Skip to main content

Integrated Application of Green Nanotechnology, Bioremediation, and Solubility Enhancing Chemicals for Improving Phytoremediation Efficiency: A Case Study in Egypt

  • Chapter
  • First Online:
Pesticides Bioremediation

Abstract

Soil is the essential region for accumulating heavy metals and persistent organic pollutants, on this way, the cleanup of soil is largely significant. In addition, with the fast growth in industrialization, business liquid waste poses threats to the environment and human health, so it has become a major concern to clean up the environment from these unsafe wastes for the sustainable improvement of human society. In soils polluted with highly hydrophobic pollutants with the logarithm of the octanol–water partitioning coefficients (log Kow) higher than three, those compounds are highly adsorbent in the soil and their degradation is slow. Phytoremediation of these compounds is not an appropriate solution, because of the fact plants are not able to degrade those organic pollutants in rhizosphere area or uptake in the upper tissues. Phytoremediation with different technology can already provide a sustainable and less expensive alternative to soils and sites moderately contaminated over large surfaces. Plants and different technology which include biosurfactants excreted through microorganisms or plants, nanomaterials which include green-nZVI technology and chemicals which enhancing bioavailability in the soil are combined in phytoremediation, may also enhance the desorption of such persist organic pollutants in soils through enhancing their bioavailability, accumulate and translocate through plants, or microbial degradation leading to improving the capability of phytoremediation. A combination of green nanotechnology, adsorption, advanced oxidation process, and phytoremediation process can reduce the drawbacks of individual process. The complement of a strong oxidant, which include H2O2 to NZVI, results in the formation of ⋅OH radicals that can efficaciously oxidize most of the organic matter to CO2, H2O, and salts. Joint action between plant-associated microorganisms, especially the rhizosphere zone, which stimulate plant growth or biosurfactants proved to increase plant growth biomass production and improve the phytoremediation process through effect on the availability, accumulation, degradation of xenobiotics in soil and plants. Genetic engineering has additionally contributed to the improvement of genetically modified plants and their related bacteria to enhance the remediation performance through plants for pollutants. Also, integration among strategies, which include chemical improving agents (ethanol, SiO2, hydroxypropyl-ß-cyclodextrin (HPßCD), natural humic acid) and surfactants such as Tween 80 with phytoremediation capability, mainly, in the existence of green nanoparticles. The research performed in Egypt on phytoremediation of xenobiotics is constrained, and maximum research focused on remediation of heavy metals by plants. Research in the field of eliminating pollutants and the use of the contemporary technology in environmental remediation in Egypt still requires government support and cooperation for a clean environment free of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elaal, AE, Aboelkassem A, Gad AA et al (2020) Removal of heavy metals from wastewater by natural growing plants on River Nile banks in Egypt. Water Pract Technol 15(4): 947-959

    Article  Google Scholar 

  • Abd Ellah RG (2020) Water resources in Egypt and their challenges, Lake Nasser case study. Egypt J Aquat Res 46 (1): 1-12

    Article  Google Scholar 

  • Abdel-Aziz HM, Farag RS, Abdel-Gawad, SA (2019) Carbamazepine removal from aqueous solution by green synthesis zero-valent iron/Cu nanoparticles with Ficus Benjamina leaves extract. Int J Environ Res 13(5): 843-852

    Article  CAS  Google Scholar 

  • Abou-Elela SI, Hellal MS, Elekhnawy MA (2019) Phytoremediation of municipal wastewater for reuse using three pilot-scale HFCW under different HLR, HRT, and vegetation: a case study from Egypt. Desalin Water Treat 140: 80-90

    Article  CAS  Google Scholar 

  • Abu Khatita AM, Koch R, Bamousa AO (2020) Sources identification and contamination assessment of heavy metals in soil of Middle Nile Delta, Egypt, J Taibah Univ Sci 14(1): 750-761

    Article  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117: 232-242

    Article  CAS  Google Scholar 

  • Aioub AA, Li Y, Qie X et al (2019) Reduction of soil contamination by cypermethrin residues using phytoremediation with Plantago major and some surfactants. Environ Sci Eur 31(1): 26

    Article  CAS  Google Scholar 

  • Ali H, Naseer M, Sajad MA (2012) Phytoremediation of heavy metals by Trifolium alexandrinum. Int J Environ Sci 2 (3): 1459-1469

    CAS  Google Scholar 

  • Ali S, Abbas Z, Rizwan M et al (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 12 (5): 1927

