Skip to main content
Log in

Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: bacterial augmentation enhances system’s performance

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, degradation of hexadecane was investigated in the contaminated water by employing plant–bacteria partnership in hydroponic root mat system. A halophyte grass, Leptochloa fusca, was planted in the presence of three hydrocarbons-degrading bacteria, namely Acinetobacter sp. ACRH82, Acinetobacter sp. BRRH61, and Bacillus niabensis ACSI85. The strains were screened based on their in vitro potential of hexadecane degradation as well as plant growth-promoting activities. Hydroponic systems containing vegetation or bacterial consortium separately attenuated a good proportion of hydrocarbons, chemical oxygen demand, biochemical oxygen demand, and total dissolved solids. Nevertheless, combined application of vegetation and bacteria significantly enhanced the system performance; i.e., hydrocarbons degradation was recorded up to 92%, chemical oxygen demand was reduced up to 95%, biochemical oxygen demand up to 84%, and total dissolved solids up to 47%. The inoculated bacteria displayed highest persistence in the roots followed by shoots and then in the wastewater. The biotoxicity assay revealed that hydroponic root mat containing plant–bacteria partnership was highly efficient in reducing the toxicity level. Conclusively, the present study implies that application of L. fusca in partnership with the hydrocarbon-degrading bacteria in hydroponic root mat is a suitable choice for the phytoremediation of hexadecane. Similar systems may be exploited for the enhanced degradation of other long-chain saturated alkanes from oil-contaminated wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Gen Eng Biotechnol 13(1):51–58

    Article  Google Scholar 

  • Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS ONE 9(10):e111208

    Article  Google Scholar 

  • Arslan M, Ullah I, Müller JA, Shahid N, Afzal M (2017) Organic micropollutants in the environment: ecotoxicity potential and methods for remediation. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Cham

    Google Scholar 

  • Ashraf S, Afzal M, Naveed M, Shahid M, Zahir ZA (2018) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediation 20(2):121–128

    Article  CAS  Google Scholar 

  • Baldi F, Ivosevi N, Minacci A, Pepi M, Fani R, Svetlici V, Zuti V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5):2041–2048

    CAS  Google Scholar 

  • Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J, Kästner M, Kuschk P (2016) Hydroponic root mats for wastewater treatment. Environ Sci Pollut Res 23(16):15911–15928

    Article  CAS  Google Scholar 

  • Cole GM (2018) Assessment and remediation of petroleum contaminated sites. Routledge, Abingdon

    Book  Google Scholar 

  • Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pol 4(3):191–216

    Article  CAS  Google Scholar 

  • Fatima K, Afzal M, Imran A, Khan QM (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94(3):314–320

    Article  CAS  Google Scholar 

  • Fatima K, Imran A, Amin I, Khan QM, Afzal M (2018) Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremediat 20(7):675–681

    Article  CAS  Google Scholar 

  • Geerdink MJ, van Loosdrecht MC, Luyben KCA (1996) Model for microbial degradation of nonpolar organic contaminants in a soil slurry reactor. Environ Sci Technol 30(3):779–786

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  Google Scholar 

  • Gohl O, Friedrich A, Hoppert M, Averhoff B (2006) The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 72(2):1394–1401

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Ueno A, Ito H, Ito Y, Yamamoto Y, Yumoto I, Okuyama H (2007) Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. Int Biodeterior Biodegrad 59(1):40–43

    Article  CAS  Google Scholar 

  • Hashmat AJ, Islam E, Haq MAU, Khan QM (2016) Integrated treatment technology for textile effluent and its phytotoxic evaluation. Desalin Water Treat 57(9):4146–4153

    Article  CAS  Google Scholar 

  • Hori K, Watanabe H, Si Ishii, Tanji Y, Unno H (2008) Monolayer adsorption of a “bald” mutant of the highly adhesive and hydrophobic bacterium Acinetobacter sp. strain Tol 5 to a hydrocarbon surface. Appl Environ Microbiol 74(8):2511–2517

    Article  CAS  Google Scholar 

  • Kang YS, Park W (2010) Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1. J Appl Microbiol 109(5):1650–1659

    CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    Article  CAS  Google Scholar 

  • Kisic I, Mesic S, Basic F, Brkic V, Mesic M, Durn G, Zgorelec Z, Bertovic L (2009) The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops. Geoderma 149(3–4):209–216

    Article  CAS  Google Scholar 

  • Ollis D (1992) Slick solution for oil spills. Nature 6386:453–454

    Article  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659–666

    Article  CAS  Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FC, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Rehman K, Imran A, Amin I, Afzal M (2018) Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater 349:242–251

    Article  CAS  Google Scholar 

  • Rehman K, Imran A, Amin A, Afzal M (2019) Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 217:576–583

    Article  CAS  Google Scholar 

  • Sakai Y, Maeng HJ, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13-C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58(11):2128–2130

    Article  CAS  Google Scholar 

  • Salam LB, Obayori OS, Akashoro OS, Okogie GO (2011) Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. Int J Agric Biol 13:245–250

    CAS  Google Scholar 

  • Saleem H, Arslan M, Rehman K, Tahseen R, Afzal M (2018a) Phragmites australis—a helophytic grass—can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2018.01.014

    Article  Google Scholar 

  • Saleem H, Rehman K, Arslan M, Afzal M (2018b) Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. Int J Phytoremediation 20(7):692–698

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  • Shabir G, Arslan M, Fatima K, Imran A, Khan QM, Afzal M (2016) Effects of inoculum density on plant growth and hydrocarbon degradation. Pedosphere 26(5):774–778

    Article  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  Google Scholar 

  • Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445:347–355

    Article  Google Scholar 

  • Sticher P, Jaspers M, Stemmler K, Harms H, Zehnder A, Van Der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63(10):4053–4060

    CAS  Google Scholar 

  • Stroud J, Paton G, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102(5):1239–1253

    Article  CAS  Google Scholar 

  • Syranidou E, Christofilopoulos S, Kalogerakis N (2017) Juncus spp.—the helophyte for all (phyto) remediation purposes? New Biotechnol 38:43–55

    Article  CAS  Google Scholar 

  • Tabassum S, Shahid N, Wang J, Shafiq M, Mumtaz M, Arslan M (2016) The oxidative stress response of Mirabilis jalapa to exhausted engine oil (EEO) during phytoremediation. Pol J Environ Stud 25(6):2581–2587

    Article  CAS  Google Scholar 

  • Tara N, Iqbal M, Khan QM, Afzal M (2018) Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water Environ J. https://doi.org/10.1111/wej.12383

    Article  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73(10):3327–3332

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability. Molecules 21(5):573–581

    Article  Google Scholar 

  • Vymazal J (2013) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res 47(14):4795–4811

    Article  CAS  Google Scholar 

  • Wang L, Tang Y, Wang S, Liu R-L, Liu M-Z, Zhang Y, Liang F-L, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10(4):347–352

    Article  CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221

    Article  CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic rhodococcussp. Appl Environ Microbiol 64(7):2578–2584

    CAS  Google Scholar 

  • Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109(4):1389–1401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Higher Education Commission (HEC) of Pakistan for the financial Grant: 20-3854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arslan.

Additional information

Editorial responsibility: M. Abbaspour.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, F., Tahseen, R., Arslan, M. et al. Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: bacterial augmentation enhances system’s performance. Int. J. Environ. Sci. Technol. 16, 4611–4620 (2019). https://doi.org/10.1007/s13762-018-2165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2165-1

Keywords

Navigation