Skip to main content

Abstract

In the last few decades, biological approaches have shown significant advancement in the field of agriculture and pest management. The plant microbiome is a rich assemblage of bacteria, fungi, and other microbes that directly influence the rhizosphere’s functioning, plant development, and disease management. It is structurally, chemically, and functionally diverse and is regarded as an additional genome of the plant. The microbiome remains in a harmony with the plant and a slight change in the microbiome population e.g., pathogen invasion may disturb the plant growth and health. Modulation of rhizosphere microbiome by inoculation with beneficial antagonistic microbes has great potential for maintaining optimal rhizosphere environment, plant growth, and promoting plant’s tolerance against diseases. The antagonistic bacteria work through various biocontrol mechanisms such as the lytic enzymes, battle for iron, nutrient uptake and mobilization, antibiosis, and induced resistance. Amongst these, antibiosis is inspiring researchers to explore microbial communities with an ability to control plant diseases as efficiently as chemical products. Microbial antibiotics are small molecules released as secondary metabolites that are efficient at very low concentrations. Biocontrol-PGPR secretes numerous antifungal metabolites, these include 2,4-Diacetylphloroglucinol, ammonia, hydrogen cyanide, ethylene, pyrrolnitrin, zwittermicin, fengycins, phenazines, surfactins, pyoluteorin, mycosubtilin, iturins, and numerous other metabolites. Researchers are using these beneficial antagonistic bacteria and their metabolites to formulate biological products, and several of these registered products are commercially available. This chapter will explicitly describe the past research, recent advances, and future perspectives of plant disease management by microbiome intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, McGuire JE, Crowley D, Baysse C, Dow M, O'Gara F (2004) The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. Microbiology 150:2443–2450. https://doi.org/10.1099/mic.0.27033-0

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Soberoz-Chaven G (ed) Biosurfactants. Springer, Berlin, pp 13–55

    Chapter  Google Scholar 

  • Abdeljalil NO, Vallance J, Gerbore J, Bruez E, Martins G, Rey P, Daami-Remadi M (2016) Characterization of tomato-associated rhizobacteria recovered from various tomato-growing sites in Tunisia. J Plant Pathol Microbiol 7(2):5. https://doi.org/10.4172/2157-7471.1000331

    Article  CAS  Google Scholar 

  • Abo-Zaid S (2014) Scaling-up production of biocontrol agents from Pseudomonas spp. Faculty of Agriculture, Alexandria University, Alexandria

    Google Scholar 

  • Ahn IP, Lee SW, Suh SC (2007) Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol Plant Microbe Interact 20(7):759–768

    Article  CAS  PubMed  Google Scholar 

  • Ajouz S, Nicot P, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59:556–566. https://doi.org/10.1111/j.1365-3059.2009.02230.x

    Article  CAS  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Australas Plant Pathol 38:44–50. https://doi.org/10.1071/AP08075

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2010) Role of plant growth promoting rhizobacteria in biocontrol of plant diseases and sustainable agriculture. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 157–195

    Chapter  Google Scholar 

  • Akladious SA, Gomaa EZ, El-Mahdy OM (2019) Efficiency of bacterial biosurfactant for biocontrol of Rhizoctonia solani (AG-4) causing root rot in faba bean (Vicia faba) plants. Eur J Plant Pathol 153:1237–1257. https://doi.org/10.1007/s10658-018-01639-1

    Article  CAS  Google Scholar 

  • Ali S, Hameed S, Imran A, Iqbal M, Lazarovits G (2014) Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad-spectrum antifungal activities. Microb Cell Fact 13(144)

    Google Scholar 

  • Ali A, Hameed S, Imran A, Iqbal M, Iqbal J, Oresnik IJ (2016) Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production. FEMS Microbiol Ecol 92(9). https://doi.org/10.1093/femsec/fiw115

  • Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 232:126389. https://doi.org/10.1016/j.micres.2019.126389

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CMJ, Bakkar PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and pseudomonas sp. Ps14. Biol Control 65:14–23. https://doi.org/10.1016/j.biocontrol.2013.01.009

    Article  Google Scholar 

  • Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier JF, Garneau D, Claudwell L, Ansari F, Ahmad I (2018) Biofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPR. Adv Microbiol 8:235–251. https://doi.org/10.4236/aim.2018.83016

    Article  CAS  Google Scholar 

  • Amaral PF, Coelho MA, Marrucho IM, Coutinho JA (2010) Biosurfactants from yeasts: characteristics, production and application. Bios 2010:236–249

    Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Höfte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn 5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11(9):847–854

    Article  CAS  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta 1713(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Imanaka I, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem 28:575–576

    Article  CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 3:488–494

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C, Santoyo G, Valencia-Cantero E (2016) La rizobacteria promotora del crecimiento vegetal Arthrobacter agilis UMCV2 coloniza endofíticamente a Medicago truncatula. Rev Argent Microbiol 48(4):342–346. https://doi.org/10.1016/j.ram.2016.07.004

    Article  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–139. https://doi.org/10.1104/pp.103.028712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baehler E, Bottiglieri M, Péchy-Tarr M, Maurhofer M, Keel C (2005) Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0. J Appl Microbiol 99:24–38