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019 https://doi.org/10.1155/2019/6730305

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20(1): 57-61

    Article  Google Scholar 

  • Altuntas K, Debik E, Kozal D et al (2017) Adsorption of copper metal ion from aqueous solution by nanoscale zero valent iron (nZVI) supported on activated carbon. Period Eng Nat Sci (PEN) 5(1): 61-64

    Google Scholar 

  • Anjum M, Miandad R, Waqas M et al (2019) Remediation of wastewater using various nanomaterials. Arab J Chem 12(8): 4897-4919

    Article  CAS  Google Scholar 

  • Ansari AA, Naeem M, Gill SS, AlZuaibr FM (2020) Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res 46(4): 371-376

    Article  Google Scholar 

  • Antoniadis V, Shaheen SM, Stärk H J et al (2021) Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ Int 146: 106233

    Article  CAS  Google Scholar 

  • Anudechakul C, Vangnai AS, Ariyakanon N (2015) Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. Int J Phytoremediation 17(7): 678-685

    Article  CAS  Google Scholar 

  • Arslan M, Imran A, Khan QM et al (2017 Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24(5): 4322-4336

    Article  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11): 180

    Article  CAS  Google Scholar 

  • Balciunaitiene A, Viskelis P, Viskelis J et al (2021) Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes 9(8): 1304

    Article  CAS  Google Scholar 

  • Bao T, Jin J, Damtie MM et al (2019) Green synthesis and application of nanoscale zero-valent iron/rectorite composite material for P-chlorophenol degradation via heterogeneous Fenton reaction. J Saudi Chem Soc 23(7): 864-878

    Article  CAS  Google Scholar 

  • Bardos P, Bone B, Elliott D et al (2011) A Risk/Benefit Approach to the Application of Iron Nanoparticles for the Remediation of Contaminated Sites in the Environment. Technical report, Contaminated land: Application in real environments. CB 0440. University of Brighton, Dep Environ Food Rural Aff. October 2011

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158: 2282-2287

    Article  CAS  Google Scholar 

  • Binh ND, Imsapsangworn C, Kim Oanh NT et al (2016) Sequential anaerobic-aerobic biodegradation of 2,3,7,8-TCDD contaminated soil in the presence of CMC-coated nZVI and surfactant. Environ Technol 37: 388-398

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B et al (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1): 7-21

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Kaur G et al (2014) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. European J Soil Biol 60:67-76

    Article  CAS  Google Scholar 

  • Cao J, Elliott D, Zhang WX (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7: 499-506

    Article  CAS  Google Scholar 

  • Chakraborty J, Das S (2016) Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ Sci Pollut Res 23: 16883-16903

    Article  CAS  Google Scholar 

  • Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS et al (2021) Effect of Organic Residues on Pesticide Behavior in Soils: A Review of Laboratory Research. Environments 8(4): 32

    Article  Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013) Phytoremediation protocols: an overview. In Plant-Based Remediation Processes (pp. 1-18). Springer, Berlin, Heidelberg.

    Book  Google Scholar 

  • Chen CS, Rao PSC, Delfino JJ (2005) Oxygenated fuel induced cosolvent effects on the dissolution of polynuclear aromatic hydrocarbons from contaminated soil. Chemosphere 60(11): 1572-1582

    Article  CAS  Google Scholar 

  • Chen F, Hao S, Qu J, Ma J (2015) Enhanced biodegradation of polychlorinated biphenyls by defined bacteria-yeast consortium. Ann Microbiol 65:1847-1854

    Article  CAS  Google Scholar 

  • Chiou CT, Malcolm RL, Brinton TI et al (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol 20(5): 502-508

    Article  CAS  Google Scholar 

  • Cho H, Choi J, Goltz M N et al (2002) Combined effect of natural organic matter and surfactants on the apparent solubility of polycyclic aromatic hydrocarbons. J Environ Qual 31(1): 275-280

    Article  Google Scholar 

  • Clarizia L, Russo D, Di Somma I et al (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B Environ 209:358-371

    Article  CAS  Google Scholar 

  • Coninx L, Martinova, V., Rineau F (2017) Mycorrhiza-assisted phytoremediation. Adv Bot Res 83: 127-188

    Article  CAS  Google Scholar 

  • Danish M, Gu X, Lu S et al (2016) Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ. Sci Pollut Res Int 23: 13298-13307

    Article  CAS  Google Scholar 

  • Deshpande S, Wesson L, Wade D et al (2000) DOWFAX Surfactant Components for Enhancing Contaminant Solubilization. Water Res 34(3):1030-1036

