Skip to main content

Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

Plant and soil microbiome interactions are in the great demand around the globe. Bacteria that colonize in the plant roots or in the rhizosphere and promote plant growth directly by nutrient immobilization or worked as defense regulator are referred to as plant growth-promoting rhizobacteria (PGPR). During the past couple of decades, PGPR have emerged as a potent alternative to chemical fertilizer in an eco-friendly manner. Therefore, they are abundantly accepted in agriculture, horticulture, silviculture, and environmental cleanup strategies. The rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can, in turn, modulate PGPR effects on plant health. Manipulating this rhizospheric microbiome through rhizo-engineering has materialized as a contemporary methodology to decipher the structural, functional, and ecological behavior of rhizospheric PGPR populations. In this chapter, we have tried to explore the latest developments in the technologies related to PGPR, for its well acceptance for sustainable agriculture and plant health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, M. K. (2015). Isolation and characterization of rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6, 1–10. https://doi.org/10.3389/fmicb.2015.00198.

    Article  Google Scholar 

  • Agrawal, D. P. K., & Agrawal, S. (2013). Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. International Journal of Current Microbiology and Applied Sciences, 2, 406–417.

    Google Scholar 

  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001.

    Article  Google Scholar 

  • Ahkami, A., Allen White, R., Handakumbura, P. P., & Jansson, C. (2017). Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity in a challenging climate. Rhizosphere, 3, 233–243. https://doi.org/10.1016/j.rhisph.2017.04.012.

    Article  Google Scholar 

  • Ahmad, S., Imran, M., Hussain, S., et al. (2017). Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. Journal of the Science of Food and Agriculture, n/a–n/a. https://doi.org/10.1002/jsfa.8228.

    Article  CAS  Google Scholar 

  • Ahmadi, K., Zarebanadkouki, M., Ahmed, M. A., et al. (2017). Rhizosphere engineering: Innovative improvement of root environment. Rhizosphere, 3, 176–184. https://doi.org/10.1016/j.rhisph.2017.04.015.

    Article  Google Scholar 

  • Akhtar, S., & Ali, B. (2011). Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. Australian Journal of Crop Science, 5, 1723–1729.

    CAS  Google Scholar 

  • Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20, 57–61. https://doi.org/10.1016/j.sjbs.2012.10.004.

    Article  PubMed  Google Scholar 

  • Anand, K., Kumari, B., & Mallick, M. (2016). Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 37–40.

    Article  CAS  Google Scholar 

  • Arora, N. K. (2015). Plant microbes symbiosis: Applied facets. https://doi.org/10.1007/978-81-322-2068-8.

    Book  Google Scholar 

  • Aung, T. T., Buranabanyat, B., Piromyou, P., & Longtonglang, A. (2013). Enhanced soybean biomass by co-inoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and its effects on microbial community structures. African Journal of Microbiology Research, 7, 3858–3873. https://doi.org/10.5897/AJMR2013.5917.

    Article  Google Scholar 

  • Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition, 15, 261–282. https://doi.org/10.4067/S0718-95162015005000021.

    Article  CAS  Google Scholar 

  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 1044–1051.

    Article  CAS  Google Scholar 

  • Bharti, N., Pandey, S. S., Barnawal, D., et al. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 6, 34768. https://doi.org/10.1038/srep34768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishnoi, U. (2015). PGPR interaction: An ecofriendly approach promoting the sustainable agriculture system. Elsevier Ltd. https://doi.org/10.1016/bs.abr.2015.09.006.

    Google Scholar 

  • Brown, P., & Saa, S. (2015). Biostimulants in agriculture. Frontiers in Plant Science, 6, 671. https://doi.org/10.3389/fpls.2015.00671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Çakmakçi, R., Dönmez, M. F., Erdo/an, Ü., et al. (2007). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture, 31, 189–199.

    Google Scholar 

  • De, E., Promotoras, B., Bpcv, V., et al. (2015). Efficiency of plant growth promoting rhizobacteria (Pgpr). Terra Latinoam, 33, 321–330.