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting Rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Roberts DP et al (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. https://doi.org/10.1016/j.tplants.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: root microbiomes. Front Plant Sci 4:165. https://doi.org/10.3389/fpls.2013.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bally R, Elmerich C (2007) Biocontrol of plant diseases by associative and endophytic nitrogen-fixing bacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer Academic Publishers, Dordrecht, pp 171–190

    Chapter  Google Scholar 

  • Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929. https://doi.org/10.1007/s00253-014-6169-6

    Article  CAS  PubMed  Google Scholar 

  • Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181(10):3155–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. PNAS 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  PubMed  Google Scholar 

  • Bender CL, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37(1):175–196

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Bergström S, Theorell H, Davide H (1964a) On a metabolic product of Pseudomonas pyocyanea pyolipic acid, active against Mycobacterium tuberculosis. Arch Chem Mineral Geol 23(13):1–12

    Google Scholar 

  • Bergstrom S, Theorell H, Davide H (1964b) Pyolipic acid, a metabolic product of Pseudomonas-pyocyanea, active against mycobacterium-tuberculosis. Arch Biochem 10(1):165–166

    Google Scholar 

  • Blagodatskaya E, Blagodatskaya S, Anderson TH, Kuyzakov Y (2014) Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS One 9:e93282. https://doi.org/10.1371/journal.pone.0093282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2, 4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72(1):418–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BB, Coenen C (2008) 2,4-diacetylphloroglucinol alters plant root development. Mol Plant-Microbe Interact 21:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Brodhagen M, Henkels MD, Loper JE (2004) Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 70:1758–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81(9):954–959

    Article  Google Scholar 

  • Cameotra SS, Makkar RS, Kaur J, Mehta SK (2010) Synthesis of biosurfactants and their advantages to microorganisms and mankind. Bios 2010:261–280

    Google Scholar 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Cai Y (2018) Antagonism of two plant-growth promoting bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8(1):4360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaparro J, Badri D, Vivanco J (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:90–803. https://doi.org/10.1038/ismej.2013.196

    Article  CAS  Google Scholar 

  • Charulatha R, Harikrishnan H, Manoharan PT, Shanmugaiah V (2013) Characterization of groundnut rhizosphere pseudomonas sp. vsmku 2013 for control of phytopathogens. In: Velu R (ed) Microbiological research in agroecosystem management. Springer, India. https://doi.org/10.1007/978-81-322-1087-0_8

    Chapter  Google Scholar 

  • Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, Ha DG, Willger SD, O'Toole GA, Harwood CS, Dietrich LE (2014) Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 10(10). https://doi.org/10.1371/journal.ppat.1004480

  • Chihaoui SA, Trabelsi D, Jdey A, Mhadhbi H, Mhamdi R (2015) Inoculation of Phaseolus vulgaris with the nodule endophyte agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol 197:805–813. https://doi.org/10.1007/s00203-015-1118-z

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13(12):1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Cho KM, Math RK, Hong SY, Islam SM, Mandanna DK, Cho JJ, Yun MG, Kim JM, Yun HD (2009) Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control 20(4):402–406

    Article  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Brion D, Jerzy N, Christophe C, Essaïd AB (2005) Use of plant growth- promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG, Liss SN, Longay R, Zajic JE (1981) Surface activity of mycobacterium and pseudomonas. J Ferment Technol 59(2):97–101

    CAS  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense induced lateral root. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Cronin D, Moenne-Loccoz T, Fenton A, Dunne C, Dowling DN, O’Gara F (1997a) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol 23:95–106

    Article  CAS  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’gara F (1997b) Role of 2,4-Diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63(4):1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla Serra M, Fagiuoli G, Nordera P, Bernhart I, Della Volpe C, Di Giorgio D, Ballio A, Menestrina G (1999) The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Mol Plant-Microbe Interact 12(5):391–400. https://doi.org/10.1094/MPMI.1999.12.5.391

    Article  CAS  PubMed  Google Scholar 

  • Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AW, Thomas SR, Kumar N, Gooding JJ (2015) Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep 5(1):1–9

    Article  Google Scholar 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • del Carmen Orozco-Mosqueda M, Velázquez-Becerra C, Macías-Rodríguez LI et al (2013) Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant and Soil 362:51–66. https://doi.org/10.1007/s11104-012-1263-y

    Article  CAS  Google Scholar 

  • del Carmen Orozco-Mosqueda M, del Carmen Rocha-Grandos M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth promoting mechanism. Microbiol Res 208:25–31

    Article  CAS  Google Scholar 

  • Delcambe L (1950) Iturin, new antibiotic produced by Bacillus subtilis. C R Seances Soc Biol Fil 144:1431–1434

    CAS  PubMed  Google Scholar 

  • Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195:1371–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding C, Shen Q, Zhang R, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential bicontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant and Soil 366(1–2):453–466

