Skip to main content
Log in

Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ∼6–30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Users (VCH, New York, 1996)

    Google Scholar 

  2. E.J.W. Verwey, Nature 144, 327 (1939)

    Article  ADS  Google Scholar 

  3. G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, J. Appl. Phys. 94, 3520 (2003)

    Article  ADS  Google Scholar 

  4. P. Wang, C. Lee, T. Young, J. Polym. Sci., Part A, Polym. Chem. 43, 1342 (2005)

    Article  ADS  Google Scholar 

  5. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D, Appl. Phys. 36, R167 (2003)

    Article  ADS  Google Scholar 

  6. T.T.H. Pham, C. Cao, S.J. Sim, J. Magn. Magn. Mater. 320, 2049 (2008)

    Article  Google Scholar 

  7. N. Morishita, H. Nakagami, R. Morishita, S. Takeda, F. Mishima, B. Terazono, S. Nishijima, Y. Kaneda, N. Tanaka, Biochem. Biophys. Res. Commun. 334, 1121 (2005)

    Article  Google Scholar 

  8. W. Pei, K. Kumada, T. Natusme, H. Saito, S. Ishio, J. Magn. Magn. Mater. 310, 2375 (2007)

    Article  ADS  Google Scholar 

  9. S. Grimm, M. Schultz, S. Barth, R. Müller, J. Mater. Sci. 32, 1083 (1997)

    Article  ADS  Google Scholar 

  10. E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, J. Magn. Magn. Mater. 289, 328 (2005)

    Article  ADS  Google Scholar 

  11. M.E. Compean-Jasso, F. Ruiz, J.R. Martinez, A. Herrera-Gomez, Mater. Lett. 62, 4248 (2008)

    Article  Google Scholar 

  12. T. Iwasaki, N. Sato, K. Kosaka, S. Watano, T. Yanagida, T. Kawai, J. Alloys Compd. 509, L34 (2011)

    Article  Google Scholar 

  13. K. Petchreon, A. Sirivat, Mater. Sci. Eng. B 177, 421 (2012)

    Article  Google Scholar 

  14. O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Superlattices Microstruct. 52, 793 (2012)

    Article  ADS  Google Scholar 

  15. R. Herreara-Becerra, C. Zorrilla, J.L. Rius, J.A. Ascencio, Appl. Phys. A 91, 241 (2008)

    Article  ADS  Google Scholar 

  16. R. Herreara-Becerra, J.L. Rius, C. Zorrilla, Appl. Phys. A 100, 453 (2010)

    Article  ADS  Google Scholar 

  17. R. Fan, X.H. Chen, Z. Gui, L. Liu, Z.Y. Chen, Mater. Res. Bull. 36, 497 (2001)

    Article  Google Scholar 

  18. D. Chen, R. Xu, Mater. Res. Bull. 33, 1015 (1998)

    Article  Google Scholar 

  19. Y.-H. Zheng, Y. Cheng, F. Bao, Y.-S. Wang, Mater. Res. Bull. 41, 525 (2006)

    Article  Google Scholar 

  20. H. Yan, J. Zhang, C. You, Z. Song, B. Yu, Y. Shen, Mater. Chem. Phys. 113, 46 (2009)

    Article  Google Scholar 

  21. J. Wan, Y. Yao, G. Tang, Appl. Phys. A 89, 529 (2007)

    Article  ADS  Google Scholar 

  22. X. Wu, J. Tang, Y. Zhang, H. Wang, Mater. Sci. Eng. B 157, 81 (2009)

    Article  Google Scholar 

  23. T. Iwasaki, N. Mizutani, S. Watano, T. Yanagida, T. Kawai, J. Exp. Nanosci. 7, 355 (2012)

    Article  Google Scholar 

  24. S. Choi, M.-H. Chung, Semin. Integr. Med. 1, 53 (2003)

    Article  Google Scholar 

  25. T. Reynolds, A.C. Dweck, J. Ethnopharmacol. 68, 3 (1999)

    Article  Google Scholar 

  26. K.H. Shin, W.S. Woo, S.S. Lim, C.S. Shim, H.S. Chung, E.J. Kennely, A.D. Kinghorn, J. Nat. Prod. 60, 1180 (1997)

    Article  Google Scholar 

  27. K. Umano, K. Nakahara, A. Shoji, T. Shibamoto, J. Agric. Food Chem. 47, 3702 (1999)

    Article  Google Scholar 

  28. D. Saccu, P. Bagoni, G.J. Procida, J. Agric. Food Chem. 49, 4526 (2001)

    Article  Google Scholar 

  29. S. Prathap Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Biotechnol. Prog. 22, 577 (2006)

    Article  Google Scholar 

  30. S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, S. Seraphin, Opt. Adv. Mater. Rapid Commun. 2, 161 (2008)

    Google Scholar 

  31. J. Klinkaewnarong, E. Swatsitang, C. Masingboon, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 10, 521 (2010)

    Article  ADS  Google Scholar 

  32. P. Laokul, S. Maensiri, J. Optoelectron. Adv. Mater. 11, 857 (2009)

    Google Scholar 

  33. P. Laokul, S. Serapin, V. Amornkitbamrung, S. Maensiri, Curr. Appl. Phys. 11, 101 (2011)

    Article  ADS  Google Scholar 

  34. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New York, 2001)

    Google Scholar 

  35. I. Bica, Mater. Sci. Eng. B 68, 5 (1999)

    Article  Google Scholar 

  36. M.A. Lopez-Quintela, J. Rivas, J. Colloid Interface Sci. 158, 446 (1993)

    Article  Google Scholar 

  37. L. Rezlescu, E. Rezlescu, P.D. Popa, N. Rezlescu, J. Magn. Magn. Mater. 192, 288 (1996)

    Google Scholar 

  38. R.N. Panda, N.S. Gajbhiye, G. Balaji, J. Alloys Compd. 326, 50 (2001)

    Article  Google Scholar 

  39. Wang, Q.W. Chen, C. Zeng, B.Y. Hou, Adv. Mater. 16, 137 (2004)

    Article  Google Scholar 

  40. T. Iwasaki, K. Kosaka, N. Mizutani, S. Watano, T. Yanagida, H. Tanaka, T. Kawai, Mater. Lett. 62, 4155 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry (Khon Kaen University) for providing VSM facilities, the Science Faculty SEM Unit (Khon Kaen University) for providing TEM facilities, the Department of Physics, Faculty of Science (Ubon Ratchathani University) for providing XRD facilities. This work is partially supported by The National Research Council of Thailand (NRCT), and The National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phumying, S., Labuayai, S., Thomas, C. et al. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl. Phys. A 111, 1187–1193 (2013). https://doi.org/10.1007/s00339-012-7340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7340-5

Keywords

Navigation