    Google Scholar 

  • Delshadi, S., Ebrahimi, M., & Shirmohammadi, E. (2017). Influence of plant-growth-promoting bacteria on germination, Growth and nutrients? uptake of Onobrychis sativa L.under drought stress. Journal of Plant Interactions, 12, 200–208. https://doi.org/10.1080/17429145.2017.1316527.

    Article  CAS  Google Scholar 

  • Dhanraj, B. N. (2013). Bacterial diversity in sugarcane (Saccharum officinarum) rhizosphere of saline soil. International Research Journal of Biological Sciences, 2, 60–64.

    Google Scholar 

  • Domenech, J., Reddy, M. S., Kloepper, J. W., et al. (2006). Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl, 51, 245–258. https://doi.org/10.1007/s10526-005-2940-z.

    Article  CAS  Google Scholar 

  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae (Amsterdam), 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021.

    Article  CAS  Google Scholar 

  • Egamberdieva, D. (2010). Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant Soil and Environment, 2010, 570–573.

    Article  Google Scholar 

  • Ekinci, M., Turan, M., Yildirim, E., et al. (2014). Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. ACTA Scientiarum Polonorum Horticulture, 13, 71–85.

    Google Scholar 

  • Elekhtyar, N. M. (2015). Efficiency of pseudomonas fluorescence as Plant Growth-Promoting Rhizobacteria (PGPR) for the enhancement of seedling vigor, nitrogen uptake, yield and its attributes of rice (Oryza sativa L.). The 5th international conference coordinators of AUSDE entitled: “Water, Energy, Climate and food nexus in the Arab countries”– Conferences center; Cairo university. Cairo, Egypt. March, 15–16, 2015, Egypt, 2, 57–67.

    Google Scholar 

  • Elliott, L. F., & Lynch, J. M. (1985). Plant growth-inhibitory pseudomonads colonizing winter wheat (Triticum aestivum L.) roots. Plant and Soil, 84, 57–65. https://doi.org/10.1007/BF02197867.

    Article  Google Scholar 

  • Fahimi, A., Ashouri, A., Ahmadzadeh, M., et al. (2014). Effect of PGPR on population growth parameters of cotton aphid. Archives of Phytopathology and Plant Protection, 47, 1274–1285. https://doi.org/10.1080/03235408.2013.840099.

    Article  Google Scholar 

  • FAO. (2016). The state of food and agriculture. Fixers N, solubilizers P (2016) fertecon biofertilizers 2016. Rome: FAO. http://www.fao.org/publications/sofa/2016/en/.

  • Gagné, S., Dehbi, L., Le Quéré, D., et al. (1993). Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil Biology and Biochemistry, 25, 269–272. https://doi.org/10.1016/0038-0717(93)90038-D.

    Article  Google Scholar 

  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of Plant Growth Promoting Rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Academy of Science, Engineering and Technology, 49, 19–24.

    Google Scholar 

  • Gontia-Mishra, I., Sapre, S., Sharma, A., & Tiwari, S. (2016). Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biology, 18, 992–1000. https://doi.org/10.1111/plb.12505.

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan, S., Upadhyaya, H. D., Vadlamudi, S., et al. (2012). Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. SpringerPlus, 1(71). https://doi.org/10.1186/2193-1801-1-71.

  • Gupta, S., & Dikshit, A. K. (2010). Biopesticides: An ecofriendly approach for pest control. Journal of Biopesticides, 3, 186–188.

    Google Scholar 

  • Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  Google Scholar 

  • Haden, V. R., Duxbury, J. M., DiTommaso, A., & Losey, J. E. (2007). Weed community dynamics in the system of rice intensification (SRI) and the efficacy of mechanical cultivation and competitive rice cultivars for weed control in Indonesia. Journal of Sustainable Agriculture, 30, 5–26. https://doi.org/10.1300/J064v30n04.

    Article  Google Scholar 

  • Haghighi, B. J., Alizadeh, O., & Firoozabadi, A. H. (2011). The role of Plant Growth Promoting Rhizobacteria (PGPR) in sustainable agriculture. Advances in Environmental Biology, 5, 3079–3083.