    Article  CAS  Google Scholar 

  • Dubey A, Kumar A, Abd-Allah EF, Hashem A, Khan ML (2018) Growing more with less: breeding and developing drought resilient soybean to improve food security. Ecol Indic 126:107698. https://doi.org/10.1016/j.ecolind.2018.03.003

    Article  CAS  Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429. https://doi.org/10.1007/s10531-019-01760-5

    Article  Google Scholar 

  • Duffy BK, Défago G (1997) Zinc improves biocontrol of fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Elouzil AA, Bashir R, Sandouk R, Elgammude B (2009) Isolation and characterization of rhamnolipid (biosurfactant) from petroleum contaminated soil. Ass Univ Bull Environ Res 12(1):95–108

    Google Scholar 

  • Ferreira MJ, Silva H, Cuhna A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29(4):409–420. https://doi.org/10.1016/S1002-0160(19)60810-6

    Article  Google Scholar 

  • Food and Agriculture Organization of United Nations (2019) New standards to curb the global spread of plant pests and diseases. http://www.fao.org/news/story/en/item/1187738/icode/. Accessed 7 Dec 2020

  • Gardner BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Progr 3. https://doi.org/10.1094/PHP-2002-0510-01-RV

  • Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruizz Herrera LF, Lopez-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512. https://doi.org/10.1111/nph.13725

    Article  CAS  PubMed  Google Scholar 

  • Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ, Massetolides AH (1997) Antimycobacterial cyclic depsipeptides produced by two Pseudomonads isolated from marine habitats. J Nat Prod 60(3):223–229. https://doi.org/10.1021/np9606456

    Article  CAS  PubMed  Google Scholar 

  • Glasser NR, Kern SE, Newman DK (2014) Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 92:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomaa EZ (2013) Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J Gen Appl Microbiol 59(6):425–436

    Article  CAS  Google Scholar 

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203. https://doi.org/10.1186/s12934-016-0603-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mukerji KG (2000) Biological control of weeds with plant pathogens. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture. Springer, Boston, pp 199–205. https://doi.org/10.1007/978-1-4615-4209-4_14

    Chapter  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2001) Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr Sci 81:90–94

    Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29(3):488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer PE, Hill SD, Lam ST, Van Pee KH (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63:2147–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamoen LW, Venema G, Kuipers OP (2003) Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Hanif MK, Malik KA, Hameed S et al (2020) Growth stimulatory effect of AHL producing Serratia spp. from potato on homologous and non-homologous host plants. Microbiol Res 238:126506. https://doi.org/10.1016/j.micres.2020.126506

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil 312:7–14. https://doi.org/10.1007/s11104-007-9514-z

    Article  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. https://doi.org/10.1146/annurev.phyto.41.052002.095656

    Article  CAS  PubMed  Google Scholar 

  • Haggag WM, Mohamed HA (2007) Biotechnological aspects of microorganisms used in plant biological control. Am-Eurasian J Sustain Agric 1:7–13

    Google Scholar 

  • Hassan UT, Bano A (2016) Biofertilizer: a novel formulation for improving wheat growth, physiology and yield. Pak J Bot 48(6):2233–2241

    Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58. https://doi.org/10.1186/s40168-018-0445-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70(2):921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60(1):78–85. https://doi.org/10.1128/AEM.60.1.78-85.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramoto M, Okada K, Nagai S (1970) The revised structure of viscosin, a peptide antibiotic. Tetrahedron Lett 13:1087–1090. https://doi.org/10.1016/s0040-4039(01)97915-8

    Article  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69(5):480–482

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    Article  CAS  Google Scholar 

  • Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y (2018) Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 215:55–56

    Article  CAS  PubMed  Google Scholar 

  • Hutchison ML, Gross DC (1997) Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol Plant-Microbe Interact 10(3):347–354. https://doi.org/10.1094/MPMI.1997.10.3.347

    Article  CAS  PubMed  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49(3):186–191

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293. https://doi.org/10.1016/j.ecoenv.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Jaaffar AKM, Parejko JA, Paulitz TC, Weller DM, Thomashow LS (2017) Sensitivity of Rhizoctonia isolates to Phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp. Phytopathology 7(6):692–703. https://doi.org/10.1094/PHYTO-07-16-0257-R

    Article  Google Scholar 

  • Jadhav HP, Shaikh SS, Sayyed RZ (2017) Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: Mehnaaz S (ed) Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore, pp 183–203. https://doi.org/10.1007/978-981-10-4862-3_9

    Chapter  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberoz-Chaven G (ed) Biosurfactants. Springer, Berlin, pp 57–91

    Chapter  Google Scholar 

  • Jagadeesh KS, Kulkarni JH, Krisharaj PU (2001) Evaluation of role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomanas sp. Curr Sci 81:882–883

    Google Scholar 

  • Jain A, Chakraborty J, Das S (2020) Underlying mechanism of plant–microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiol Plan 42:8. https://doi.org/10.1007/s11738-019-3000-0

    Article  Google Scholar 

  • Jayaprakashvel M, Mathivanan M (2011) Management of plant diseases by microbial metabolites. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer-Verlag, Berlin Heidelberg, Germany, pp 237–265