    Article  CAS  Google Scholar 

  • Dong R, Gu L, Guo C et al (2014) Effect of PGPR Serratia marcescens BC-3 and AMF Glomus intraradices on phytoremediation of petroleum contaminated soil. Ecotoxicology 23(4): 674-680

    Article  CAS  Google Scholar 

  • Dugan PJ, Siegrist RL, Crimi ML (2010) Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A review. Remediation J 20(3): 27-49

    Article  Google Scholar 

  • Dutta D, Puzari KC, Gogoi R et al (2014) Endophytes: Exploitation as a tool in plant protection. Braz. Arch. Biol Technol 57:621-629

    Article  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25: 442-51

    Article  CAS  Google Scholar 

  • El-Temsah YS, Sevcu A, Bobcikova K et al (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144: 2221-2228

    Article  CAS  Google Scholar 

  • Fatima, K, Imran A, Naveed M et al (2017) Plant-bacteria synergism: An innovative approach for the remediation of crude oil-contaminated soils. Soil Environ 36: 93-113

    Article  CAS  Google Scholar 

  • Feng N, Yu J, Zhao H et al (2017) Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 583:352-368

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G et al (2010) (Bio)Surfactant and Bioremediation, Successes and Failures. Trends in bioremediation and phytoremediation145-156

    Google Scholar 

  • French CE, Rosser SJ, Davies GJ Nicklin et al (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17: 491-494

    Article  CAS  Google Scholar 

  • Furuno S, Päzolt K, Rabe K et al (2010) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol 12:1391-1398

    CAS  Google Scholar 

  • Galal TM, Eid EM, Dakhil MA et al (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int j phytoremediation 20(5): 440-447

    Article  CAS  Google Scholar 

  • Gharibzadeh F, Kalantar RR, Nasseri S et al (2016) Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Sep Purif Technol 168: 248-256

    Article  CAS  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F et al (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8: 471-482

    Article  CAS  Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A et al (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7: 1836

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5): 383-393

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367-374

    Article  CAS  Google Scholar 

  • Golubev SN, Schelud'ko AV, Muratova AY et al (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Pollut 198: 5-16

    Article  CAS  Google Scholar 

  • Gomes HI, Fan G, Mateus EP et al (2014) Assessment of combined electro-nanoremediation of molinate contaminated soil. Sci. Total Environ 493: 178-184

    Article  CAS  Google Scholar 

  • Gomes HI, Ottosen LM, Ribeiro AB et al (2015) Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. J Environ Manag 151: 550-555

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y et al (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308-11316

    Article  CAS  Google Scholar 

  • Gupta P, Rani R, Usmani Z et al (2019) The Role of Plant-Associated Bacteria in Phytoremediation of Trace Metals in Contaminated Soils. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 69-76). Elsevier

    Google Scholar 

  • Hakeem K, Sabir M, Ozturk M et al (Eds.) (2014) Soil remediation and plants: prospects and challenges. Academic Press, pp 5-36

    Google Scholar 

  • Han M, Yang H, Ding N et al (2021) The role of plant-associated bacteria in the phytoremediation of heavy metal contaminated soils. In E3S Web of Conferences (Vol. 261, p 04006). EDP Sciences.

    Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9): 3314-3320

    Article  CAS  Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8(3): 639-648

    Article  CAS  Google Scholar 

  • Huo Y, Singh P, Kim YJ et al (2017) Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif Cells Nanomedicine Biotechnol 4:1-13

    Google Scholar 

  • Hussain F, Tahseen R, Arslan M et al (2019) Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: Bacterial augmentation enhances system’s performance. Int J Environ Sci Technol 16: 4611-4620

    Article  CAS  Google Scholar 

  • Jambon I, Thijs S, Weyens N et al (2018). Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interac 13(1): 119-130

    Article  CAS  Google Scholar 

  • Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotricum sp. J Clust Sci 22: 225-232

    Article  CAS  Google Scholar 

  • Jesitha K, Harikumar PS (2018) Application of Nano-phytoremediation Technology for Soil Polluted with Pesticide Residues and Heavy Metals. In Phytoremediation (pp 415-439) Springer, Cham

    Chapter  Google Scholar 

  • Jiamjitrpanich W, Parkpian P, Polprasert C et al (2012, June) Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent iron. In 2nd International Conference on Environment and Industrial Innovation IPCBEE (Vol 35, pp 82-86)

    Google Scholar 

  • Jiang D, Zeng G, Huang D et al (2018) Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ Res 163: 217-227

