Skip to main content

Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils

  • Chapter
  • First Online:
Microbiology of Hot Deserts

Part of the book series: Ecological Studies ((ECOLSTUD,volume 244))

  • 675 Accesses

Abstract

Plants inhabiting desert ecosystems, also known as xerophytes, exhibits morphological and physiological adaptations to resist the abiotic stresses, such as drought and salinity. They also exploit the ecological services provided by the microbial communities naturally associated with their organs and tissues. In this chapter, we provide a critical review of the bacterial and fungal communities associated with xerophytic plants living in hot desert ecosystems, as well as the plant-growth-promoting (PGP) microorganisms they include. We debate the composition, structure, and functionality of the microbial communities inferred by molecular analyses, along with the roles and potential exploitation of PGP microorganisms as demonstrated by studies that apply cultivation approaches. PGP microorganisms influence several aspects of the plant response to drought and salinity, inducing morphological, physiological, and biochemical changes associated to water uptake and reduction of water losses. A deeper understanding of the population dynamics and organismal interactions in the complex associations of desert plants and microorganisms may contribute to optimize the exploitation of the plant-microbial partnership. The implementation of sustainable biotechnological approaches for agriculture production in arid lands, based on the microbial resource, is also considered as a measure to counteract the constant reduction of crop land due to the ongoing climate change and land desertification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Ghosh S, Droby S, Korine C (2014) Seasonal and plant-dependent variations in diversity, abundance and stress tolerance of epiphytic yeasts in desert habitats. Environ Microbiol Rep 6:373–382

    Article  CAS  PubMed  Google Scholar 

  • Achtak H, Ater M, Oukabli A, Santoni S, Kjellberg F, Khadari B (2010) Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: The case of fig (Ficus carica L.) in Morocco. BMC Plant Biol 10:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Garrido JF, Montiel-Lugo D, Hernández-Rodríguez C, Torres-Cortes G, Millán V, Toro N et al (2012) Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie Van Leeuwenhoek 101:891–904

    Article  PubMed  Google Scholar 

  • Akbari DL, Akbari LF, Bhadania Roshani A, Parkhiya MV, Golakiya BA (2015) Plant growth promoting traits and in vitro antagonism of drought tolerant endophytic bacteria isolated from grasses of kutch. J Cell Tissue Res 15:5241–5246

    Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albalasmeh AA, Ghezzehei TA (2014) Interplay between soil drying and root exudation in rhizosheath development. Plant Soil 374:739–751

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Venkateswar RL (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2013) Application of mycorrhizae in sustainable date palm cultivation. Emirates J Food Agric 25:854–862

    Article  Google Scholar 

  • Alsharif W, Saad MM, Hirt H (2020) Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol 11:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Yahya’ei MN, Oehl F, Vallino M, Lumini E, Redecker D, Wiemken A et al (2011) Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 21:195–209

    Article  PubMed  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Asaf S, Khan AL, Khan MA, Al-Harrasi A, Lee I-J (2018) Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth. 3. Biotech 8:389

    Google Scholar 

  • Ashraf M (2006) Bacterial exo-polysaccharides and productivity of the salt affected soils. II. Effect of exo-polysaccharides (EPS) producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol 3:45–53

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC et al (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163

    Article  PubMed  CAS  Google Scholar 

  • Bailey C, Scholes M (1997) Rhizosheath occurrence in South African grasses. South African J Bot 63:484–490

    Article  Google Scholar 

  • Balloi A, Rolli E, Marasco R, Mapelli F, Tamagnini I, Cappitelli F et al (2010) The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils. Agrochimica. 54:353–369

    Google Scholar 

  • Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:470–489

    Article  PubMed  Google Scholar 

  • Bar-Shmuel N, Rogovin E, Rachmilevitch S, Friedman A-L-L, Shelef O, Hoffmann I et al (2018) Tripartite symbiosis of plant-weevil-bacteria is a widespread phenomenon in the Negev Desert. Sci Rep 8:2420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) Flowering plants dicotyledons. Springer, Berlin, Heidelberg, pp 161–197

    Chapter  Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees - Struct Funct 16:159–166

    Article  CAS  Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J, De Beeck MO et al (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkin S, Qvit-Raz N (2010) Life on a leaf: Bacterial epiphytes of a salt-excreting desert tree. Springer, Dordrecht, pp 393–406