    Google Scholar 

  • Hasan, M., Bano, A., Hassan, S. G., et al. (2014). Enhancement of rice growth and production of growth-promoting phytohormones by inoculation with Rhizobium and other Rhizobacteria. World Applied Sciences Journal, 31, 1734–1743. https://doi.org/10.5829/idosi.wasj.2014.31.10.364.

    Article  CAS  Google Scholar 

  • Hassan, W., Hussain, M., Bashir, S., et al. (2015). ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum aestivum L.). Journal of Soil Science and Plant Nutrition, 15, 232–248. https://doi.org/10.4067/S0718-95162015005000019.

    Article  CAS  Google Scholar 

  • Haymer, D. (2015). Genetics and insect pest management in agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition, and Natural Resources. https://doi.org/10.1079/PAVSNNR201510049.

  • Hou, J., Liu, W., Wang, B., et al. (2015). PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere, 138, 592–598. https://doi.org/10.1016/j.chemosphere.2015.07.025.

    Article  CAS  PubMed  Google Scholar 

  • Hyder, S. I., Farooq, M., Sultan, T., et al. (2015). Optimizing yield and nutrients content in tomato by vermicompost application under greenhouse conditions. Natural Resources, 6, 457–464. https://doi.org/10.4236/nr.2015.67044.

    Article  CAS  Google Scholar 

  • Joseph, B., Ranjan Patra, R., & Lawrence, R. (2012). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production, 1, 141–152. https://doi.org/10.22069/ijpp.2012.532.

    Article  Google Scholar 

  • Kandasamy, S., Loganathan, K., Muthuraj, R., et al. (2009). Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Science, 7, 47. https://doi.org/10.1186/1477-5956-7-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakurt, H., & Aslantas, R. (2010). Effects of some Plant Growth Promoting Rhizobacteria (PGPR) strains on plant growth and leaf nutrient content of apple. Journal of Fruit and Ornamental Plant Research, 18, 101–110.

    Google Scholar 

  • Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., et al. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Science, 61, 217–227. https://doi.org/10.1016/j.aoas.2016.07.003.

    Article  Google Scholar 

  • Kokalis–Burelle, N., Vavrina, C. S., Rosskopf, E. N., & Shelby, R. A. (2002). Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil, 238, 257–266. https://doi.org/10.1023/A:1014464716261.

    Article  Google Scholar 

  • Kumari, B., Mallick, M. A., & Hora, A. (2016). Plant growth-promoting rhizobacteria (PGPR): Their potential for development of sustainable agriculture. In P. C. Trivedi (Ed.), Bio-exploitation for sustainable agriculture (1st ed., pp. 1–19). Jaipur: Avinskar Publishing House.

    Google Scholar 

  • Kumary, K. S. A., & Raj, S. (2016). Effect of sett type and intra-row sett spacing on yield of sugarcane varieties at Metahara Sugar Estate. International Journal of Advanced Research, 3, 21–26. https://doi.org/10.22192/ijarbs.

    Article  Google Scholar 

  • Le Mire, G., Nguyen, M. L., Fassotte, B., et al. (2016). Review: Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems review: Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnologie, Agronomie, Société et Environnement, 20, 299–313.

    Google Scholar 

  • Lim, J.-H., & Kim, S.-D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathology Journal, 29, 201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021.

    Article  PubMed  Google Scholar 

  • Mahmood, S., Daur, I., Al-Solaimani, S. G., et al. (2016). Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Frontiers in Plant Science, 7, 876. https://doi.org/10.3389/fpls.2016.00876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masciarelli, O., Llanes, A., & Luna, V. (2014). A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiological Research, 169, 609–615. https://doi.org/10.1016/j.micres.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  • Meena, M. K., Gupta, S., & Datta, S. (2016). Antifungal potential of PGPR, their growth promoting activity on seed germination and seedling growth of winter wheat and genetic variabilities among bacterial isolates. International Journal of Current Microbiology and Applied Sciences, 5, 235–243. https://doi.org/10.20546/ijcmas.2016.501.022.