    Article  CAS  Google Scholar 

  • Jing R, Fusi S, Kjellerup BV (2018) Remediation of polychlorinated biphenyls (PCBs) in contaminated soils and sediment: state of knowledge and perspectives. Fron Environ Sci 6: 79

    Article  Google Scholar 

  • Johnsen AR, Wick, LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133: 71-84

    Article  CAS  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J et al (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4(3): 241-249

    Article  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20: 225-230

    Article  CAS  Google Scholar 

  • Khurana I, Shaw AK, Saxena A et al (2018) Removal of trinitrotoluene with nano zerovalent iron impregnated graphene oxide. Water Air Soil Pollut 229 (1): 17

    Article  CAS  Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97-132

    Article  CAS  Google Scholar 

  • Kukla M, Płociniczak T, Piotrowska-Seget Z (2014) Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere 117: 40-46

    Article  CAS  Google Scholar 

  • Kumar K M, Mandal B K, Kumar KS et al (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol 102: 128-133

    Article  CAS  Google Scholar 

  • Kumar B, Verma VK., Mishra M et al (2021) Assessment of persistent organic pollutants in soil and sediments from an urbanized flood plain area. Environ Geochem Health 1-18

    Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97(6), 2327-2339

    Article  CAS  Google Scholar 

  • Varjani SJ; Upasani VN (2017a) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol: 232: 389-397

    Article  CAS  Google Scholar 

  • Lee KY, Peters CA (2004) UNIFAC modeling of cosolvent phase partitioning in nonaqueous phase liquid-water systems. J Environ Eng 130(4): 478-483

    Article  CAS  Google Scholar 

  • Lemaire J, Buès M, Kabeche T et al (2013) Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J Environ Chem Eng 1: 1261-1268

    Article  CAS  Google Scholar 

  • Li W, Xing R, Zhu Y et al (2020) Solubility Determination and Preferential Solvation of Diphenoxylate in Aqueous Cosolvent Solutions of Ethanol, Acetonitrile, Methanol, and Isopropanol. J Chem Eng Data 65(7): 3658-3666

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Li J, Sheng G, Zheng X (2013) Enhanced reduction of chlorophenols by nanoscale zerovalent iron supported on organobentonite. Chemosphere 92(4): 368-374

    Article  CAS  Google Scholar 

  • Libralato G, Devoti AC, Zanella M et al (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123: 81-88

    Article  CAS  Google Scholar 

  • Liduino V S, Servulo E F, Oliveira F J (2018) Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.). J Environ Sci Health Part A 53(7): 609-616

    Article  CAS  Google Scholar 

  • Lin Y, Chen Z, Chen Z et al (2014) Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: reactivity, characterization, kinetics and reaction pathway. Appl Clay Sci 93: 56-61

    Article  CAS  Google Scholar 

  • Liu J, Liu S, Sun K et al (2014) Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One 9: e108249

    Article  CAS  Google Scholar 

  • Liu X, Zhou Y, Zhang J et al (2018) Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps. Chem Eng J 347: 379-397

    Article  CAS  Google Scholar 

  • Lovaglio R B, Silva VL, Ferreira H et al (2015) Rhamnolipids Know-How: Looking for Strategies for its Industrial Dissemination. Biotechnol Adv 33(8): 1715-1726

    Article  CAS  Google Scholar 

  • Lv Y, Niu Z, Chen Y et al (2016) Synthesis of SiO2 coated zero-valent iron/palladium bimetallic nanoparticles and their application in a nano-biological combined system for 2,2′,4,4′- tetrabromodiphenyl ether degradation. RSC Adv 6: 20357-20365

    Article  CAS  Google Scholar 

  • Ma H, Cui FY, Zhao ZW et al (2012) Water solubility enhancement of DDT by humic acid and extracellular organic matter of aquatic algae. J Adv Mater Res 518: 565-568

    Article  CAS  Google Scholar 

  • Ma X-K, Ding N, Peterson EC (2015) Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation 26:259-269

    Article  CAS  Google Scholar 

  • Machado S, Pinto SL, Grosso JP et al C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445: 1-8

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69: 485-492

    Article  CAS  Google Scholar 

  • Mercado-Borrayo B M, Cram Heydrich S, Rosas Pérez I et al (2015) Organophosphorus and organochlorine pesticides bioaccumulation by Eichhornia crassipes in irrigation canals in an urban agricultural system. Int J Phytoremediation 17(7): 701-708