    Chapter  Google Scholar 

  • Jayaswal RK, Fernandez M, Upadhyay RS, Visintin L, Kurz M, Webb J, Rinehart K (1993) Antagonism of pseudomonas cepacia against phytopathogenic fungi. Curr Microbiol 26:17–22. https://doi.org/10.1007/BF01577237

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20:201–207. https://doi.org/10.1007/s12298-014-0224-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhonston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396. https://doi.org/10.1371/journal.pone.0020396

    Article  CAS  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22(4):456–468. https://doi.org/10.1094/MPMI-22-4-0456

    Article  CAS  PubMed  Google Scholar 

  • Junaid J, Dar NA, Bhat TA, Bhat AH (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39–57

    Google Scholar 

  • Kang BR, Han SH, Zdor RE, Anderson AJ, Spencer M, Yang KY, Kim YH, Lee MC, Cho BH, Kim YC (2007) Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS. J Microbiol Biotechnol 17:586–593

    CAS  PubMed  Google Scholar 

  • Kannojia P, Choudhary KK, Srivastava AK, Singh AK (2019) PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In: Singh AK, Kumar A, Singh PK (eds) PGPR amelioration in sustainable agriculture. Woodhead Publishing, Cambridge, pp 67–84

    Chapter  Google Scholar 

  • Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol 5:17–22. https://doi.org/10.1007/978-981-13-6040-4_6

    Article  Google Scholar 

  • Kenawy A, Dailin DJ, Abo-Zaid GA, Abd Malek R, Ambehabati KK, Zakaria KH, Sayyed RZ, El Enshasy HA (2019) Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 1–35

    Google Scholar 

  • Khan N, Bano A (2016) Modulation of phytoremediation and plant growth by the treatment with PGPR, ag nanoparticle and untreated municipal wastewater. Int J Phytoremediation 18(12):1258–1269

    Article  CAS  PubMed  Google Scholar 

  • Khilyas IV, Shirshikova TV, Matrosova LE, Sorokina AV, Sharipova MR, Bogomolnaya LM (2016) Production of Siderophores by Serratia marcescens and the role of MacAB efflux pump in siderophores secretion. Bio Nano Sci 6:480–482. https://doi.org/10.1007/s12668-016-0264-3

    Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56(12):1029–1035

    Article  CAS  Google Scholar 

  • Kim BS, Hwang BK (2007) Microbial fungicides in the control of plant diseases. J Phytopathol 155:641–653

    Article  CAS  Google Scholar 

  • Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59(3):934–938

    Article  CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic, and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556

    Article  CAS  PubMed  Google Scholar 

  • Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lojkowska E, Jafra S (2012) Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol 94(2):367–378

    Google Scholar 

  • Kudoyarova GR, Arkhipova TN, Melent’ev AI (2015) Role of bacterial phytohormones in plant growth regulation and their development. In: Maheshwari D (ed) Bacterial metabolites in sustainable agroecosystem. Sustainable development and biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_4

    Chapter  Google Scholar 

  • Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Sidorova LV, Gabbasova IM, Melentiev AI, Veselov SY (2017) Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol Plant 39:253. https://doi.org/10.1007/s11738-017-2556-9

    Article  CAS  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Srivastava R (2019) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal Agric Biotechnol 20:101271. https://doi.org/10.1016/j.bcab.2019.101271

    Article  Google Scholar 

  • Kumar A, Zhimo Y, Biasi A, Salim S, Feygenberg O, Wisniewski M, Droby S (2021) Endophytic microbiome in the carposphere and its importance in fruit physiology and pathology. In: Spadaro D, Droby S, Gullino ML (eds) Postharvest pathology, vol 11. Springer, Berlin, pp 73–88. https://doi.org/10.1007/978-3-030-56530-5_5

    Chapter  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytopathol 198(3):656–669

    Article  CAS  Google Scholar 

  • Labuschagne N, Pretorius T, Idris AH (2010) Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Microbiology monographs 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_9

    Chapter  Google Scholar 

  • Lambowitz AM, Slayman CW (1972) Effect of pyrrolnitrin on electron transport and oxidative phosphorylation in mitochondria isolated from Neurospora crassa. J Bacteriol 112(2):1020–1022. https://doi.org/10.1128/jb.112.2.1020-1022.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483

    Article  PubMed  CAS  Google Scholar 

  • LeTourneau MK, Marshall MJ, Cliff JB, Bonsall RF, Dohnalkova AC, Mavrodi DV, Devi SI, Mavrodi OV, Harsh JB, Weller DM, Thomashow LS (2018) Phenazine-1-carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces. Environ Microbiol 20:2178–2194

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yu X, Yang Y, Heeb S, Gao S, Chan KG, Camara M (2018) Gao K (2018) Functional identification of the prnABCD operon and its regulation in Serratia plymuthica. Appl Microbiol Biotechnol 102:3711–3721. https://doi.org/10.1007/s00253-018-8857-0

    Article  CAS  PubMed  Google Scholar 

  • Loganathan M, Garge R, Vankataravanappa V et al (2014) Plant rowth promoting rhizobacteria (PGPR) induces resistance against fusarium wilt and improves lycopene content and texture in tomato. Afr J Microbiol Res 8(11):1105–1111

