  45. Mahapatra R (2020) 20 years into 21st century: 70% global agriculture under climate threat news from down to earth news report. https://www.downtoearth.org.in/author/richard-mahapatra-46

  46. Kirschbaum MU (2006) The sensitivity of C3 photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration. 17(6):747–754. https://doi.org/10.1111/j.1365-3040.1994.tb00167.x

  47. Srivastava SK (2009) Climate risk assessment of rice ecosystems in India. J South Asia Disaster Stud 2(1):155–166. https://www.researchgate.net/publication/265652002_Climate_Risk_assessment_of_Rice_ecosystems_in_India

  48. Leemansa R (2004) Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. 14(3):219–228. https://doi.org/10.1016/j.gloenvcha.2004.04.009. https://www.sciencedirect.com/science/article/pii/S0959378004000391

  49. Ravindranath NH (2006) Impact of climate change on forests in India. Curr Sci 90(3):354–361. https://www.jstor.org/stable/24091869

  50. Gupta A, Pathak H (2016) Climate change and agriculture in India. Ministry of Science & Technology, Government of India, New Delhi

    Google Scholar 

  51. Roxy MK (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 708(8):78. https://doi.org/10.1038/s41467-017-00744-9

    Article  CAS  Google Scholar 

  52. Basu J (2020) Down to earth news report on India bore maximum brunt of extreme weather events (2020) in Climate Change

    Google Scholar 

  53. India Meteorological Department (IMD) Annual Report 2020. https://pib.gov.in/Pressreleaseshare.aspx?PRID=1686173#:~:text=Press%20Information%20Bureau,India%20during%202020

  54. Crawford A (2021) IPCC report on climate science, retrieved from down to earth. https://www.downtoearth.org.in/climate-change

  55. Joshi A et al (2021) video interview meeting on youtube: India to face irreversible impacts of climate crisis: flags IPCC report. Climate Change. https://youtu.be/wF92Of5YKys

  56. Karmakar N (2015) Decreasing intensity of monsoon low-frequency intraseasonal. Environ Res Lett 10:054018. https://doi.org/10.1002/qj.3715

  57. Karmakar N (2017) Space–time evolution of the low- and high-frequency intraseasonal modes of the Indian summer monsoon. Am Meteorol Soc (AMS) 145(2):413–435. https://doi.org/10.1175/MWR-D-16-0075.1

  58. Pai DS (2016) Active and break events of Indian summer monsoon during 1901–2014. Clim Dyn 46:3921–3939. https://doi.org/10.1007/s00382-015-2813-9

    Article  Google Scholar 

  59. Singh D (2014) Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat Clim Chang 4:456–461. https://doi.org/10.1038/nclimate2208

    Article  Google Scholar 

  60. Sahana A (2015) Shift in Indian summer monsoon onset during 1976/1977. Environ Res Lett 10(5):054006. https://doi.org/10.1088/1748-9326/10/5/054006

  61. Noska R (2016) Characterizing the onset and demise of the Indian summer monsoon: Indian summer monsoon. Geophys Res Lett 43(9). https://doi.org/10.1002/2016GL068409

  62. Ananthakrishnan R (1988) The onset of the southwest monsoon over Kerala,1901–1980. R Meteorol Soc (RMetS) 8(3):283–296. https://doi.org/10.1002/joc.3370080305

  63. Rajeevan DS (2009) Prediction of summer monsoon onset over Kerala, India. J Earth Syst Sci 118(2):1–13. https://doi.org/10.1007/s12040-009-0020-y

    Article  Google Scholar 

  64. Krishnamurthy TN (1982) Sensitivity of the monsoon onset to differential heating. J Atmos Sci 39(6):1290–1306. https://doi.org/10.1175/1520-0469(1982)039%3c1290:SOTMOT%3e2.0.CO;2

    Article  Google Scholar 

  65. Annamalai H (2013) Global warming shifts the monsoon circulation, drying south Asia. J Climatol 26(9):2701–2718. https://doi.org/10.1175/JCLI-D-12-00208.1

    Article  Google Scholar 

  66. Guhathakurta P (2008) Trends in the rainfall pattern over India. Int J Climatol 28(11):1453–1469. https://doi.org/10.1002/joc.1640

    Article  Google Scholar 

  67. Prakash S (2015) Comparing two high-resolution gauge-adjusted multisatellite rainfall products over India for the southwest monsoon period. Meteorol Appl Sci Technol Clim Weather. https://doi.org/10.1002/met.1502

    Article  Google Scholar 

  68. Bidyabati S (2018) Uncertainties in observations and climate projections for the North East India. Global Planetory Changes 160:96–108. https://doi.org/10.1016/j.gloplacha.2017.11.010