    Article  CAS  Google Scholar 

  • Mena-Violante, H. G., & Olalde-Portugal, V. (2007). Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae (Amsterdam), 113, 103–106. https://doi.org/10.1016/j.scienta.2007.01.031.

    Article  CAS  Google Scholar 

  • Moustaine, M., Elkahkahi, R., Benbouazza, A., et al. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum Lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2(2). https://doi.org/10.22161/ijeab/2.2.5.

    Article  Google Scholar 

  • Murphy, J. F., Zehnder, G. W., Schuster, D. J., et al. (2000). Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Disease, 84, 779–784. https://doi.org/10.1094/PDIS.2000.84.7.779.

    Article  PubMed  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2009). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology, 55, 1302–1309. https://doi.org/10.1139/W09-092.

    Article  CAS  PubMed  Google Scholar 

  • Nakkeeran, S., Fernando, W. G. D., & Siddiqui, Z. A. (2006). Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. PGPR Biocontrol Biofertilization, 257–296. https://doi.org/10.1007/1-4020-4152-7_10.

  • Narasimhan, K., Basheer, C., Bajic, V. B., & Swarup, S. (2003). Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven polychlorinated biphenyls 1 [w]. Plant Physiology, 132, 146–153. https://doi.org/10.1104/pp.102.016295.populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naseri, R., Moghadam, A., Darabi, F., Hatami, A., & GRT. (2013). The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (SC 704) as a second cropping in western Iran. International Journals on Crops, Farming and Agri-Management, 2, 104–112.

    Google Scholar 

  • Orhan, E., Esitken, A., Ercisli, S., et al. (2006). Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae (Amsterdam), 111, 38–43. https://doi.org/10.1016/j.scienta.2006.09.002.

    Article  CAS  Google Scholar 

  • Paul, D., & Sarma, Y. R. (2006). Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Archives of Phytopathology and Plant Protection, 39, 311–314. https://doi.org/10.1080/03235400500301190.

    Article  CAS  Google Scholar 

  • Qiu, L., Li, Q., Zhang, J., et al. (2017). Migration of endophytic diazotroph Azorhizobium caulinodans ORS571 inside wheat (Triticum aestivum L) and its effect on microRNAs. Functional & Integrative Genomics, 17, 311–319. https://doi.org/10.1007/s10142-016-0534-8.

    Article  CAS  Google Scholar 

  • Rana, A., Saharan, B., Joshi, M., et al. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annales de Microbiologie, 61, 893–900. https://doi.org/10.1007/s13213-011-0211-z.

    Article  CAS  Google Scholar 

  • Reeves, J. (2017). Climate change effects on biological control of invasive plants by insects. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition, and Natural Resources. https://doi.org/10.1079/PAVSNNR201712001.

  • Sabir, A. (2013). Improvement of grafting efficiency in hard grafting grape Berlandieri hybrid rootstocks by plant growth-promoting rhizobacteria (PGPR). Scientia Horticulturae (Amsterdam), 164, 24–29. https://doi.org/10.1016/j.scienta.2013.08.035.

    Article  CAS  Google Scholar 

  • Shahzad, S. M., Arif, M. S., Riaz, M., et al. (2013). PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. European Journal of Soil Biology, 57, 27–34. https://doi.org/10.1016/j.ejsobi.2013.04.002.

    Article  CAS  Google Scholar 

  • Sharma, A., Shankhdhar, D., Sharma, A., & Shankhdhar, S. C. (2014). Growth promotion of the rice genotypes by PGPRs isolated from rice rhizosphere. Journal of Soil Science and Plant Nutrition, 14, 505–517. https://doi.org/10.4067/S0718-95162014005000040.

    Article  Google Scholar 

  • Solanki, M. K., Kumar, S., Panday, A. K., et al. (2012a). Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology, 22, 203–217.

    Google Scholar 

  • Solanki, M. K., Robert, A. S., Singh, R. K., et al. (2012b). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65, 330–336. https://doi.org/10.1007/s00284-012-0160-1.