    Article  CAS  Google Scholar 

  • Mesa J, Rodrıґguez-Llorente JD, Pajuelo E et al (2015) Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. J Hazard Mater 300: 263-271

    Article  CAS  Google Scholar 

  • Mishra SK, Kumar PR, Singh RK (2020) Transgenic plants in phytoremediation of organic pollutants. In Bioremediation of Pollutants (pp. 39-56). Elsevier

    Google Scholar 

  • Mitton FM, Gonzalez M, Peóa A et al (2012) Effects of amendments on soil availability and phytoremediation potential of aged p,p'-DDT, p,p'-DDE and p,p'-DDD residues by willow plants (Salix sp.). J Hazard Mater 203-204: 62-8

    Article  CAS  Google Scholar 

  • Mohammadi H, Amani-Ghadim AR, Matin AA et al (2020) Fe0 nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium 3 Biotech 10 (1): 19

    Article  Google Scholar 

  • Mokarram-Kashtiban S, Hosseini SM, Kouchaksaraei MT et al (2019) The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Environ Sci Pollut Res 26(11): 10776-10789

    Article  CAS  Google Scholar 

  • Mulligan CN (2021) Sustainable remediation of contaminated soil using biosurfactants. Front Bioeng Biotechnol 9: 195

    Article  Google Scholar 

  • Moussa SA (2015) Heavy Metal Acquisition from Drain Water, Sediment and Soil by two Species of Amphibious Plants. Egypt J Bot 55(1): 105-125

    Article  Google Scholar 

  • Nairat M, Shahwan T, Eroğlu AE, Fuchs H (2015). Incorporation of iron nanoparticles into clinoptilolite and its application for the removal of cationic and anionic dyes. J Ind Eng Chem 21: 1143-1151

    Article  CAS  Google Scholar 

  • Mulligan CN (2009). Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid and Interface Science 14(5): 372-378

    Article  CAS  Google Scholar 

  • Mystrioti C (2014) Application of iron nanoparticles synthesized by green tea for the removal of hexavalent chromium in column tests. Journal of Geosciences and Environment Protection (GEP) 2(04): 28

    Article  Google Scholar 

  • Newete SW, Erasmus BF, Weiersbye IM et al (2016) Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes). Environ Sci Poll Res 23(20): 20805-20818

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M et al (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51: 104-122

    Article  CAS  Google Scholar 

  • Ochekwu EB, Madagwa, B (2013) Phytoremediation potentials of water Hyacinth. Eichhornia crassipes (mart.) Solms in crude oil polluted water. J Appl Sci Environ Manag 17(4): 503-507

    Google Scholar 

  • Olette R, Couderchet M, Eullaffroy P (2009) Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicol Environ Safety 72:2096-2101

    Article  CAS  Google Scholar 

  • Olson MR, Blotevogel J, Borch T et al (2014) Long-term potential of in situ chemical reduction for treatment of polychlorinated biphenyls in soils. Chemosphere 114: 144-149

    Article  CAS  Google Scholar 

  • Otero-Diaz M (2017) Cosolvent Effects of Ethanol and Dissolved Organic Matter on the Aqueous Solubility and Partitioning of Organochlorine Pesticides. Doctor of Philosophy, Environmental Engineering, University of Michigan.

    Google Scholar 

  • Otero-Diaz M, Woo B, Bhattacharyya N et al (2017) Enhancement of aqueous solubility of organochlorine pesticides by ethanol. J Environ Eng 143(9): 04017048

    Article  CAS  Google Scholar 

  • Paan P, Chen X, Clark C J (2006). Effect of cosolvents on toxaphene aqueous solubility. Environ Chem 3(2), 111-117.

    Article  CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z et al (2011) Environmental Applications of Biosurfactants: Recent Advances. Int J Mol Sci 12(1): 633-654

    Article  CAS  Google Scholar 

  • Panz K, Miksch, K (2012) Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manage 113: 85-92

    Article  CAS  Google Scholar 

  • Pardo F, Santos A, Romero A (2016) Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: a column study. Sci Total Environ 566-567: 480-488

    Article  CAS  Google Scholar 

  • Paris DF, Steen WC, Baughman GL et al (1981) Second-order model to predict microbial degradation of organic compounds in natural waters. Appl Environ Microbiol 41: 603-609

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediation 6:119-137

    Article  CAS  Google Scholar 

  • Pathak KV, Keharia H (2014) Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotech 4: 41-48

    Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A et al (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5: 10-21