    Article  Google Scholar 

  69. Nageswararao MM (2019) Characteristics of various rainfall events over South Peninsular India during northeast monsoon using high-resolution gridded dataset (1901–2016). Springer, Theor Appl Climatol 137:2573–2593

    Google Scholar 

  70. Paul S (2018) Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization. Sci Rep 8(1):3918. https://doi.org/10.1038/s41598-018-22322-9

  71. Skliris N (2016) Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci Rep 6(1):2045–2322. https://doi.org/10.1038/srep38752

  72. Mheel GA (2005) Overview of the coupled model intercomparison project. Am Meteorol Soc (AMS) 86(1):89–94 https://doi.org/10.1175/BAMS-86-1-89

  73. Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim Change 39:667–694. https://doi.org/10.1023/A:1005319109110

    Article  Google Scholar 

  74. Sikka DR (1980) Some aspects of the large scale fluctuations of summer monsoon rainfall all over India in relation to fluctuations in the planetary and regional scale circulation parameters. Earth Planet Sci 89:179–195. https://doi.org/10.1007/BF02913749

  75. Bera S (2018) Mint news: economic survey News_Mint

    Google Scholar 

  76. Dimri AP (2015) Western disturbances: a review. Rev Geophys. https://doi.org/10.1002/2014RG000460

  77. Dimri AP et al (2013) Intraseasonal oscillation associated with the Indian winter monsoon. J Geophys Res 118:1–10. https://doi.org/10.1002/jgrd.50144

    Article  Google Scholar 

  78. Cai W (2018) Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C Warming. Nat Commun 9(1):1419. https://doi.org/10.1038/s41467-018-03789-6

  79. Rajeevan M (2012) Northeast monsoon over India: variability and prediction. Meteorol Appl 19(2):226–236. https://doi.org/10.1002/met.1322

    Article  Google Scholar 

  80. Kripalani RH (2004) Northeast monsoon rainfall variability over south peninsular India vis-à-vis Indian Ocean dipole. Int J Climatol 24(10):1267–1282. https://doi.org/10.1002/joc.1071

    Article  Google Scholar 

  81. Yadav RK (2013) Emerging role of Indian ocean on Indian northeast monsoon. Climatol Dyn 41:105–116. https://doi.org/10.1007/s00382-012-1637-0

    Article  Google Scholar 

  82. Ramaswamy C (1962) Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and subtropical westerly jet streams. Tellus 14(3):337–349. https://doi.org/10.3402/tellusa.v14i3.9560

    Article  Google Scholar 

  83. Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian ocean oscillation. Geophys Res Lett 31:L12213. https://doi.org/10.1029/2004GL019733

    Article  Google Scholar 

  84. Cai W et al (2015) ENSO and greenhouse warming. Nat Clim Change Nat 5(9):849–859

    Article  Google Scholar 

  85. Bamzai AS (1997) Climatology and interannual variability of northern hemisphere snow cover and depth based on satellite observations. Center for Ocean-Land-Atmosphere Studies, Cola Report 52, Calverton

    Google Scholar 

  86. Blanford HF (1884) On the connection of Himalayan snowfall and seasons of drought in India. Proc R Soc Lond 37(232–234):3–22. https://doi.org/10.1098/rspl.1884.0003

  87. Bhanu Kumar OSRU (1987) Eurasian snow cover and seasonal forecast of Indian summer monsoon rainfall. Hydrol Sci J 33(5):515–525. https://doi.org/10.1080/02626668809491278

  88. Kripalani RH (1999) Climatology and variability of historical Soviet snow depth data:some new perspectives in snow Indian monsoon teleconnections. Clim Dyn 15:475–489. https://doi.org/10.1007/s003820050294

    Article  Google Scholar 

  89. Patwardhan SK (2000) Meso-scale distribution of summer monsoon rainfall near the Western Ghats (India). Int J Climatol 5:575–581. https://doi.org/10.1002/(SICI)1097-0088(200004)20:5%3c575::AID-JOC509%3e3.0.CO;2-6

    Article  Google Scholar 

  90. Tawde SA, Singh C (2015) Investigation of orographic features influencing spatial distribution of rainfall over the Western Ghats of India using satellite data. Int J Climatol 35(9):2280–2293. https://doi.org/10.1002/joc.4146

  91. Daniel A (2019) Agroforestry news: how regenerative agroforestry could solve the climate crisis. World Economic Forum. https://www.weforum.org/agenda/authors/alexander-daniel

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahenaz Mulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulla, S., Ahmed, R., Singh, K.K., Singh, S.K., Deshmukh, N., Inamdar, F.K. (2023). Climate Change Effect On-Climate Parameters Like Temperature, Rainfall and Water Resources Sectors in India. In: Pande, C.B., Moharir, K.N., Negm, A. (eds) Climate Change Impacts in India. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-42056-6_2

Download citation

Publish with us

Policies and ethics