    Article  CAS  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LD, Stockwell VO, Hartney SL, Breakwell K, Henkels MD (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Gen 8(7):e1002784

    Article  CAS  Google Scholar 

  • Lutz MP, Wenger S, Maurhofer M, Défago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Hua GKH, Ongena M, Höfte M (2016) Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep 8:896–904

    Article  PubMed  Google Scholar 

  • Maddula VS, Zhang Z, Pierson EA, Pierson LSIII (2006) Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb Ecol 52(2):289–301. https://doi.org/10.1007/s00248-006-9064-6

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S,Yasmin A, Hanif MK, Naqqash T, Imran A (2018) Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol Res 216:56–69. https://doi.org/10.1016/j.micres.2018.08.006

  • Markets and Markets (2020a) Biofertilizers market by form (liquid, carrier-based), mode of application (soil treatment, seed treatment), crop type, type (nitrogen-fixing, phosphate solubilizing & mobilizing, potash solubilizing & mobilizing), region—global forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/compound-biofertilizers-customized-fertilizers-market-856.html

  • Markets and Markets (2020b) Biopesticides market by type (bioinsecticides, biofungicides, bionematicides, and bioherbicides), source (microbials, biochemicals, and beneficial insects), mode of application, formulation, crop application, and region—global forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/biopesticides-267.html

    Google Scholar 

  • Martínez-Medina A, Van Wees SCM, Pieterse CMJ (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40:2691–2705. https://doi.org/10.1111/pce.13016

    Article  CAS  PubMed  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defao G (1992) Influence of enhanced antibiotic production in Pseudomanas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82(2):190–195

    Article  CAS  Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Thomashow LS, Weller DM (2007) Quantification of 2,4-Diacetylphloroglucinol producing Pseudomonas fluorescens strains in the plant rhizosphere by real time PCR. Appl Environ Microbiol 73(17):5531–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzola M, Freilich S (2017) Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology 107:256–263

    Article  CAS  PubMed  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere—roots, soil and everything in between. Nat Educ Knowl 4(3):1

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears LJ, Condron MM, Teplow DB, Strobel CA (1998) Ecomycins, unique antimycotics from Pseudomonas varidiflava. J Appl Microbiol 84:937–944

    Article  CAS  PubMed  Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, Maltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8(11). https://doi.org/10.3389/fmicb.2017.00011

  • Mizumoto S, Shoda M (2007) Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl Microbiol Biotechnol 76(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Mommer L, Kirkegaard J, Ruijven JV (2016) Root–root interactions: towards a rhizosphere framework. Trends Plant Sci 21(3):209–217. https://doi.org/10.1016/j.tplants.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  • Mony C, Vandenkoornhuyse P, Bohannan BJM, Peay K, Leibold MA (2020) A landscape of opportunities for microbial ecology research. Front Microbiol 11:561427. https://doi.org/10.3389/fmicb.2020.561427

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore D, Robson GD, Trinci APJ (2020) Fungi as pathogens of plants. In: 21st century guidebook to fungi. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Morrison CK, Novinscak A, Gadkar VJ, Joly DL, Filion M (2016) Complete genome sequence of Pseudomonas fluorescens LBUM636, a strain with biocontrol capabilities against late blight of potato. Genome Announc 4(3):e00446–e00416

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortishire-Smith RJ, Nutkins JC, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams D (1991) Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans. Tetrahedron 47:3645–3654

    Article  CAS  Google Scholar 

  • Mozes-Koch R, Gover O, Tanne E, Peretz Y, Maori E, Chernin L, Sela I (2012) Expression of an entire bacterial operon in plants. Plant Physiol 158(4):1883–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617. https://doi.org/10.1016/j.tim.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Juenger T, Kardish M, Carlson A, Burns K, Smith C (2016) Artificial microbiome-selection to engineer microbiomes that confer salt-tolerance to plants. bioRxiv. 081521

    Google Scholar 

  • Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170:5662–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naing KW, Anees M, Kim SJ, Nam Y, Kim YC (2014) Kim KY (2014) Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann Microbiol 64:55–63. https://doi.org/10.1007/s13213-013-0632-y

    Article  CAS  Google Scholar 

  • Nandi M, Selin C, Brassinga AK, Belmonte MF, Fernando WD, Loewen PC, De Kievit TR (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10(4). https://doi.org/10.1371/journal.pone.0123184

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2017) Microbial diversity and soil functions. Eur J Soil Sci 68:12–26. https://doi.org/10.1111/ejss.4_12398

    Article  CAS  Google Scholar 

  • Naqqash T, Imran A, Hameed S, Shahid M, Majeed A, Iqbal J, Hanif MK, Ejaz S, Malik KA (2020) First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci Rep 10:12893. https://doi.org/10.1038/s41598-020-69782-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz A, Shahbaz M, Asadullah et al (2020) Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Front Microbiol 11:2019. https://doi.org/10.3389/fmicb.2020.02019

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson EB (2017) The seed microbiome: origins, interactions, and impacts. Plant and Soil 422:7–34. https://doi.org/10.1007/s11104-017-3289-7

    Article  CAS  Google Scholar 

  • Newman M-A, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139. https://doi.org/10.3389/fpls.2013.00139

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87(1):80–90

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin–a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89(6):992–1001

    Article  CAS  PubMed  Google Scholar 

  • Nihorimbere V, Marc Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Nowak-Thompson B (1997) An integrative approach to understanding pyoluteorin biosynthesis in the biological control bacterium Pseudomonas fluorescens Pf-5. Oregon State University.

    Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 7:2166–2174

    Article  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2, 4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40(12):1064–1066

    Article  CAS  Google Scholar 

  • Obradovic A, Jones JB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89(7):712–716

    Article  CAS  PubMed  Google Scholar 

  • Oluwaseun A, Phazang P, Sarin N (2017) Significance of rhamnolipids as a biological control agent in the management of crops/plant pathogens. Curr Trends Biomed Eng Biosci 10(3):555788. https://doi.org/10.19080/CTBEB.2017.10.555788

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Plociniczak PGA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instruct 11:17

    Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980–989

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Lee S, Kao-Kniffin J (2017) Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb Ecol 73(2):394–403

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52(5):532–537

    Article  CAS  PubMed  Google Scholar 

  • Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H, Ladner JE (2007) Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46:1821–1828

    Article  CAS  PubMed  Google Scholar 

  • Patel PK, Patel SK, Shah RN (2015) Antifungal potentialities of crude phytoextracts against sugarcane red rot pathogen Colletotrichum falcatum. Trends Biosci 8(1):212–217

    Google Scholar 

  • Patel T, Saraf M (2017) Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact 12:480–487. https://doi.org/10.1080/17429145.2017.1392625

    Article  CAS  Google Scholar 

  • Pathak KV, Keharia H (2014) Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3. Biotech 4:283–295. https://doi.org/10.1007/s13205-013-0151-3

    Article  Google Scholar 

  • Pathak D, Singh VP, Sharma J, Sheera A (2020) Plant growth promoting Rhizobacteria (PGPR): a biological tool for improving plant health. Biotica Res Today 2(7):593–595

    Google Scholar 

  • Patil L, Yogesh GS, Hamsa N, Honnappa HM (2017) Dynamics of iron in rhizosphere. Int J Curr Microbiol Appl Sci 6(10):3304–3312. https://doi.org/10.20546/ijcmas.2017.610.387

    Article  CAS  Google Scholar 

  • Peng H, Zhang P, Bilal M, Wang W, Hu H, Zhang X (2018) Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Microb Cell Fact 17:117. https://doi.org/10.1186/s12934-018-0962-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K, Höfte M (2008) Phenazines and biosurfactants interact in the biological control of soil‐borne diseases caused by Pythium spp. Environ Microbiol 10(3):778–788

    Article  PubMed  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Pierson EA, Weller DM (1994) To suppress take-all and improve the growth of wheat. Phytopathology 84(1):940–947

    Article  Google Scholar 

  • Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  PubMed  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dyé F, Moënne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other proteobacteria. FEMS Microbiol Ecol 65:202–219

    Article  CAS  PubMed  Google Scholar 

  • Qing-xia ZH, Ling-ling HE, Hai-huan SH, Yun-hui TO, Xi-jun CH, Zhao-lin JI, Feng-quan LI (2016) Cloning of pyrrolnitrin synthetic gene cluster prn and prnA functional analysis from antagnistic bacteria FD6 against peach brown rot. Acta Hortic Sinic 43(8):1473

    Google Scholar 

  • Raguchander T, Saravanakumar D, Balasubramanian P (2011) Molecular approaches to improvement of biocontrol agents of plant diseases. J Biol Control 25(2):71–84

    Google Scholar 

  • Rainey PB, Brodey CL, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol Plant Pathol 39:57–70

    Article  CAS  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12(11):e0187412. https://doi.org/10.1371/journal.pone.0187412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran SK, Sundaram L (2020) Degradation of heavy metal contaminated soil using plant growth promoting rhizobacteria (PGPR): assess their remediation potential and growth influence of Vigna radiata L. Int J Agric Technol 16(2):365–376

    CAS  Google Scholar 

  • Rajput L, Imran A, Mubeen F (2018) Wheat (Triticum aestivum L.) growth promotion by halo-tolerant PGPR-consortium. Soil Environ 37(2):178–189

    CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68. https://doi.org/10.1016/j.pbi.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, del Carmen R-GM, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocat Agric Biotechnol 13:46–52

    Article  Google Scholar 

  • Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R (2019) Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front Plant Sci 10:287. https://doi.org/10.3389/fpls.2019.00287

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20(4):430–440

    Article  CAS  PubMed  Google Scholar 

  • Rostas M, Blassmann K (2009) Insects had it first: surfactants as a defense against predators. Proc R Soc B 276:633–638

    Article  CAS  PubMed  Google Scholar 

  • Ruocco M, Woo S, Vinale F, Lanzuise S, Lorito M (2011) Identified difficulties and conditions for field success of biocontrol. 2. Technical aspects: factors of efficacy. In: Nicot PC (ed) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC/WPRS, London, pp 45–57