    Article  Google Scholar 

  • Pecina V, Brtnicky M, Balkova M et al (2021) Assessment of Soil Contamination with Potentially Toxic Elements and Soil Ecotoxicity of Botanical Garden in Brno, Czech Republic: Are Urban Botanical Gardens More Polluted Than Urban Parks? Int J Environ Res Public Health 18(14):7622

    Article  CAS  Google Scholar 

  • Peluffo M, Pardo F, Santos A et al (2016) Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Sci Total Environ 563: 649-656

    Article  CAS  Google Scholar 

  • Phumying S, Labuayai S, Thomas C et al (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe 3 O 4) nanoparticles. Appl Phys A 111(4): 1187-1193

    Article  CAS  Google Scholar 

  • Pillai HP, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7(05): 734

    Article  CAS  Google Scholar 

  • Ptaszek N, Pacwa-Płociniczak M, Noszczyńska M et al (2020) Comparative Study on Multiway Enhanced Bio-and Phytoremediation of Aged Petroleum-Contaminated Soil. J Agron 10(7): 947

    CAS  Google Scholar 

  • Pullin H, Springell R, Parry S et al (2017) The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles. Chem Eng J308: 568-577.

    Article  CAS  Google Scholar 

  • Qu X, Alvarez P J, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12): 3931-3946

    Article  CAS  Google Scholar 

  • Rady M, Romeh A, Muhanna A E H (2019) Using green nanotechnology for remediation of water polluted with flonicamid. J Product Develop 24(3): 571-593

    Article  Google Scholar 

  • Radwan E, Eissa E, Nassar AM et al (2019) Study of Water Pollutants in El-Mahmoudia Agricultural Irrigation Stream at El-Beheira Governorate, Egypt, Eurasip J Bioinform Syst Biol 2(1): 1-18.

    Google Scholar 

  • Rajan S (2011) Nanotechnology in groundwater remediation. Int J Environ Sci Dev 2: 182-187

    Article  Google Scholar 

  • Ramadan M R, Romeh, AA, Muhanna A (2019). Improving the efficiency of phytoremediation of som pesticides polluted water and soil, Ph.D. Plant Production Department, Faculty of Technology and Development, Zagazig University, Egypt

    Google Scholar 

  • Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J Nanomater, 2014:1-42, https://doi.org/10.1155/2014/617405

    Article  CAS  Google Scholar 

  • Romeh AA (2015) Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicol Environ Saf 117: 124-131

    Article  CAS  Google Scholar 

  • Romeh AA (2018a) Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by Fipronil and degradation products. Water Air Soil Pollut 229(5): 147

    Article  CAS  Google Scholar 

  • Romeh AA (2021) Synergistic effect of Ficus-zero valent iron supported on adsorbents and Plantago major for chlorpyrifos phytoremediation from water. Int J Phytoremediation 23(2): 151-161

    Article  CAS  Google Scholar 

  • Romeh AA (2020) Synergistic use of Plantago major and effective microorganisms, EM1 to clean up the soil polluted with imidacloprid under laboratory and field condition. Int J Phytoremediation 22(14): 1515-1523

    Article  CAS  Google Scholar 

  • Romeh AA, Hendawi M Y (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agr Sci Tech 16: 265-276

    Google Scholar 

  • Romeh AA, Hendawi MY (2017) Biochemical interactions between Glycine max L. silicon dioxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. Pestic Biochem Physiol 142: 32-43

    Article  CAS  Google Scholar 

  • Romeh AA, Saber RA (2020) Green nano-phytoremediation and solubility improving agents for the remediation of chlorfenapyr contaminated soil and water. J Environ Manage 260:110104

    Article  CAS  Google Scholar 

  • Romeh AA (2018b) Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut 229 (5):147

    Article  CAS  Google Scholar 

  • Ruley JA, Amoding A, Tumuhairwe JB et al (2020) Enhancing the Phytoremediation of Hydrocarbon-Contaminated Soils in the Sudd Wetlands, South Sudan, Using Organic Manure. Appl Environ Soil Sci

    Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: Engineering plants for the phytoremediation of explosives. Trends Biotechnol 27: 73-81

    Article  CAS  Google Scholar 

  • Said I, Salman SA, Samy Y et al (2019) Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt, Environ Monit Assess 191(5):267

    Article  CAS  Google Scholar 

  • San Miguel A, Ravanel P, Raveton M (2013) A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J Hazard Mater. 244-245:60-69

    Article  CAS  Google Scholar 

  • Schnitzer M (1986) Binding of humic substances by soil mineral colloids. Interactions of Soil Minerals with Natural Organics and Microbes, Vol 17, (interactionsofs) 77-101

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental Organic Chemistry (Second ed.) John Wiley Sons, https://doi.org/10.1002/0471649643

  • Schwitzguébel J P (2017) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments 17(5): 1492-1502.