    Google Scholar 

  • Benard P, Kroener E, Vontobel P, Kaestner A, Carminati A (2016) Water percolation through the root-soil interface. Adv Water Resour 95:190–198

    Article  Google Scholar 

  • Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ et al (2020) Global ecosystem thresholds driven by aridity. Science 367(6479):787–790. https://doi.org/10.1126/science.aay5958

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Raaijmakers JM (2018) Saving seed microbiomes. ISME J 12:1167–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M (2009) Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. West North Am Nat 69:105–114

    Article  Google Scholar 

  • Bezerra JDP, Santos MGS, Barbosa RN, Svedese VM, Lima DMM, Fernandes MJS et al (2013) Fungal endophytes from cactus Cereus jamacaru in Brazilian tropical dry forest: a first study. Symbiosis 60:53–63

    Article  Google Scholar 

  • Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert ecosystems. Curr Sci 89:91–100

    Google Scholar 

  • Boch J, Kempf B, Bremer E (1994) Osmoregulation in Bacillus subtilis: Synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176:5364–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldareva-Nuianzina EN, Bláhová Z, Sobotka R, Koblížek M (2013) Distribution and origin of oxygen-dependent and oxygen-independent forms of mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 79:2596–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G et al (2019a) The role of fungi in heterogeneous sediment microbial networks. Sci Rep 9:7537

    Article  CAS  Google Scholar 

  • Booth JM, Fusi M, Marasco R, Mbobo T, Daffonchio D (2019b) Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci Rep 9:3749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown LK, George TS, Neugebauer K, White PJ (2017) The rhizosheath – a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil 418:115–128

    Article  CAS  Google Scholar 

  • Camarena-Pozos DA, Flores-Núñez VM, López MG, López-Bucio J, Partida-Martínez LP (2019) Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ 42:1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Carson JK, Gonzalez-Quiñones V, Murphy DV, Hinz C, Shaw JA, Gleeson DB (2010) Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol 76:3936–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavazos BR, Bohner TF, Donald ML, Sneck ME, Shadow A, Omacini M et al (2018) Testing the roles of vertical transmission and drought stress in the prevalence of heritable fungal endophytes in annual grass populations. New Phytol 219:1075–1084

    Article  PubMed  Google Scholar 

  • Chao CCT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42:1077–1082

    Article  Google Scholar 

  • Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672

    Article  CAS  PubMed  Google Scholar 

  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A et al (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678

    Article  CAS  PubMed  Google Scholar 

  • Clery D (2011) Greenhouse-power plant hybrid set to make Jordan’s desert bloom. Science (80- ) 331:136–136

    Article  CAS  Google Scholar 

  • Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T et al (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic Osmoregulation. Annu Rev Microbiol 45:569–606

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Nobel PS (2006) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649

    Article  Google Scholar 

  • Daffonchio D, Hirt H, Berg G (2015) Principles of plant-microbe interactions. Springer International Publishing, Cham

    Google Scholar 

  • Danin A (1996) Plant adaptations to environmental stresses in desert dunes. In: Cloudsley-Thompson J, Punzo F (eds) Adaptations of desert organisms. Springer, Berlin

    Google Scholar 

  • Danin A (2000) Plants of desert dunes. In: Cloudsley-Thompson J (ed) Adaptations of desert organisms. Springer, Berlin

    Google Scholar 

  • de Carmen Orozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Article  CAS  Google Scholar 

  • de Grenade R (2013) Date palm as a keystone species in Baja California peninsula, Mexico oases. J Arid Environ 94:59–67

    Article  Google Scholar 

  • de Grenade R, Nabhan GP, Cariño OM (2016) Oases of the Baja California peninsula as sacred spaces of agrobiodiversity persistence. Agric Human Values 33:455–474

    Article  Google Scholar 

  • de la Torre-Hernández ME, Salinas-Virgen LI, Aguirre-Garrido JF, Fernández-González AJ, Martínez-Abarca F, Montiel-Lugo D et al (2020) Composition, structure, and PGPR traits of the rhizospheric bacterial communities associated with wild and cultivated Echinocactus platyacanthus and Neobuxbaumia polylopha. Front Microbiol 11:1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6:183–194

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD et al (2018) A global atlas of the dominant bacteria found in soil. Science (80- ) 359:320–325