    Google Scholar 

  • Saha D, Purkayastha GD, Ghosh A, Isha M, Saha A (2012) Isolation and characterization of two strans from the rhizosphere of eggplant as potental biocontrol agents. J Plant Pathol 94:109–118

    Google Scholar 

  • Sakhtah H, Price-Whelan A, Detrich LEP (2013) Regulation of phenazine biosynthesis. In: Chincholkar S, Thomashow LS (eds) Microbial phenazines. Springer-Verlag, Berlin, pp 9–42

    Google Scholar 

  • Santos DK, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401. https://doi.org/10.3390/ijms17030401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocont Sci Technol 22(8):855–872. https://doi.org/10.1080/09583157.2012.694413

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do Plant exudates shape the root microbiome? Trends Plant Sci 23(2):25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  • Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C (2016) Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196. https://doi.org/10.1016/j.plaphy.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  • Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth promoting bacteria. https://doi.org/10.1007/978-3-642-37241-4_11

  • Schneemann I, Wiese J, Kunz AL, Imhoff JF (2011) Genetic approach for the fast discovery of phenazine producing bacteria. Mar Drugs 9(5):772–789. https://doi.org/10.3390/md9050772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E, Eberl L (2009) Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11(6):1422–1437. https://doi.org/10.1111/j.1462-2920.2009.01870.x

    Article  PubMed  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182(5):1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selin C, Habibian R, Poritsanos N, Athukorala SNP, Fernando D, Keivit TR (2009) Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol 71:73–83. https://doi.org/10.1111/j.1574-6941.2009.00792

    Article  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin—a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134

    CAS  Google Scholar 

  • Sharifi R, Ryu CM (2018) Sniffing bacterial volatile compounds for healthier plants. Curr Opin Plant Biol 44:88–97. https://doi.org/10.1016/j.pbi.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Jansen R, Nimtz M, Johri BN, Wray V (2007) Rhamnolipids from the rhizosphere bacterium pseudomonas sp. GRP (3) that reduces damping-off disease in Chilli and tomato nurseries. J Nat Prod 70(6):941–947

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Singh AK, Kumar A (2017) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7(4):1

    Article  Google Scholar 

  • Singh M, Srivastava M, Kumar A, Singh AK, Pandey KD (2020) Endophytic bacteria in plant disease management. In: Kumar A, Singh VK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, pp 61–89

    Chapter  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR) Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 9(16):1265–1277

    Google Scholar 

  • Sorensen D, Nielsen TH, Christophersen C, Sørensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C 57(9):1123–1124. https://doi.org/10.1107/s0108270101010782

    Article  CAS  PubMed  Google Scholar 

  • St-Onge R, Gadkar VJ, Arseneault T, Goyer C, Filion M (2011) The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiol Ecol 75(1):173–183

    Article  CAS  PubMed  Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81(1):4–12

    Article  CAS  PubMed  Google Scholar 

  • Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46

    Article  CAS  PubMed  Google Scholar 

  • Steller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J (2004) Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemist 43(35):11331–11343. https://doi.org/10.1021/bi0493416

    Article  CAS  Google Scholar 

  • Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonas involved in suppression of block root rot of tobacco. Phytopathology 76:181–185

    Article  Google Scholar 

  • Swenson W, Wilson DS, Elias R (2000) Artificail ecosystem selection. PNAS 97(16):9110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Bie XM, Lv FX, Zhao HZ, Lu ZX (2011) Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol 49(1):146–150. https://doi.org/10.1007/s12275-011-0171-9

    Article  CAS  PubMed  Google Scholar 

  • Takeda R (1958) Structure of a new antibiotic, pyoluteorin. J Am Chem Soc 80(17):4749–4750. https://doi.org/10.1021/ja01550a093

    Article  CAS  Google Scholar 

  • Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85(5):1521–1531. https://doi.org/10.1007/s00253-009-2176-4

    Article  CAS  PubMed  Google Scholar 

  • Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorg 54(1):61–67

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170(8):3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56(4):908–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Timm CM, Pelletier DA, Jawdy SS, Gunter LE, Henning JA, Engle N, Aufrecht J, Gee E, Nookaew I, Yang Z, Lu TY (2016) Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system. Front Plant Sci 7:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Behers L, Muthonil J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49. https://doi.org/10.3389/fpls.2017.00049

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  CAS  PubMed  Google Scholar 

  • Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S, Chervin C, Mazurier S, Lemanceau P, Wendehenne D, Besson-Bard A (2016) The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol 171(1):675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P (2018) VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 38:1277–1296. https://doi.org/10.1080/07388551.2018.1472551

    Article  CAS  PubMed  Google Scholar 

  • Ui H, Miyake T, Iinuma H, Imoto M, Naganawa H, Hattori S, Hamada MS, Takeuchi T, Umezawa S, Umezawa K (1997) Pholipeptin, a novel cyclic lipoundecapeptide from Pseudomonas fluorescens. J Organomet Chem 62(1):103–108

