Skip to main content

Advertisement

Log in

Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Agrobacterium sp. 10C2 is a nonpathogenic and non-symbiotic nodule-endophyte strain isolated from root nodules of Phaseolus vulgaris. The effect of this strain on nodulation, plant growth and rhizosphere bacterial communities of P. vulgaris is investigated under seminatural conditions. Inoculation with strain 10C2 induced an increase in nodule number (+54 %) and plant biomass (+16 %). Grains also showed a significant increase in phosphorus (+53 %), polyphenols (+217 %), flavonoids (+62 %) and total antioxidant capacity (+82 %). The effect of strain 10C2 on bacterial communities was monitored using terminal restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. When the initial soil was inoculated with strain 10C2 and left 15 days, the Agrobacterium strain did not affect TRF richness but changed structure. When common bean was sown in these soils and cultivated during 75 days, both TRF richness and structure were affected by strain 10C2. TRF richness increased in the rhizosphere soil, while it decreased in the bulk soil (root free). The taxonomic assignation of TRFs induced by strain 10C2 in the bean rhizosphere revealed the presence of four phyla (Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria) with a relative preponderance of Firmicutes, represented mainly by Bacillus species. Some of these taxa (i.e., Bacillus licheniformis, Bacillus pumilus, Bacillus senegalensis, Bacillus subtilis, Bacillus firmus and Paenibacillus koreensis) are particularly known for their plant growth-promoting potentialities. These results suggest that the beneficial effects of strain 10C2 observed on plant growth and grain quality are explained at least in part by the indirect effect through the promotion of beneficial microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Algar E, Gutierrez-Mañero FJ, Bonilla A, Lucas JA, Radzki W, Ramos-Solano B (2012) Pseudomonas fluorescens N21.4 metabolites enhance secondary metabolism isoflavones in soybean (Glycine max) calli cultures. J Agric Food Chem 60:11080–11087. doi:10.1021/jf303334q

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390. doi:10.1093/jxb/ern277

    Article  CAS  PubMed  Google Scholar 

  • Antolín MC, Fiasconaro ML, Sánchez-Díaz M (2010) Relationship between photosynthetic capacity, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa) grown with sewage sludge. J Hazard Mater 182:210–216. doi:10.1016/j.jhazmat.2010.06.017

    Article  PubMed  Google Scholar 

  • Aouani ME, Mhamdi R, Mars M, Elayeb M, Ghrir R (1997) Potential for inoculation of common bean by effective rhizobia in Tunisian soils. Agronomie 17:445–454

    Article  Google Scholar 

  • Barillot CDC, Sarde CO, Bert V, Tarnaud E, Cochet N (2013) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476. doi:10.1007/s13213-012-0491-y

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi:10.1139/w04-035

    Article  CAS  PubMed  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744. doi:10.1128/AEM.02188-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardador-Martínez A, Loarca-Piña G, Oomah BD (2002) Antioxidant activity in common beans (Phaseolus vulgaris L.). J Agric Food Chem 50:6975–6980. doi:10.1021/jf020296n

    Article  PubMed  Google Scholar 

  • Cheong H, Park SY, Ryu CM, Kim JF, Park SH, Park CS (2005) Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J Microbiol Biotechnol 15:1286–1298

    CAS  Google Scholar 

  • Chihaoui SA, Mhadhbi H, Mhamdi R (2012) The antibiosis of nodule-endophytic agrobacteria and its potential effect on nodule functioning of Phaseolus vulgaris. Arch Microbiol 194:1013–1021. doi:10.1007/s00203-012-0837-7

    Article  CAS  PubMed  Google Scholar 

  • Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Couto C, Silva LR, Valentão P, Velázquez E, Peix A, Andrade PB (2011) Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chem 127:1487–1495. doi:10.1016/j.foodchem.2011.01.135

    Article  CAS  Google Scholar 

  • De Lajudie P et al (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132

    Article  Google Scholar 

  • Deng ZS et al (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475. doi:10.1111/j.1574-6941.2011.01063.x

    Article  CAS  PubMed  Google Scholar 

  • Dewanto V, Xianzhong W, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. doi:10.1021/jf0115589

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrand SK, van Berkum PV, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687. doi:10.1099/ijs.0.02445-0

    Article  CAS  PubMed  Google Scholar 

  • Fleury P, Leclerc M (1943) La méthode nitovanadomolybdique de Mission pour le dosage colorimétrique du phosphore, son intérêt en biochimie. Bull Soc Chim Biol 25:201–205

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. doi:10.1016/j.micres.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211. doi:10.1034/j.1399-3054.2001.1110211.x

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:19–20

    Google Scholar 

  • Jin H et al (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37:376–385. doi:10.1016/j.syapm.2014.05.001

    Article  PubMed  Google Scholar 

  • Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch Microbiol 188:103–115. doi:10.1007/s00203-007-0211-3

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Shen M, Wang H, Zhao Q (2013) A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J Gen Appl Microbiol 59:267–277. doi:10.2323/jgam.59.267

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW (2010) Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biol 12:60–69. doi:10.1111/j.1438-8677.2009.00211.x

    Article  CAS  PubMed  Google Scholar 

  • Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Pathol 1:241–246. doi:10.1016/0048-4059(71)90045-2