    Article  CAS  Google Scholar 

  • Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP (2014) Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol 90:844–857

    Article  CAS  PubMed  Google Scholar 

  • Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC et al (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195

    Article  CAS  Google Scholar 

  • Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM et al (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggli U, Nyffeler R (2009) Living under temporarily arid conditions - succulence as an adaptive strategy. Bradleya 27:13–36

    Article  Google Scholar 

  • Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M et al (2019) Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiol Res 228:126302

    Article  CAS  PubMed  Google Scholar 

  • El Hidri D, Guesmi A, Najjari A, Cherif H, Ettoumi B, Hamdi C et al (2013) Cultivation-Dependant Assessment, Diversity, and Ecology of Haloalkaliphilic Bacteria in Arid Saline Systems of Southern Tunisia. Biomed Res Int 2013:1–15

    Article  CAS  Google Scholar 

  • El Kinany S, Achbani E, Faggroud M, Ouahmane L, El Hilali R, Haggoud A et al (2019) Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv, Feggouss. J Saudi Soc Agric Sci 18:411–417

    Google Scholar 

  • El-sharabasy SF, Orf HOM, Abotaleb HH, Abdel-galeil LM, Saber TY (2018) Effect of Plant Growth Promoting Rhizobacteria (PGPR) on growth and leaf chemical composition of date palm plants cv. Bartamuda under salinity stress. Middle East J Agric Res 7:618–624

    Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferjani R, Marasco R, Rolli E, Cherif H, Cherif A, Gtari M et al (2015) The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. Biomed Res Int 2015:1–10

    Article  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford M, a, Knight R. (2012a) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL et al (2012b) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77:7647–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Núñez VM, Fonseca-García C, Desgarennes D, Eloe-Fadrosh E, Woyke T, Partida-Martínez LP (2020) Functional signatures of the epiphytic prokaryotic microbiome of agaves and cacti. Front Microbiol 10:1–13

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes*. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca-García C, Desgarennes D, Flores-Núñez VM, Partida-Martínez LP (2018) The Microbiome of desert CAM Plants: lessons from amplicon sequencing and metagenomics. In: Metagenomics. Elsevier, Amsterdam, pp 231–254

    Google Scholar 

  • Fterich A, Mahdhi M, Caviedes MA, Pajuelo E, Rivas R, Rodriguez-Llorente ID et al (2011) Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 193:385–397

    Article  CAS  PubMed  Google Scholar 

  • Galloway AF, Knox P, Krause K (2019) Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytol 225:1461–1469

    Article  PubMed  Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15

    Article  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Zhenyu C, Czarny J (2007a) Promotion of plant growth by ACCdeaminase-producing soil bacteria. New Perspect Approaches Plant Growth-Promoting Rhizobacteria Res 119:329–339

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007b) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61:2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecol 3:326–337

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guesmi S, Chouchane H, Neifar M, Hosni F, Cherif A, Sghaier H (2019) Radiation-inducible radioprotective exopolysaccharides of Bacillus siamensis CV5 from irradiated roots of Cistanche violacea to decrease free radical damage produced by ionizing radiation. Int J Radiat Biol 95:1552–1563

    Article  CAS  PubMed  Google Scholar 

  • Gutterman Y (2002) The desert biome, survival adaptations and strategies of annual plant species. In: Survival strategies of annual desert plants. Springer, Berlin, pp 1–36

    Chapter  Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L et al (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125

    Article  CAS  Google Scholar 

  • Hanna AL, Youssef HH, Amer WM, Monib M, Fayez M, Hegazi NA (2013) Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt. J Adv Res 4:13–26

    Article  PubMed  Google Scholar 

  • Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol 136:3070–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnett AC, Wilson GWT, Ott JP, Setshogo M (2013) Variation in root system traits among African semi-arid savanna grasses: Implications for drought tolerance. Austral Ecol 38:383–392

    Article  Google Scholar 

  • Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11:3045–3062

    Article  PubMed  Google Scholar 

  • Hassen W, Neifar M, Cherif H, Najjari A, Chouchane H, Driouich RC et al (2018) Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front Microbiol 9:1–17

    Article  Google Scholar 

  • Hegazi N, Fayez M, Hanna A, Youssef H, Amer W, Monib M. Spore-forming bacteria are potential residents in the root spheres of rhizo-sheathed xerophytic plants of north Sinai deserts. 4 th Conference on Recent Technologies in Agriculture 2009. pp 870–884.