    Article  CAS  Google Scholar 

  • Solanki, M. K., Singh, R. K., Srivastava, S., et al. (2015). Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Journal of Basic Microbiology, 55, 82–90. https://doi.org/10.1002/jobm.201300528.

    Article  CAS  PubMed  Google Scholar 

  • Solanki, M. K., Wang, Z., Wang, F.-Y., et al. (2017). Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech, 19, 136–147. https://doi.org/10.1007/s12355-016-0445-y.

    Article  CAS  Google Scholar 

  • Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting Rhizobacteria in phytoremediation of heavy metals. Reviews of Environmental Contamination an Toxicology, 223, 33–53. https://doi.org/10.1007/978-1-4614-5577-6.

    Article  CAS  Google Scholar 

  • Tan, K. Z., Radziah, O., Halimi, M. S., et al. (2015). Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Australian Journal of Crop Science, 9, 1257–1264.

    CAS  Google Scholar 

  • Tariq, M., Noman, M., Ahmed, T., et al. (2017). Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): A review. Genetics and Molecular Biology, 35, 38–43.

    Google Scholar 

  • Thijs, S., Sillen, W., Rineau, F., et al. (2016). Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology, 7, 1–15. https://doi.org/10.3389/fmicb.2016.00341.

    Article  Google Scholar 

  • Timmusk, S., Behers, L., Muthoni, J., et al. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 1–10. https://doi.org/10.3389/fpls.2017.00049.

    Article  Google Scholar 

  • Vejan, P., Abdullah, R., Khadiran, T., et al. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules, 21, 1–17. https://doi.org/10.3390/molecules21050573.

    Article  CAS  Google Scholar 

  • Vinothkumar, P., Vasuki, S., Valli, S., et al. (2012). Pgpr bacillus species isolated from tomato plant – A comparative study on coconut water enrichment. International Journal of Bioassays, 1, 131–137.

    Google Scholar 

  • von der Weid, I., Paiva, E., Nóbrega, A., et al. (2000). Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Research in Microbiology, 151, 369–381. https://doi.org/10.1016/S0923-2508(00)00160-1.

    Article  PubMed  Google Scholar 

  • Wallenstein, M. D. (2017). Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere, 3, 230–232. https://doi.org/10.1016/j.rhisph.2017.04.004.

    Article  Google Scholar 

  • Wang, Z., Solanki, M. K., Pang, F., et al. (2016). Identification and eficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech. https://doi.org/10.1007/s12355-016-0498-y.

    Article  CAS  Google Scholar 

  • Yandigeri, M. S., Meena, K. K., Singh, D., et al. (2012). Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regulation, 68, 411–420.

    Article  CAS  Google Scholar 

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4. https://doi.org/10.1016/j.tplants.2008.10.004.

    Article  CAS  Google Scholar 

  • Yuwariah, Y. (2017). Nitrogenase activity and IAA production of indigenous diazotroph and its effect on rice seedling growth. Journal of Agricultural Science, 39, 31–37. https://doi.org/10.17503/agrivita.v39i1.653.

    Article  Google Scholar 

  • Zahedi, H., & Abbasi, S. (2015). Effect of plant growth promoting rhizobacteria (PGPR) and water stress on phytohormones and polyamines of soybean. Indian Journal of Agricultural Research, 49, 427–431. https://doi.org/10.18805/ijare.v49i5.5805.

    Article  Google Scholar 

  • Zhang, S., Reddy, M. S., & Kloepper, J. W. (2004). Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant and Soil, 262, 277–288. https://doi.org/10.1023/B:PLSO.0000037048.26437.fa.

    Article  CAS  Google Scholar 

  • Zhang, J., Liu, J., Meng, L., et al. (2012). Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. Journal of Microbiology, 50, 191–198. https://doi.org/10.1007/s12275-012-1472-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, B., Mallick, M.A., Solanki, M.K., Solanki, A.C., Hora, A., Guo, W. (2019). Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_6

Download citation

Publish with us

Policies and ethics