    Article  CAS  Google Scholar 

  • Shahid MJ, Al-surhanee AA, Kouadri F et al (2020) Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability 12(14): 5559

    Article  CAS  Google Scholar 

  • Shahwan T, Sirriah SA, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1): 258-266

    Article  CAS  Google Scholar 

  • Sharma P (2021) Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresour Technol May 328: 124835.

    Article  CAS  Google Scholar 

  • Shehata SM, Badawy RK, Aboulsoud YI (2019) Phytoremediation of some heavy metals in contaminated soil. Bull Natl Res Cent 43(1): 189

    Article  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit. Rev. Environ Sci Technol 45: 1522-1554

    Article  CAS  Google Scholar 

  • Shen C, Tang X, Cheema SA et al (2009) Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-beta-cyclodextrins. J Hazard Mater 172: 1671-1676

    Article  CAS  Google Scholar 

  • Shokr MS, El Baroudy AA, Fullen MA et al (2016) Spatial distribution of heavy metals in the middle nile delta of Egypt. Int Soil Water Conserv Res 4(4):293-303

    Article  Google Scholar 

  • Silva RD, Almeida DG, Rufino RD et al (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15(7): 12523-12542

    Article  CAS  Google Scholar 

  • Skinder BM, Uqab B, Ganai BA (2020) Bioremediation: A Sustainable and Emerging Tool for Restoration of Polluted Aquatic Ecosystem. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 143-165

    Chapter  Google Scholar 

  • Smith E, Smith J, Naidu R et al (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water, Air Soil Pollut 151(1): 71-86

    Article  CAS  Google Scholar 

  • Smuleac V, Varma R, Sikdar S et al (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379(1-2): 131-137

    Article  CAS  Google Scholar 

  • So LM, Chu LM, Wong PK (2003) Microbial enhancement of Cu2 removal capacity of Eichhornia crassipes (Mart.). Chemosphere, vol. 52, pp. 1499-1503

    Article  CAS  Google Scholar 

  • Song B, Xu P, Chen M et al (2019) Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol 49(9): 791-824

    Article  Google Scholar 

  • Sophia S, Kodialbail VS (2020) Phytoremediation of soil for metal and organic pollutant removal. In: Sophia S, Kodialbail VS (eds) The Handbook of Environmental Chemistry 104. Bioprocess Engineering for Bioremediation: Valorization and Management Techniques: Springer Nature Switzerland AG. pp 45-66

    Google Scholar 

  • Souza R D, Ambrosini A, Passaglia L M (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4): 401-419

    Article  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng J 287: 618-632

    Article  CAS  Google Scholar 

  • Sun K, Liu J, Gao Y et al (2015) Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination. Environ Sci Pollut Res 22: 19529-19537

    Article  CAS  Google Scholar 

  • Sun Y P, Li XQ, Zhang WX et al (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf, A Physicochem Eng Asp 308(1-3): 60-66

    Article  CAS  Google Scholar 

  • Sun Y, Li, J, Huang T et al (2016) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review. Water Res 100: 277-295

    Article  CAS  Google Scholar 

  • Supreeth M (2021) Enhanced remediation of pollutants by microorganisms–plant combination. International Journal of Environmental Science and Technology 1-12.

    Google Scholar 

  • Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. J Nanomater 6 (11): 209

    Article  CAS  Google Scholar 

  • Tyagi PK, Tyagi S, Gola D et al (2021) Ascorbic Acid and Polyphenols Mediated Green Synthesis of Silver Nanoparticles from Tagetes erecta L. Aqueous Leaf Extract and Studied Their Antioxidant Properties. J Nanomater Vol 2021. https://doi.org/10.1155/2021/6515419

  • Toso M A, Higgins T (2012) The impact of biofuel releases on Minnesota’s water resources. Retrieved from: //aipgmn.org/images/downloads/Meeting_and_Events_Attachments/toso_aipg_010411.pdf November 2014

    Google Scholar 

  • Truu J, Truu M, Espenberg M et al (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9 (1)