    Google Scholar 

  • Hernández-Hernández T, Brown JW, Schlumpberger BO, Eguiarte LE, Magallón S (2014) Beyond aridification: multiple explanations for the elevated diversification of cacti in the new world succulent biome. New Phytol 202:1382–1397

    Article  PubMed  Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30:961–962

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Jenkins MB (2003) Rhizobial and bradyrhizobial symbionts of mesquite from the Sonoran Desert: salt tolerance, facultative halophily and nitrate respiration. Soil Biol Biochem 35:1675–1682

    Article  CAS  Google Scholar 

  • Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, Raizada MN (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337–355

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Jooste M, Roets F, Midgley GF, Oberlander KC, Dreyer LL (2019) Nitrogen-fixing bacteria and Oxalis – evidence for a vertically inherited bacterial symbiosis. BMC Plant Biol 19:441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan D, Maymon M, Agapakis CM, Lee A, Wang A, Prigge BA et al (2013) A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. Am J Bot 100:1713–1725

    Article  PubMed  Google Scholar 

  • Karray F, Gargouri M, Chebaane A, Mhiri N, Mliki A, Sayadi S (2020) Climatic aridity gradient modulates the diversity of the rhizosphere and endosphere bacterial microbiomes of opuntia ficus-indica. Front Microbiol 11:1622

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavamura VN, Taketani RG, Ferreira C, de Melo IS, Mendes R (2018) The role of species turnover in structuring bacterial communities in a local scale in the cactus rhizosphere. Plant Soil 425:101–112

    Article  CAS  Google Scholar 

  • Kazerooni EA, Maharachchikumbura SSN, Rethinasamy V, Al-Mahrouqi H, Al-Sadi AM (2017) Fungal diversity in tomato rhizosphere soil under conventional and desert farming systems. Front Microbiol 8:1–8

    Article  Google Scholar 

  • Klironomos JN, Hart MM (2001) Animal nitrogen swap for plant carbon. Nature 410:651–652

    Article  CAS  PubMed  Google Scholar 

  • Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6:e24452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: Diversity and importance for plant growth, quality, and health. Front Microbiol 4:1–9

    Article  Google Scholar 

  • Köberl M, Erlacher A, Ramadan EM, El-Arabi TF, Müller H, Bragina A et al (2016) Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol Ecol 92:fiv166

    Article  PubMed  CAS  Google Scholar 

  • Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38

    Article  PubMed  Google Scholar 

  • Laity JJ (2009) Deserts and desert environments. John Wiley & Sons, Hoboken

    Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhou X, Li G, Li L, Kong L, Wang C et al (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7:e1001261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez BR, Bacilio M (2020) Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils 56:447–459

    Article  CAS  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol 193:527–541

    Article  CAS  PubMed  Google Scholar 

  • López-Lozano NE, Echeverría Molinar A, Ortiz Durán EA, Hernández Rosales M, Souza V (2020) Bacterial diversity and interaction networks of Agave lechuguilla rhizosphere differ significantly from bulk soil in the oligotrophic sasin of Cuatro Cienegas. Front Plant Sci 11:1–14

    Article  Google Scholar 

  • Loro M, Valero-Jiménez CA, Nozawa S, Márquez LM (2012) Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. J Arid Environ 85:46–55

    Article  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224

    Article  PubMed  Google Scholar 

  • Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A et al (2015a) Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers Conserv 24:819–840

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JBJ-BJ-BB, Cowan DA (2015b) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D et al (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A et al (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:1–13

    Article  CAS  Google Scholar 

  • Mapelli F, Riva V, Vergani L, Choukrallah R, Borin S (2020) Unveiling the microbiota diversity of the xerophyte Argania spinosa L. skeels root system and residuesphere. Microb Ecol 80:822–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H et al (2013) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8:e26741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P et al (2016) Salicornia strobilacea (Synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol 7:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Fusi M, Michoud G, Daffonchio D (2018a) Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Mosqueira MJ, Fusi M, Ramond J, Merlino G, Booth JM et al (2018b) Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Fusi M, Rolli E, Ettoumi B, Tambone F, Borin S et al (2021) Aridity modulates belowground bacterial community dynamics in olive tree. Environ Microbiol 23(10):6275–6291. https://doi.org/10.1111/1462-2920.15764