    Article  CAS  Google Scholar 

  • Uzair B, Kausar R, Bano SA, Fatima S, Badshah M, Habiba U, Fasim F (2018) Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. Biomed Res Int 2018:6147380. https://doi.org/10.1155/2018/6147380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:166–184

    Article  Google Scholar 

  • Van Der Heijden MGA, de Bruin S, Luckerhoff L et al (2015) A widespread plant–fungal–bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399. https://doi.org/10.1038/ismej.2015.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Brugger GA, Rabeneolina F, Sorokin A, Renault JH, Kauffman S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193

    Article  CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the Rhizosphere. Trends Plant Sci 21(3):187–198. https://doi.org/10.1016/j.tplants.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229. https://doi.org/10.1016/j.tplants.2016.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PAHM, CMJ P (2017) Iron and Immunity. Annu Rev Phytopathol 55:355–375. https://doi.org/10.1146/annurev-phyto-080516-035537

    Article  CAS  PubMed  Google Scholar 

  • Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H (2018) Receptors and signaling pathways for recognition of bacteria in livestock and crops: prospects for beneficial microbes in healthy growth strategies. Front Immunol 9:2223. https://doi.org/10.3389/fimmu.2018.02223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8:446. https://doi.org/10.3389/fmicb.2017.00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpon L, Tsan P, Majer Z, Vass E, Hollósi M, Noguéra V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta A: Mol Biomol Spectrosc 67(5):1374–1381

    Article  CAS  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22(2):142–155. https://doi.org/10.1016/j.chom.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Kumar D, Dubey A, Kumar A (2018) Screening and characterization of Achromobacter xylosoxidans isolated from rhizosphere of Jatropha curcas L. (energy crop) for plant-growth-promoting traits. J Adv Res Biotechnol 3(1):1–8

    Article  Google Scholar 

  • Waghmode S, Kulkarni C, Shukla S, Sursawant P, Velhal C (2014) Low cost production of biosurfactant from different substrates and their comparative study with commercially available chemical surfactant. Int J Sci Technol Res 3:146–149

    Google Scholar 

  • Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4(2):433–443

    Article  CAS  Google Scholar 

  • Weber NF, Herrmann I, Hochholdinger F, Ludewig U, Neumann G (2018) PGPR-induced growth stimulation and nutrient acquisition in maize: do root hairs matter? Sci Agric Bohemica 49(3):164–172. https://doi.org/10.2478/sab-2018-0022

    Article  Google Scholar 

  • Wei SH, Jian-feng ZH, Feng-xiang AI, Tuoheti S, Shu-lin YA (2009) Components, structure and antimicrobial activity of metabolite of Pseudonomas sp. BS-03. J Nanjing Univ Sci Technol 33:814–819

    Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol- producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Xu S, Chen Y, Zheng X (2014) Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit. Postharvest Biol Technol 97:32–35

    Article  CAS  Google Scholar 

  • Yang MM, Xu LP, Xue QY, Yang JH, Xu Q, Liu HX, Guo JH (2012) Screening potential bacterial biocontrol agents towards Phytophthora capsici in pepper. Eur J Plant Pathol 134:811–820. https://doi.org/10.1007/s10658-012-0057-7

    Article  CAS  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:1–3

    CAS  Google Scholar 

  • Zamioudis C (2012) Signaling in arabidopsis roots in response to beneficial rhizobacteria. PhD Thesis. Utrecht University, Utrecht

    Google Scholar 

  • Zerrouk IZ, Rahmoune B et al (2019) Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiol Plant 41:91. https://doi.org/10.1007/s11738-019-2881-2

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency inducible mechanisms. Plant J 58:568–577. https://doi.org/10.1111/j.1365-313X.2009.03803.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang QX, Kong XW, Li SY, Chen XJ (2020) Antibiotics of Pseudomonas protegens FD6 are essential for biocontrol activity. Aust Plant Pathol 49:307–317. https://doi.org/10.1007/s13313-020-00696-7

    Article  CAS  Google Scholar 

  • Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102(14):7139–7146

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Wang F, Zhang Y, Zhang J (2014) Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. J Basic Microbiol 54:115–124. https://doi.org/10.1002/jobm.201400148

    Article  CAS  Google Scholar 

  • Zhou L, Jiang H, Jin K, Sun S, Zhang W, Zhang X, He YW (2015) Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide “Shenqinmycin” and phenazine-1-carboxamide. Wei Sheng Wu Xue Bao 55(4):401–411

    CAS  PubMed  Google Scholar 

  • Zhou L, Jiang HX, Sun S, Yang DD, Jin KM, Zhang W, He YW (2016) Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. W J Microbiol Biotechnol 32(3):50

    Article  CAS  Google Scholar 

  • Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626. https://doi.org/10.1016/j.micres.2020.126626

    Article  CAS  PubMed  Google Scholar 

  • Zihalirwa Kulimushi P, Arguelles Arias A, Franzil L, Steels S, Ongena M (2017) Stimulation of Fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Front Microbiol 8:850

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, S., Imran, A. (2022). Plant Disease Management Through Microbiome Modulation. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_5

Download citation

Publish with us

Policies and ethics