    Google Scholar 

  • UNEP (Undated) (2019) Phytoremediation: An Environmentally Sound Technology for Pollution Prevention, Control and Remediation. An Introductory Guide to Decision-Makers. Newsletter and Technical Publications Freshwater Management Series No. 2 United Nations Environment Programme Division of Technology, Industry, and Economics. http://www.unep.or.jp/Ietc/Publications/Freshwater/FMS2/1.asp Assessed18/8/2019

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Current Opin Biotechnol 20(2): 231-236

    Google Scholar 

  • Van Aken, B (2011) Transgenic plants and associated bacteria for phytoremediation of organic pollutants. In book: Comprehensive Biotechnology 2011 pp. 261-275

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7): 765-794

    Article  CAS  Google Scholar 

  • Varadavenkatesan T, Selvaraj R, Vinayagam R (2016). Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J Mol Liq 221:1063-1070

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017b) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232: 389-397

    Article  CAS  Google Scholar 

  • Varma KS, Tayade RJ, Shah KJ et al (2020) Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water-Energy Nexus 3: 46-61.

    Article  Google Scholar 

  • Wang M, Zhang B, Li G et al (2019). Efficient remediation of crude oil-contaminated soil using a solvent/surfactant system. RSC advances 9 (5): 2402-2411

    Article  Google Scholar 

  • Wang Z, Fang C, Megharaj M (2014) Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain Chem Eng 2(4): 1022-1025.

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321: 385-408

    Article  CAS  Google Scholar 

  • Wu Z, Yuan X, Zhang J et al (2017) Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives. Chem Cat Chem 9 (1): 41-64

    CAS  Google Scholar 

  • Xi Y, Sun Z, Hreid T et al (2014) Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/palygorskite composite materials. phytoremediation Chem Eng J 247: 66-74.

    Article  CAS  Google Scholar 

  • Xia H, Wu L, Tao Q (2003). A review on of organic contaminants. Chin J Appl Ecol 14, 457-460

    CAS  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97(8): 1050-1054

    Article  CAS  Google Scholar 

  • Xie Y, Cheng W, Tsang P E et al (2016) Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. J Environ Manag 166: 478-483

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424: 1-10

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN et al (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci: 11, 359

    Article  Google Scholar 

  • Yang Y, Liu Y, Li Z et al (2020) Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. Int J Environ Sci Technol 1-8

    Google Scholar 

  • Yap C L, Gan S, Ng H K (2012) Evaluation of solubility of polycyclic aromatic hydrocarbons in ethyl lactate/water versus ethanol/water mixtures for contaminated soil remediation applications. J Environ Sci 24(6): 1064-1075

    Article  CAS  Google Scholar 

  • Yu Y, Zhang Y, Zhao N et al (2020) Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Suaeda Salsa Revealed by 16S rRNA Genes. Int J Environ Res Public Health 17(5): 1471

    Article  CAS  Google Scholar 

  • Yuan N, Zhang G, Guo S et al (2016) Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron. Ultrason Sonochem 28: 62-68

    Article  CAS  Google Scholar 

  • Zakria HS, Othman MHD., Kamaludin R et al (2021). Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Advances 11(12): 6985-7014

    Article  CAS  Google Scholar 

  • Zand A D, Tabrizi A M, Heir A V (2020) The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. Environ Sci Pollut Res: 1-15

    Google Scholar 

  • Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci. 2: 1315-1325

    Article  Google Scholar 

  • Zhang X, Liu X,Wang Q et al (2014) Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior. Biodegrad 87: 99-105

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Li J et al (2011) Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay. Chem Eng J 171(2):526-531

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao L, Yang Y et al (2020) Fenton-Like Oxidation of Antibiotic Ornidazole Using Biochar-Supported Nanoscale Zero-Valent Iron as Heterogeneous Hydrogen Peroxide Activator. Int J Environ Res public health 17 (4): 1324

    Article  CAS  Google Scholar 

  • Zhao S, Xue S, Zhang J, Zhang Z, Sun J (2020) Dissolved organic matter-mediated photodegradation of anthracene and pyrene in water. Sci Rep 10(1): 1-9

    CAS  Google Scholar 

  • Zeydan BA (2005) The Nile Delta in a Global Vision. In: Proceedings of the Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt 31-40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romeh, A.A.A. (2022). Integrated Application of Green Nanotechnology, Bioremediation, and Solubility Enhancing Chemicals for Improving Phytoremediation Efficiency: A Case Study in Egypt. In: Siddiqui, S., Meghvansi, M.K., Chaudhary, K.K. (eds) Pesticides Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-030-97000-0_17

Download citation

Publish with us

Policies and ethics