    Article  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M et al (2022) Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ Microbiome 17(1):1–19. https://doi.org/10.1186/s40793-022-00407-3

    Article  CAS  Google Scholar 

  • Maximov N (1931) The physiological significance of the xeromorphic structure of plants. J Ecol 19:273–282

    Article  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science (80- ) 326:837–840

    Article  CAS  Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A et al (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:1–10

    Google Scholar 

  • Mohammadipanah F, Wink J (2016) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6:1–10

    Article  Google Scholar 

  • Moreno-Espíndola IP, Rivera-Becerril F, de Jesús F-GM, De León-González F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem 39:2520–2526

    Article  CAS  Google Scholar 

  • Moreno-Espíndola PI, Jesús FGM, Fernando DLG, Facundo RB, Diego GH (2013) Comunidad bacteriana cultivable asociada a la rizocoraza de Amaranthus hypochondriacus. Terra Latinoam 31:57–69

    Google Scholar 

  • Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A et al (2019) Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep 9:4033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouchacca J (2007) Heat tolerant fungi and applied research: addition to the previously treated group of strictly thermotolerant species. World J Microbiol Biotechnol 23:1755–1770

    Article  PubMed  Google Scholar 

  • Moustafa AF (1978) A supplementary annolated list of the fungi of Kuwait. J Univ Kuwait 5:61–82

    Google Scholar 

  • Murgia M, Fiamma M, Barac A, Deligios M, Mazzarello V, Paglietti B et al (2018) Biodiversity of fungi in hot desert sands. Microbiologyopen 8(1):e00595

    Article  PubMed  PubMed Central  Google Scholar 

  • Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F et al (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566

    Article  PubMed  Google Scholar 

  • Nelson EB (2018) The seed microbiome: origins, interactions, and impacts. Plant Soil 422:7–34

    Article  CAS  Google Scholar 

  • North GGBG, Nobel PPS (1997) Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191:249–258

    Article  CAS  Google Scholar 

  • Noy-Meir I (1974) Desert Ecosystems: Higher trophic levels. Annu Rev Ecol Syst 5:195–214

    Article  Google Scholar 

  • Nyffeler R, Eggli U (2010) An up-to-date familial and suprafamilial classification of succulent plants. Bradleya 28:125–144

    Article  Google Scholar 

  • Obledo EN, Barragán-Barragán LB, Gutiérrez-González P, Ramírez-Hernández BC, Ramírez JJ, Rodríguez-Garay B (2003) Increased photosyntethic efficiency generated by fungal symbiosis in Agave victoria-reginae. Plant Cell Tissue Organ Cult 74:237–241

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Othman A, Shawky M, Amer W, Fayez M, Monib M, Hegazi N (2003a) Biodiversity of microorganisms in semi-arid soils of north sinai deserts. Arch Agron Soil Sci 49:241–260

    Article  Google Scholar 

  • Othman AA, Amer WM, Fayez M, Monib M, Hegazi NA (2003b) Biodiversity of diazotrophs associated to the plant cover of north sinai deserts: Biodiversität diazotropher assoziiert mit der pflanendecke der wüsten nordsinais. Arch Agron Soil Sci 49:683–705

    Article  Google Scholar 

  • Othman AA, Amer WM, Fayez M, Hegazi N (2004) Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res 159:285–293

    Article  PubMed  Google Scholar 

  • Pang J, Ryan MH, Siddique KHMM, Simpson RJ (2017) Unwrapping the rhizosheath. Plant Soil 418:129–139

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessarakli M, Harivandi MA, Kopec DM, Ray DT (2012) Growth responses and nitrogen uptake by saltgrass (Distichlis spicata L.), a halophytic plant species, under salt stress, using the 15 N technique. Int J Agron 2012:1–9

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pieterse Z, Aveling TAS, Jacobs A, Cowan DA (2018) Seasonal variability in fungal endophytes from Aizoaceae plants in the Succulent Karoo biodiversity hotspot, South Africa. J Arid Environ 156:19–26