    Article  Google Scholar 

  • Lane DJ (1991) rRNA sequencing. In: Goodfellow M, Stackebrandt E (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lei X, Wang ET, Chen WF, Sui XH, Chen WX (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190:657–671. doi:10.1007/s00203-008-0418-y

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang ET, Ren DW, Chen WX (2010) Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Arch Microbiol 192:229–234. doi:10.1007/s00203-010-0543-2

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi:10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi R, Jebara M, Aouani ME, Ghrir R, Mars M (1999) Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol Fertil Soils 28:313–320. doi:10.1007/s003740050499

    Article  Google Scholar 

  • Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41:77–84. doi:10.1016/S0168-6496(02)00264-7

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi R, Mrabet M, Laguerre G, Tiwari R, Aouani ME (2005) Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can J Microbiol 51:105–111. doi:10.1139/w04-120

    Article  CAS  PubMed  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626. doi:10.1016/0147-619X(79)90059-3

    Article  CAS  PubMed  Google Scholar 

  • Mrabet M, Mnasri B, Romdhane SB, Laguerre G, Aouani ME, Mhamdi R (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiol Ecol 56:304–309. doi:10.1111/j.1574-6941.2006.00069.x

    Article  CAS  PubMed  Google Scholar 

  • Muresu R, Maddau G, Delogu G, Cappuccinelli P, Squartini A (2010) Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens. Antonie Van Leeuwenhoek 97:143–153. doi:10.1007/s10482-009-9396-6

    Article  CAS  PubMed  Google Scholar 

  • Pacheco RS, Brito LF, Straliotto R, Pérez DV, Araújo AP (2012) Seeds enriched with phosphorus and molybdenum as a strategy for improving grain yield of common bean crop. Field Crops Res 136:97–106. doi:10.1016/j.fcr.2012.07.017

    Article  Google Scholar 

  • Petric I et al (2011) Inter-laboratory evaluation of the ISO standard 11063 “Soil quality—method to directly extract DNA from soil samples”. J Microbiol Methods 84:454–460. doi:10.1016/j.mimet.2011.01.016

    Article  CAS  PubMed  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. doi:10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Solano B, Algar E, García-Villaraco A, García-Cristóbal J, Lucas García JA, Gutierrez-Mañero FJ (2010) Biotic elicitation of isoflavone metabolism with plant growth promoting rhizobacteria in early stages of development in Glycine max var. Osumi. J Agric Food Chem 58:1484–1492. doi:10.1021/jf903299a

    Article  CAS  PubMed  Google Scholar 

  • Saïdi S, Mnasri B, Mhamdi R (2011) Diversity of nodule-endophytic agrobacteria-like strains associated with different grain legumes in Tunisia. Syst Appl Microbiol 34:524–530. doi:10.1016/j.syapm.2011.01.009

    Article  PubMed  Google Scholar 

  • Saïdi S, Chebil S, Gtari M, Mhamdi R (2013) Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 29:1099–1106. doi:10.1007/s11274-013-1278-4

    Article  PubMed  Google Scholar 

  • Salem S, Saidi S, Chihaoui SA, Mhamdi R (2012) Inoculation of Phaseolus vulgaris, Medicago laciniata and Medicago polymorpha with Agrobacterium sp. strain 10C2 may enhance nodulation and shoot dry weight but does not affect host range specificity. Ann Microbiol 62:1811–1817. doi:10.1007/s13213-012-0439-2

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokala RK et al (2002) Novel plant–microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171. doi:10.1128/AEM.68.5.2161-2171.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int. doi:10.1155/2013/863240

    PubMed Central  PubMed  Google Scholar 

  • Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77:211–222. doi:10.1111/j.1574-6941.2011.01102.x

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Ben Ammar H, Mengoni A, Mhamdi R (2012) Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem 54:1–6. doi:10.1016/j.soilbio.2012.05.013

    Article  CAS  Google Scholar 

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288. doi:10.1111/j.1758-2229.2009.00117.x

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. In: Annual review of phytopathology, pp 453–483

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell, IBP Handbook

    Google Scholar 

  • Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52:436–443. doi:10.1007/s00248-006-9116-y

    Article  PubMed  Google Scholar 

  • Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res 8:1441–1451. doi:10.1021/pr800799s

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada HA et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393. doi:10.1007/s00248-006-9025-0

    Article  PubMed  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277–288. doi:10.1023/B:PLSO.0000037048.26437.fa

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Alessio Mengoni (University of Firenze, Italy) for his kind assistance in data processing and statistical analysis. The authors are also grateful to Sarra Bachkouel (ARTT, Centre of Biotechnology of Borj-Cédria, Tunisia) for her technical assistance in ABI 3130 capillary electrophoresis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Mhamdi.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

File S1

Hierarchical representation of the bacterial taxonomic structure in the rhizosphere of common bean 75 days after sowing. Taxa induced by the inoculation with Agrobacterium sp. 10C2 are indicated by the symbol (@). Please double-click on any taxonomic group to zoom in or use the left panel to navigate across the different taxonomic levels. Connection to internet is necessary. (HTML 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihaoui, SA., Trabelsi, D., Jdey, A. et al. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol 197, 805–813 (2015). https://doi.org/10.1007/s00203-015-1118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1118-z

Keywords

Navigation