Skip to main content

Advertisement

Log in

Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR–RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Athar M (2005) Nodulation of native legumes in Pakistani Rangelands. Agric Conspec Sci 70(2):49–54

    Google Scholar 

  • Bai YM, Daoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238

    Article  PubMed  CAS  Google Scholar 

  • Ben Romdhane S, Nasr H, Samba-Mbaye R, Neyra M, Ghorbal M (2005) Diversity of Acacia tortilis rhizobia revealed by PCR/RFLP on crushed root nodules in Tunisia. Ann Microbiol 55:249–258

    CAS  Google Scholar 

  • Benata H, Mohammed O, Noureddine B, Abdelbasset B, Abdelmoumen H, Muresu R, Squartini A, El Idrissi MM (2008) Diversity of bacteria that nodulate Prosopis juliflora in the eastern area of Morocco. Syst Appl Microbiol 31(5):378–386

    Article  PubMed  CAS  Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468

    Google Scholar 

  • Dafni A, Negbi M (1978) Variability in Prosopis farcta in Israel seed germination as affected by temperature and salinity. Isr J Bot 27:147–159

    Google Scholar 

  • De Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    Google Scholar 

  • Eardly BD, Nour SM, Van Berkum P, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Frioni L, Rodriguez A, Meerhoff M (2001) Differentiation of rhizobia isolated from native legume trees in Uruguay. Appl. Soil Ecol. 16:275–282

    Article  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  PubMed  CAS  Google Scholar 

  • Harzallah-Skhiri F (2003) Thèse d’Etat, Faculté des Sciences de Tunis. Tunisie, pp 268

  • Haukka K, Lindström K, Young JP (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  Google Scholar 

  • Holm LG, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds. John Wiley and Sons, New York (weed)

  • Holmes DE, Nevin KP, Lovley DR (2004) Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599

    Article  PubMed  CAS  Google Scholar 

  • Iglesias O, Rivas R, Fraile PG, Abril A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North-Spain, FEMS. Microbial Lett 277:210–216

    Article  CAS  Google Scholar 

  • Khudairi K (1969) Mycorrhiza in desert soils. Bio-Sci 19:598–599

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) Mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Laguerre G, Allard MR, Revoy F, Amarger N et al (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR- amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    PubMed  CAS  Google Scholar 

  • Lal B, Khanna S (1995) Selection of salt tolerant Rhizobium isolates of Acacia nilotica. World J Microbiol Biotechnol 10:637–639

    Article  Google Scholar 

  • Li J, Wang E, Chen W, Chen W (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Maâtallah J, Berraho EB, Munôz S, Sanjuan J, Lluch C (2002) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol 93:531–540

    Article  PubMed  Google Scholar 

  • Mahdhi M, Mars M (2006) Genotypic diversity of rhizobia isolated from Retama raetam in arid regions of Tunisia. Ann Microbiol 56:305–311

    Article  CAS  Google Scholar 

  • Mahdhi M, Nzoué A, Gueye F, Merabet C, De Lajudie P, Mars M (2007) Phenotypic and genotypic diversity of Genista saharae microsymbionts from the infra-arid region of Tunisia. Lett Appl Microbiol 45:604–609

    Article  PubMed  CAS  Google Scholar 

  • Mahdhi M, De Lajudie P, Mars M (2008) Phylogenetic and symbiotic characterization of rhizobial bacteria nodulating Argyrolobium uniflorum in Tunisian arid soils. Can J Microbiol 54:209–217

    Article  PubMed  CAS  Google Scholar 

  • Martens M, Delaere M, Coopman R, de Vos P, Gillis M, Willems A (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503

    Article  PubMed  CAS  Google Scholar 

  • Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, De Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674

  • Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41:77–84

    Article  PubMed  CAS  Google Scholar 

  • Milnitsky F, Frionf F, Agius F (1997) Characterization of rhizobia that nodulate native legume trees from Uruguay. Soil Biol Biochem 29:989–992