    Article  Google Scholar 

  • Prestel E, Regeard C, Salamitou S, Neveu J, DuBow MS (2013) The bacteria and bacteriophages from a mesquite flats site of the death valley desert. Antonie Van Leeuwenhoek 103:1329–1341

    Article  PubMed  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian J Microbiol 43:1183–1191

    Article  CAS  Google Scholar 

  • Raddadi N, Giacomucci L, Marasco R, Daffonchio D, Cherif A, Fava F (2018) Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil. Microb Cell Fact 17:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranzoni F (1968) Fungi Isolated in culture from soils of the Sonoran Desert. Mycologia 63:157–168

    Google Scholar 

  • Raymond J (2008) Coloring in the tree of life. Trends Microbiol 16:41–43

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716

    Article  PubMed  Google Scholar 

  • Rodríguez CE, Mitter B, Barret M, Sessitsch A, Compant S (2018) Commentary: seed bacterial inhabitants and their routes of colonization. Plant Soil 422:129–134

    Article  CAS  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Rolli E, Marasco R, Saderi S, Corretto E, Mapelli F, Cherif A et al (2017) Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant Soil 410:369–382

    Article  CAS  Google Scholar 

  • Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S et al (2012) Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface 9:1965–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandquist DR (2014) Plants in deserts. In: Monson RK (ed) Ecology and the environment. Springer, New York, pp 297–326

    Google Scholar 

  • Santhanam R, Rong X, Huang Y, Andrews BA, Asenjo JA, Goodfellow M (2013) Streptomyces bullii sp. nov., isolated from a hyper-arid Atacama Desert soil. Antonie Van Leeuwenhoek 103:367–373

    Article  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G, Daffonchio D (2021) Kaustia mangrovi gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed Parvibaculaceae family within the order Rhizobiales. Int J Syst Evol Microbiol 71(5). https://doi.org/10.1099/ijsem.0.004806

  • Sefrji FO, Marasco R, Michoud G, Merlino G, Daffonchio D (2022) Insights into the cultivable bacterial fraction of sediments from the Red Sea mangroves and physiological, chemotaxonomic, and genomic characterization of Mangrovibacillus cuniculi gen. nov., sp. nov., a novel member of the Bacillaceae family. Front Microbiol 391. https://doi.org/10.3389/fmicb.2022.777986

  • Shabani F, Kumar L, Taylor S (2012) Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS One 7:e48021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabani F, Kumar L, Taylor S (2015) Distribution of date palm in the Middle East based on future climate scenarios. Exp Agric 51:244–263

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shelef O, Helman Y, Friedman ALL, Behar A, Rachmilevitch S (2013) Tri-party underground symbiosis between a weevil, bacteria and a desert plant. PLoS One 8:e76588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Fernandes T, Apte SK (2010) Unusual radioresistance of nitrogen-fixing cultures of Anabaena strains. J Biosci 35:427–434

    Article  PubMed  Google Scholar 

  • Singh H, Anurag K, Apte SK (2013) High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities. Photosynth Res 118:71–81

    Article  CAS  Google Scholar 

  • Smith RJ, Hopper SD, Shane MW (2011) Sand-binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context. Plant Soil 348:453–470

    Article  CAS  Google Scholar 

  • Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R et al (2019) Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 223–225:33–43

    Article  PubMed  CAS  Google Scholar 

  • Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E et al (2016) Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil 405:357–370

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Chapter 7 plant growth-promoting actions of rhizobacteria. In: Advances in botanical research, 1st edn. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Stevenson A, Hallsworth JE (2014) Water and temperature relations of soil Actinobacteria. Environ Microbiol Rep 6:744–755

    Article  CAS  PubMed  Google Scholar 

  • Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI et al (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337

    Article  PubMed  Google Scholar 

  • Subhash Y, Sasikala C, Ramana CV (2014) Pontibacter ruber sp. nov. and Pontibacter deserti sp. nov., isolated from the desert. Int J Syst Evol Microbiol 64:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639

    Article  PubMed  Google Scholar 

  • Szymańska S, Borruso L, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K (2018) Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ Sci Pollut Res 25:25420–25431

    Article  CAS  Google Scholar 

  • Taylor-George S, Palmer F, Staley JT, Borns DJ, Curtiss B, Adams JB (1983) Fungi and bacteria involved in desert varnish formation. Microb Ecol 9:227–245