    Article  CAS  Google Scholar 

  • Mohamed SH, Smouni A, Neyra M, Kharchaf D, Filali-Maltouf A (2000) Phenotypic characteristics of root nodulating bacteria isolated from Acacia spp. grown in Libya. Plant Soil 224:171–183

    Article  CAS  Google Scholar 

  • Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150

    Article  PubMed  CAS  Google Scholar 

  • Nick G, Eardly BD, Gillis M, De Lajudie P, Paulin L, Zhang XP, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., two new species isloated from Acacia senegal and Prosopis chilensis. Int J Syst Bacteriol 49:1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Normand P, Cournoyer B, Nazaret S et al (1992) Analysis of a ribosomal RNA operon in the Actinomycete Frankia. Gene 111:119–124

    Article  PubMed  CAS  Google Scholar 

  • Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM, Young JP (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  • Pottier-Alapetite G (1979) Flore de la Tunisie. Angiospermes-Dicotylédones, Apétales Dialypétales. Publications Scientifiques tunisiennes, pp 293

  • Priefer UB, Aurag J, Boesten B, Bouhmouch I, Defez R, Filali-Maltouf A, Miklis M, Moawad H, Mouhsine B, Prell J, Schlüter A, Senatore B (2001) Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J Bacteriol 91(2–3):223–236

    CAS  Google Scholar 

  • Räsänen LA, Lindström K (2003) Effects of biotic and abiotic constraints on the symbiosis between rhizobia and the tropical leguminous trees Acacia and Prosopis. Indian J Exp Biol 41(10):1142–1159

    PubMed  Google Scholar 

  • Senthilkumar M, Govindasamy V, Dureja P, Annapurna K (2007) Purification and partial characterization of antifungal peptides from Soybean Endophyte-Paenibacillus sp strain HKA-15. J Plant Biochem Biotechnol 16 (Suppl. 2)

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14:4033–4050

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RB (1973) Numerical taxonomy. The principles and practices of numerical classification. Freeman WH Co., San Francisco

  • Somasegaran P, Hoben HJ (1994) Handbook of rhizobia. In: Methods in legume-rhizobium technology. Springer, New York, pp 450

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Masson-Boivin C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Thomas PM, Golly KF, Zyskind JW, Virginia RA (1994) Variation of clonal, mesquite-associated rhizobial and bradyrhizobial populations from surface and deep soils by symbiotic gene region restriction fragment length polymorphism and plasmid profile analysis. Appl Environ Microbiol 60:1146–1153

    PubMed  CAS  Google Scholar 

  • Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Fterich A, Mahdhi M, Ramirez-Bahena MH, Caviedes MA, Mars M, Encarna Velázquez E, Rodriguez-Llorente I (2010) Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta in Tunisia. Int J Syst Evol Microbiol 60:2182–2186

    Article  PubMed  CAS  Google Scholar 

  • Van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindstrom K, Eardly BD (2003) Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998

    Article  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernandez MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martinez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716

    Article  PubMed  CAS  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51: 89–103

    Google Scholar 

  • Zahran HH, Räsänen LA, Karsisto K, Lindström K (1994) Alteration of lipopolysaccharide and protein profiles in SDS-Page of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105

    Article  CAS  Google Scholar 

  • Zakhia F, Jeder J, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH -like gene within the genera microbacterium and starkeya. Microbial Ecol 51:375–393

    Article  Google Scholar 

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Harper R, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113

    Article  Google Scholar 

Download references

Acknowledgments

This research work was kindly supported by grants from Ministry for the Higher education and Scientific Research and within the Tuniso-Spanish co-operation (AECID grant A/018017/08 and A/023763/09) and the University of Gabès, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mars.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fterich, A., Mahdhi, M., Caviedes, M.A. et al. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 193, 385–397 (2011). https://doi.org/10.1007/s00203-011-0683-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0683-z

Keywords

Navigation