    Article  CAS  PubMed  Google Scholar 

  • Thennarasu S, Natarajan E, Muthukumar B (2019) Novel plant growth promoting rhizobacteria from rhizospheres of date palm (phoenix dactylifera): 16S rRNA typing and phylogenetic analyses reveal their distinct identity. Res Rev A J Microbiol Virol 9:11–25

    CAS  Google Scholar 

  • Thorup JT (1969) pH effect on root growth and water uptake by plants. Agron J 61:225–227

    Article  Google Scholar 

  • Tian Y, Ma X, Li Y, Cheng C, Ge F, An D (2019) Relationship between microbial diversity and nitrogenase activity of Stipagrostis pennata rhizosheath. J Cell Biochem 120:13501–13508

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18(11):607–621

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Van Der Heijden MGAA, Schlaeppi K (2015) Root surface as a frontier for plant microbiome research. Proc Natl Acad Sci U S A 112:2299–2300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanhaverbeke C, Heyraud A, Mazeau K (2003) Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: Impact on the interaction with soils. Biopolymers 69:480–497

    Article  CAS  PubMed  Google Scholar 

  • Verhoek S (1998) Agavaceae. In: Kubitzki K (ed) Flowering plants monocotyledons. Springer, Berlin, Heidelberg, pp 60–70

    Chapter  Google Scholar 

  • Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A et al (2018) Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H + -pumping pyrophosphatase in pepper plants. Environ Microbiol. https://doi.org/10.1111/1462-2920.14272

  • Watt M, McCully ME, Jeffree CE (1993) Plant and bacterial mucilages of the maize rhizosphere: Comparison of their soil binding properties and histochemistry in a model system. Plant Soil 151:151–165

    Article  CAS  Google Scholar 

  • Wickens G (1998) Anatomical and morphological adaptations. In: Ecophysiology of economic plants in arid and semi-arid lands. Springer, Berlin, pp 145–160

    Chapter  Google Scholar 

  • Willert DJ, Eller BM, Werger MJA, Brinckmann E (1990) Desert succulents and their life strategies. Vegetatio 90:133–143

    Article  Google Scholar 

  • Wullstein LH, Pratt SA (1981) Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot 68:408–419

    Article  Google Scholar 

  • Wullstein LH, Bruening ML, Bollen WB (1979) Nitrogen fixation associated with sand grain root sheaths (Rhizosheaths) of certain xeric grasses. Physiol Plant 46:1–4

    Article  CAS  Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:1–5

    Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Al-Harrasi I, Alansari AS, Al-Yahyai R, Glick BR (2016) The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. Int Microbiol 19:143–155

    CAS  PubMed  Google Scholar 

  • York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot 67:3629–3643

    Article  CAS  PubMed  Google Scholar 

  • Young IIM (1995) Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol 130:135–139

    Article  Google Scholar 

  • Zeikus JG (1979) Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol 4:243–252

    Article  Google Scholar 

  • Zhang K, Shi Y, Cui X, Yue P, Li K, Liu X et al (2019) Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4:1–11

    CAS  Google Scholar 

  • Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J et al (2020) Root-Bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol 183:780–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2001) Plant salt stress. In: Encyclopedia of life sciences. John Wiley & Sons, Ltd, Chichester, pp 2–4

    Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

  • Zougari-Elwedi B, Issami W (2019) Arbuscular mycorrhizal fungi (Glomus mosseae) selection by date palm root system: The clue to a sustainable fertile soil in Jerid region of Tunisia. Int J Rural Dev Environ Heal Res 3:113–122

    Article  Google Scholar 

  • Zougari-Elwedi B, Issami W, Msetra A, Sanaa M, Yolande D, Lounes-Haj sahraoui A. (2016) Monitoring the evolution of the arbuscular mycorrhizal fungi associated with date palm. J New Sci Agric Biotechnol 31:1822–1831

    Google Scholar 

Download references

Acknowledgements

DD acknowledges the financial support of King Abdullah University and Technology (KAUST) through the baseline research fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramona Marasco or Daniele Daffonchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marasco, R., Mosqueira, M.J., Cherif, A., Daffonchio, D. (2022). Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils. In: Ramond, JB., Cowan, D.A. (eds) Microbiology of Hot Deserts. Ecological Studies, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-030-98415-1_8

Download citation

Publish with us

Policies and ethics